晶闸管智能调功器基础知识
- 格式:doc
- 大小:40.50 KB
- 文档页数:2
晶闸管相关知识点总结一、晶闸管的基本结构晶闸管由四层P-N结组成,常用的结构有NPNP和PNPN两种。
NPNP结构的晶闸管由N型半导体和P型半导体交替组成,其中N1P1之间为薄的P2层,称为控制层。
PNPN结构的晶闸管则由P型半导体和N型半导体交替组成,其中P1N1之间为薄的N2层,也称为控制层。
在两种结构中,N1和P2之间或P1和N2之间的结被称为触发结,控制层P2或N2与外接的触发电压信号V_g相结,当V_g增大到一定数值时,触发结打开,晶闸管导通,电流通过。
晶闸管的最大阳极与阴极电压称为额定阳极电压U DRM,最大阳极电流称为额定阳极电流I DRM。
二、晶闸管的工作原理晶闸管的工作原理可以从触发过程和导通过程两个方面来解释:1.触发过程晶闸管的触发过程是从晶闸管关断状态转变成导通状态的过程。
在正常工作状态下,晶闸管的阳极与阴极两端之间的电压为正向电压,晶闸管是处于关断状态的。
当控制层加上一个正脉冲电压时,触发结上的电场会产生漏极扩散,从而使控制层中的电子和空穴向N1层或P1层运动。
如果控制层中的载流子浓度高于某个值,那么触发结的电阻就会下降,电流将通过触发结,使晶闸管进入导通状态。
2.导通过程当晶闸管处于导通状态时,阳极和压电传输的电流都是主要的通电要素。
此时晶闸管的特性曲线显示出电流与电压之间的非线性关系。
当电流I G增加,晶闸管的触发电压U GT几乎不变,但是阳极电流I A与触发电流I G呈线性关系。
当晶闸管的阳极电压增加,电流增大,但是增加的速度并非线性关系。
当电压继续增大时,电流稳定在一个较大的数值。
在导通状态下,晶闸管相当于一个两端电压少量扩大的二极管。
三、晶闸管的特性晶闸管的特性可以从静态特性和动态特性两个方面来讨论:1.静态特性晶闸管的静态特性包括触发特性和导通特性两个方面:触发特性是指晶闸管在不同触发电流和触发电压条件下的触发特性曲线。
当触发电流I G增加时,触发电压U GT基本不变,这种关系在实际电路中经常用来测量晶闸管的参数。
晶闸管介绍:晶闸管是一种大功率开关型半导体器件,具有硅整流器件的特性。
1957年美国通用电器公司开发出世界上第一款晶闸管产品,并于1958年将其商业化。
晶闸管是PNPN 四层半导体结构,有三个极:阳极、阴极和控制极。
它能在高电压、大电流条件下工作,且其工作过程可以控制,被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。
晶闸管具有硅整流器件的特性,因此能够在高电压、大电流条件下工作。
在实际应用中,晶闸管的导通和截止状态可以通过控制极触发电流来实现控制。
在正向电压条件下,晶闸管内部两个等效三极管均处于截止状态,此时晶闸管是截止的。
当控制极上施加触发电流时,晶闸管内部等效三极管导通,晶闸管进入导通状态。
在导通状态下,控制极失去作用,即使控制极上施加反向电压,晶闸管仍然保持导通状态。
要使晶闸管截止,需要使其阳压为零或为负,或将阳压减小到一定程度,使流过晶闸管的电流小于维持电流,晶闸管才自行关断。
此外,晶闸管具有正向和反向特性。
在正向特性下,只有很小的正向漏电流;在反向特性下,需要施加反向电压才能使晶闸管导通。
因此,在实际应用中需要根据具体电路要求选择合适的晶闸管类型和规格。
晶闸管的基础知识晶闸管(Thyristor)是晶体闸流管的简称,又称作可控硅整流器(Silicon Controlled Rec(ti)fier——SCR),以前被简称为可控硅。
由于其能承受的电压和(电流)容量仍然是目前(电力电子)器件中最高的,而且工作可靠,因此在大容量的应用场合仍然具有比较重要的地位。
1结构和(工作原理)晶闸管的结构:从外形看,晶闸管主要有螺栓型和平板型两种封装结构。
有阳极A、阴极K和门极G(控制端)三个连接端。
内部是PNPN四层(半导体)结构。
a) 外形b) 结构c) (电气)图形符号晶闸管的工作原理:为了更好地分析晶闸管的工作原理,我们采用双(晶体管)模型分析,具体见下图按照晶体管工作原理,可列出如下方程:式中α1和α2分别是晶体管V1和V2的共基极电流增益;ICBO1和ICBO2分别是V1 和V2的共基极漏电流。
由上面四个等式可得晶体管的特性是:在低发射极电流下α是很小的,而当发射极电流建立起来之后,α迅速增大。
在晶体管阻断状态下,IG =0,而α1 +α2是很小的。
由上式可看出,此时流过晶闸管的漏电流只是稍大于两个晶体管漏电流之和。
如果注入触发电流使各个晶体管的发射极电流增大以致α1 +α2趋近于1的话,流过晶闸管的电流IA(阳极电流)将趋近于无穷大,从而实现器件饱和导通。
由于外电路负载的限制,IA实际上会维持有限值。
除门极触发外其他几种可能导通的情况:阳极电压升高至相当高的数值造成雪崩效应阳极电压上升率du/dt过高结温较高光触发这些情况除了光触发由于可以保证(控制电路)与主电路之间的良好绝缘而应用于(高压)电力设备中之外,其它都因不易控制而难以应用于实践。
只有门极触发是最精确、迅速而可靠的控制手段。
2基本特性静态特性正常工作时的特性:当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。
当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。
晶闸管的定义及主要参数和使用详解晶闸管的发明在当今高科技时代,电力控制技术的发展对于现代社会的可持续运行至关重要。
而晶闸管作为一种重要的电力控制元件,正发挥着不可或缺的作用。
本文将深入介绍晶闸管的基本原理、控制使用、重要参数以及其应用领域。
晶闸管的发明随着电力系统的扩展和电气设备的广泛应用,对电力控制的需求日益增加。
传统的机械式开关和控制方法存在效率低下、寿命短等问题。
因此,寻找更高效、可靠的电力控制方法成为了一个迫切的需求。
1956年,苏联的科学家Oleg Losev首次提出了PNPN结构的概念。
尽管他没有将其实际制造成可用器件,但这个概念为晶闸管的开发铺平了道路。
他的想法激发了后来研究者们对PNPN结构的探索。
1957年,美国物理学家Robert Noyce和Gordon Moore在贝尔实验室工作时,设计并制造了第一个可实际使用的PNPN结构的器件,被称为“Silicon Controlled Switch”(SCS)。
尽管在当时尚未广泛应用,但这是晶闸管发展的重要里程碑。
1958年,Gerald Pearson、Dawon Kahng和John Moll从贝尔实验室获得了专利,描述了一个在电流触发下能控制电流的器件。
他们将这个器件命名为“晶闸管”,即Thyristor,这个名称在随后的发展中被广泛使用。
晶闸管的重要参数触发电流门限(I_GT):触发电流门限是指需要在栅极施加的最小电流,以使晶闸管从关断状态切换到导通状态。
这个参数决定了触发晶闸管的最小控制电流。
保持电流(I_H):保持电流是指在晶闸管导通状态下,需要流过晶闸管的最小电流,以保持其导通。
如果电流降至保持电流以下,晶闸管将自动关断。
最大额定电压(V_RRM):最大额定电压是晶闸管可以承受的最大反向重复电压。
这个参数与晶闸管的电压耐受能力相关,决定了它适用的电路电压范围。
最大额定电流(I_TAV):最大额定电流是指晶闸管可以承受的最大平均电流。
晶闸管(可控硅)调功器的使用方法
一、概述
在工业现代化向工业4.0发展中北京富安时公司研发用晶闸管调功器SCR作为开关交流电的应用的控制器,一般控制交流电的时候,我们会使用交流接触器等SSR很多种方法,如:
1、使用继接触器
2、使用大功率的三极管或IGBT来控制:
3、使用整流桥加三极管:
4、使用两个SCR来控制:
5、使用一个Triac来控制:
晶闸管(Thyristor)又叫可控硅,按照其工作特性又可分单向可控硅(SCR)、双向可控硅(TRIAC)。
其中双向可控硅又分四象限双向可控硅和三象限双向可控硅。
同时可控硅又有绝缘与非绝缘两大类,如ST的可控硅用BT名称后的“A”、与“B”来区分绝缘与非绝缘。
单向可控硅SCR:全称Semiconductor Controlled Rectifier(半导体整流控制器)
双向可控硅TRIAC:全称Triode ACSemiconductor Switch(三端双向可控硅开关),也有厂商使用来表示双向可控硅或SSR。
二、可控硅的控制模式
现在我们来看一看通常的可控硅控制模式
1、On/Off控制:
对于这样的一个电路,当通过控制信号来开关Triac时,我们可以看到如下的电流波形
通常对于一个典型的阻性的负载使用该控制方法时,可以看到控制信号、电流、相电压的关联。
2、相角控制:
也叫导通角控制,其目的是通过触发可控硅的导通时间来实现对电流的控制,在简单的马达与调光系统中多可以看到这种控制方法
在典型的阻性负载中,通过控制触发导通角a在0~180之间变化,从而实现控制电流的大小。
晶闸管知识点总结一、晶闸管的工作原理晶闸管是一种半导体器件,也称为双极型开关管。
它由四层P-N结构组成,具有三极管的放大和开关特性,可以控制大功率、高电压的直流和交流电路。
晶闸管的工作原理主要包括触发、导通和关断三个过程。
1. 触发过程:晶闸管的触发是由外部的信号电压或电流来完成的。
当外部信号电压或电流超过晶闸管的触发门电压时,会使得晶闸管的内部结构发生变化,从而使得晶闸管进入导通状态。
2. 导通过程:一旦晶闸管被触发,它就会进入导通状态,电流将通过晶闸管流向负载电路,完成电路的通断操作。
晶闸管的导通状态可以持续一段时间,直到外部信号电压或电流减小,或者达到关断条件。
3. 关断过程:当外部信号电压或电流减小,或者达到关断条件时,晶闸管会进入关断状态,电流不再通过晶闸管,从而完成电路的断开。
二、晶闸管的特性晶闸管具有许多独特的特性,使得它在电路中得到广泛应用。
1. 高电压能力:晶闸管可以承受较高的电压,通常可达数千伏。
2. 大电流能力:晶闸管能够承受较大的电流,通常可达数百安。
3. 快速开关特性:晶闸管具有快速的响应速度,可以在微秒内完成导通和关断操作。
4. 可控性强:晶闸管可以通过外部的触发信号来实现导通和关断,并且触发信号可以通过调节来实现晶闸管的控制。
5. 低损耗:晶闸管的导通和关断过程中损耗较小,效率较高。
6. 大功率应用:由于晶闸管具有较高的电压和电流能力,因此适用于大功率电路的控制。
三、晶闸管的类型和结构晶闸管主要有PNPN型、NPNP型和COM型三种结构,其中PNPN型晶闸管是最常用的一种。
1. PNPN型晶闸管:这种晶闸管由两个N型半导体区和两个P型半导体区交替排列组成。
在PNPN结构中,有一个P-N结和一个N-P结,这两个结共同构成了PNPN结构。
PNPN型晶闸管具有导通压降小,结构简单,制作容易等特点。
2. NPNP型晶闸管:这种晶闸管与PNPN型晶闸管结构相似,不同之处在于两个N型半导体区和两个P型半导体区的排列顺序相反。
简介晶闸管调功器1.什么是晶闸管调功器晶闸管调功器是一种以晶闸管(电力电子功率器件)为基础,以智能数字控制电路为核心的电源功率控制电器,简称晶闸管调功器。
由于晶闸管又俗称可控硅,所以晶闸管调功器又被叫做可控硅调功器,可控硅调整器,可控硅调压器,晶闸管调整器,晶闸管调压器,电力调整器,电力调压器,功率控制器等等。
2.晶闸管调功器具有的优点晶闸管调功器具有效率高、无机械噪声和磨损、响应速度快、体积小、重量轻等诸多优点。
晶闸管调功器通过对电压、电流和功率的精确控制,从而实现精密控温。
并且凭借其先进的数字控制算法,优化了电能使用效率,对节约电能起了重要作用。
3.晶闸管调功器的分类从功能上(触发方式)分可分为:a.过零触发过零触发又分为:变周期过零触发和定周期过零触发。
b.移相触发移相触发可进行电压反馈、电流反馈、功率反馈。
4.晶闸管调功器的应用领域晶闸管调功器广泛应用于以下领域:电炉工业:退火炉,烘干炉,淬火炉,烧结炉,坩埚炉,隧道炉,熔炉,箱式电炉,井式电炉,熔化电炉,滚动电炉,真空电炉,台车电炉,淬火电炉,时效电炉,罩式电炉,气氛电炉,烘箱,实验电炉,热处理,电阻炉,真空炉,网带炉,高温炉,窑炉,电炉等。
机械设备:包装机械,注塑机械,热缩机械,挤压机械,食品机械,回火设备,塑料加工,红外加热等。
玻璃工业:玻璃纤维,玻璃成型,玻璃融化,玻璃印制,浮法玻璃生产线,退火槽等。
汽车工业:喷涂烘干,热成型等。
焊接工业:高频焊接等。
节能照明:隧道照明,路灯照明,摄影照明,舞台灯光等。
化学工业:蒸馏蒸发,预热系统,管道加热,石油化工,温度补偿等。
其它行业:盐浴炉,工频感应炉,淬火炉温控,热处理炉温控,金刚石压机加热,大功率充磁/退磁设备等。
航空电源调压,中央空调电加热器温控,纺织机械,水晶石生产,粉末冶金机械,彩色显像管生产设备,冶金机械设备,石油化工机械,灯光平滑调节,恒压恒流恒功率控制等领域。
晶闸管调功器与带0-5V、4-20mA的智能PID调节器或PLC配套使用;主要用与工业电炉的加热节能控制、大型风机水泵软启动运行控制。
可控硅(晶闸管)基础知识可控硅(晶闸管)基础知识可控硅符号:可控硅也称作晶闸管,它是由PNPN四层半导体构成的元件,有三个电极,阳极A,阴极K和控制极G。
可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性好。
在调速、调光、调压、调温以及其他各种控制电路中都有它的身影。
可控硅分为单向的和双向的,符号也不同。
单向可控硅有三个PN结,由最外层的P极和N极引出两个电极,分别称为阳极和阴极,由中间的P极引出一个控制极。
单向可控硅有其独特的特性:当阳极接反向电压,或者阳极接正向电压但控制极不加电压时,它都不导通,而阳极和控制极同时接正向电压时,它就会变成导通状态。
一旦导通,控制电压便失去了对它的控制作用,不论有没有控制电压,也不论控制电压的极性如何,将一直处于导通状态。
要想关断,只有把阳极电压降低到某一临界值或者反向。
双向可控硅的引脚多数是按T1、T2、G的顺序从左至右排列(电极引脚向下,面对有字符的一面时)。
加在控制极G上的触发脉冲的大小或时间改变时,就能改变其导通电流的大小。
与单向可控硅的区别是,双向可控硅G极上触发脉冲的极性改变时,其导通方向就随着极性的变化而改变,从而能够控制交流电负载。
而单向可控硅经触发后只能从阳极向阴极单方向导通,所以可控硅有单双向之分。
电子制作中常用可控硅,单向的有MCR-100等,双向的有TLC336等。
可以查看:世界可控硅参数大全 ,这是TLC336的样子:向强电冲击的先锋—可控硅可控硅是可控硅整流元件的简称,是一种具有三个PN 结的四层结构的大功率半导体器件。
实际上,可控硅的功用不仅是整流,它还可以用作无触点开关以快速接通或切断电路,实现将直流电变成交流电的逆变,将一种频率的交流电变成另一种频率的交流电,等等。
可控硅和其它半导体器件一样,其有体积小、效率高、稳定性好、工作可靠等优点。
它的出现,使半导体技术从弱电领域进入了强电领域,成为工业、农业、交通运输、军事科研以至商业、民用电器等方面争相采用的元件。
晶闸管调功器的使用方法晶闸管(又称为可控硅)调功器是一种用于控制交流电压和电流的电子器件,广泛应用于工业控制、电力调节和电动机调速等领域。
本文将详细介绍晶闸管调功器的使用方法。
首先,安装晶闸管调功器前需要确保系统断电,安装正确接线,接地可靠,以确保操作的安全性。
接下来,按照以下步骤使用晶闸管调功器。
1.检查调功器的电源输入,包括电压和频率,确保与系统要求相符。
将电源线接入到调功器的电源输入端口。
2.连接负载端。
将负载线连接到调功器的负载输出端口。
负载线和负载设备的接线需要符合电路设计要求,确保系统的稳定性。
3.连接控制信号。
晶闸管调功器一般具有外部控制接口,用于接收控制信号来调节输出电压和电流。
根据具体的设计,将控制信号线连接到对应的控制接口。
4.开机前检查。
在通电前,确保所有接线牢固可靠,避免短路或漏电等安全问题。
同时,检查控制信号是否接入正确。
5.加电。
打开电源开关,开始通电。
调功器一般具有指示灯,用于显示工作状态,检查指示灯是否正常亮起。
6.设置输出参数。
根据需求,通过控制信号来调节输出电压和电流。
可以通过改变控制信号的频率、脉冲宽度等方式来实现。
7.监测和调试。
在调功器工作期间,通过监测输出信号来检查调功器的工作状态。
可以使用示波器、电压表等设备来监测电压和电流波形,并确保其满足要求。
需要注意的是,在使用晶闸管调功器时1.高压注意事项。
晶闸管调功器通常用于高压和高功率的应用,因此在操作过程中应特别注意防止电击和电弧等危险。
2.温度控制。
晶闸管调功器在工作时会产生一定的热量,因此应确保调功器的散热能够正常工作,防止过热造成设备损坏。
3.维护保养。
定期维护调功器,清洁散热器和接线端子,检查电源线和控制信号线是否松动。
4.调节范围。
根据具体的设备和应用,了解晶闸管调功器的调节范围,以确保其可以满足系统的要求。
总结起来,晶闸管调功器是一个非常有用的电子设备,可以控制交流电压和电流,实现电源调节和电动机调速等功能。
晶闸管交流调压与调功电路设计讲解在晶闸管交流调压电路中,主要包括晶闸管、变压器、电阻和电容等元件。
其中,变压器起到降压作用,将输入的交流电压降到所需的电压范围,晶闸管通过控制导通角度和导通时间,实现对电压的调节。
电阻和电容可以起到限流和过滤的作用。
晶闸管交流调功电路是在晶闸管交流调压电路的基础上进行改进,增加了调功功能。
在晶闸管交流调功电路中,通过控制晶闸管的导通时间,可以调节电压和电流的相位,从而实现对功率的调节。
晶闸管导通时间越长,输出功率越大;导通时间越短,输出功率越小。
1.控制电路设计:需要设计一个合适的控制电路,通过触发脉冲控制晶闸管的导通角度和导通时间。
控制电路可以采用脉宽调制(PWM)技术实现精确的控制。
2.电源设计:根据输出功率的需求和电源的限制,设计合适的电源电压和电流。
3.散热设计:晶闸管在工作过程中会产生大量的热量,需要设计合适的散热系统,确保晶闸管的温度不超过规定范围,以免影响性能和寿命。
4.保护电路设计:晶闸管交流调功电路需要设计过流、过压、过温等保护电路,保护电路可以根据实际需求选择合适的保护元件和保护方式。
5.过滤电路设计:晶闸管交流调功电路的输出通常需要经过过滤电路进行滤波,以去除交流信号中的杂乱成分,使输出信号更接近直流。
总结起来,晶闸管交流调压与调功电路设计涉及到控制电路、电源、散热、保护以及过滤等多个方面。
需要根据实际需求和设备要求进行设计,并且考虑到晶闸管的特性和工作条件,确保电路的稳定性和可靠性。
设计过程中还需要进行合理的电路布局和分析,以确保电路性能和安全性。
晶闸管基础知识一可控硅是硅可控整流元件的简称,亦称为晶闸管。
具有体积小、结构相对简单、功能强等特点,是比较常用的半导体器件之一。
该器件被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。
家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。
二、可控硅的用途可控硅被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。
家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。
三、可控硅的优点可控硅具有耐压高、容量大、效率高、可控制等优点。
四、可控硅的分类按其工作特性,可控硅(THYRISTOR)可分为普通可控硅(SCR)即单向可控硅、双向可控硅(TRIAC)和其它特殊可控硅。
五、主要参数可控硅的主要参数:1 额定通态电流(IT)即最大稳定工作电流,俗称电流。
常用可控硅的IT一般为一安到几十安。
2 反向重复峰值电压(VRRM)或断态重复峰值电压(VDRM),俗称耐压。
常用可控硅的VRRM/VDRM一般为几百伏到一千伏。
3 控制极触发电流(IGT),俗称触发电流。
常用可控硅的IGT一般为几十微安到几十毫安。
六、封装形式常用可控硅的封装形式有TO-92、TO-126、TO-202AB、TO-220、TO-220AB、TO-3P、SOT-89、TO-251、TO-252等。
七、主要厂家主要厂家:ST、PHILIPS 、MOTOROLA、NEC、MITSUBISHI、TOSHIBA、TECCOR、SANKEN 等。
§1.整流元件(晶闸管)简单地说:整流器是把单相或三相正弦交流电流通过整流元件变成平稳的可调的单方向的直流电流。
一、晶闸管的基本结构品闸管(SemiconductorControlled Rectifier 简称SCR)是一种四层结构(PNPN)的大功率半导体器件,它同时乂被称作可控整流器或可控硅元件。
它有三个引出电极,即阳极(A)、阴极(K)和门极(G)。
其符号表示法和器件剖面图如图1所示。
图1符号表示法和器件剖面图普通晶闸管是在'型硅片中双向扩散P型杂质(铝或硼),形成RNR结构, 然后在人的大部分区域扩散N型杂质(磷或锐)形成阴极,同时在P?上引出门极,在片区域形成欧姆接触作为阳极。
图2、晶闸管载流子分布二、晶闸管的伏安特性晶闸管导通与关断两个状态是山阳极电压、阳极电流和门极电流共同决定 的。
通常用伏安特性曲线来描述它们之间的关系,如图3所示。
图3晶闸管的伏安特性曲线3 1b)当晶闸管加正向电压时,人和丿3正偏,厶反偏,外加电压儿乎全部降落在丿2结上,厶结起到阻断电流的作用。
随着匕K的增大,只要匕K<匕”通过阳极电流厶都很小,因而称此区域为正向阻断状态。
当匕K增大超过匕。
以后, 阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。
晶闸管流过山负载决定的通态电流*,器件压降为IV左右,特性曲线CD段对应的状态称为导通状态。
通常将匕。
及其所对应的/眈称之为正向转折电压和转折电流。
晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是山外部电路控制,即只有当电流小到称为维持电流/ 〃的某一临界值以下,器件才能被关断。
当晶闸管处于断态(“脉< %。
)时,如果使得门极相对于阴极为正,给门极通以电流心,那么晶闸管将在较低的电压下转折导通。
转折电压/。
以及转折电流乙。
都是的函数,心越大,匕。
越小。
如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。
当晶闸管的阳极相对于阴极为负,只要匕匕。
,厶很小,且与人基本无关。
但反向电压很大时(匕匕。
),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称匕。
晶闸管智能调功器的基础知识
一、关于电压、电流、电阻、负载等基本概念。
1.文字4P
2.图纸1P(曲线)
3.图纸1P(负载的四种接法)
二、晶闸管智能调功器的作用
1.几乎所有的用电设备都需要进行控制。
例如控制速度、压力或者温度。
对于加热设备,通常需要进行温度控制。
2.晶闸管智能调功器是一种对电加热设备进行温度控制的装置。
3.晶闸管智能调功器的作用及工作原理
作用:通过对电加热设备(负载)的电流或电压进行调整,达到控制器温度的目的。
原理:通过改变晶闸管(可控硅)的导通频率,或改变其导通角度,实现对负载电流或电压的改变。
(结合下一节进行详细介绍)
三、如何实现晶闸管智能调功器的控温作用
1.最简单的人工控温系统
2.有触电的自动控温系统
3.无触点的自动控温系统
图纸1P(几种不同的温控系统)
四、晶闸管智能调功器的工作原理
图纸1P(原理图)
五、晶闸管智能调功器的具体结构
1.调功器的主要部件:
主回路单元
周波控制器、温控仪(或PLC)
2.调功器的辅助部件:
断路器、电压表、电流表(电流互感器)、指示灯等
3.箱式晶闸管智能调功器
4.柜式晶闸管智能调功器
5.模块化(一体化)晶闸管智能调功器。