做一做解答_直线与圆的位置关系-优质公开课-鲁教9下精品
- 格式:ppt
- 大小:81.62 KB
- 文档页数:1
5.6 直线和圆的位置关系(3)教学目标(一)教学知识点1.能判定一条直线是否为圆的切线.2.掌握切线的性质.3.会过圆上一点画圆的切线.(二)能力训练要求1.通过判定一条直线是否为圆的切线,训练学生的推理判断能力.2.会过圆上一点画圆的切线,训练学生的作图能力.(三)情感与价值观要求经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步演绎推理能力,能有条理地、清晰地阐述自己的观点.经历探究圆与直线的位置关系的过程,掌握图形的基础知识和基本技能,并能解决简单的问题.教学重点探索圆的切线的判定方法,并能运用.教学难点探索圆的切线的判定方法.教学方法师生共同探索法.教学讨程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了直线和圆的位置关系,圆的切线的性质,懂得了直线和圆有三种位置关系:相离、相切、相交.判断直线和圆属于哪一种位置关系,可以从公共点的个数和圆心到直线的距离与半径作比较两种方法进行判断,还掌握了圆的切线的性质:圆的切线垂直于过切点的直径.由上可知,判断直线和圆相切的方法有两种,是否仅此两种呢?本节课我们就继续探索切线的判定条件.Ⅱ.新课讲解1.探索切线的判定条件如下图,AB是⊙O的直径,直线l经过点A,l与AB的夹角为∠α,当l绕点A旋转时,(1)随着∠α的变化,点O到l的距离(d如何变化?直线l与⊙O的位置关系如何变化?(2)当∠α等于多少度时,点O到l的距离d等于半径r?此时,直线l与⊙O 有怎样的位置关系?为什么?[师]大家可以先画一个圆,并画出直径AB,拿直尺当直线,让直尺绕着点A移动.观察∠α发生变化时,点O到l的距离d如何变化,然后互相交流意见.[生](1)如上图,直线l1与AB的夹角为α,点O到l的距离为d1,d1<r,这时直线l1与⊙O的位置关系是相交;当把直线l1沿顺时针方向旋转到l位置时,∠α由锐角变为直角,点O到l的距离为d,d=r,这时直线l与⊙O的位置关系是相切:当把直线l再继续旋转到l2位置时,∠α由直角变为钝角,点O到l的距离为d2,d2<r,这时直线l与⊙O的位置关系是相离.[师]回答得非常精彩.通过旋转可知,随着∠α由小变大,点O到l的距离d也由小变大,当∠α=90°时,d达到最大.此时d=r;之后当∠α继续增大时,d逐渐变小,第(2)题就解决了.[生](2)当∠α=90°时,点O到l的距离d等于半径.此时,直线l与⊙O的位置关系是相切,因为从上一节课可知,当圆心O到直线l的距离d=r时,直线与⊙O相切.[师]从上面的分析中可知,当直线l与直径之间满足什么关系时,直线l就是⊙O的切线?请大家互相交流.[生]直线l垂直于直径AB,并经过直径的一端A点.[师]很好.这就得出了判定圆的切线的又一种方法:经过直径的一端,并且垂直于这条直径的直线是圆的切线.2.议一议[师]学习了切线的判定定理,现在我们再继续来看看切线的性质,类似切线判定定理,我们来一起总结一下切线的性质.3.做一做已知⊙O上有一点A,过A作出⊙O的切线.分析:根据刚讨论过的圆的切线的第三个判定条件可知:经过直径的一端,并且垂直于直径的直线是圆的切线,而现在已知圆心O和圆上一点A,那么过A 点的直径就可以作出来,再作直径的垂线即可,请大家自己动手.[生]如图.(1)连接OA.(2)过点A作OA的垂线l,l即为所求的切线.4.例题讲解例3 已知:如图所示,ΔABC内接于⊙O,CD与AB的延长线相交于点D,且∠BCD= ∠BAC.求证:CD是⊙O的切线.证明:过点C作⊙O的直径CE,连接BE,则:∠CBE=90°.∴∠BEC+ ∠BCE= 90°.∵∠BEC= ∠BAC,∠BCD= ∠BAC.∴∠BEC= ∠BCD,∴∠BCD + ∠BCE= 90°.∴EC⊥CD.∴CD是⊙O的切线.Ⅲ.课堂练习随堂练习Ⅳ.课时小结本节课学习了以下内容:1.探索切线的判定条件.2.会经过圆上一点作圆的切线.Ⅴ.课后作业习题5.11。
九年级数学直线和圆的位置关系鲁教版【本讲教育信息】一. 教学内容:直线和圆的位置关系二. 教学目标:1. 了解直线和圆的位置关系,切线的判定及其性质。
2. 切线长定理,三角形和多边形的内切圆三. 重点、难点:1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。
2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。
四. 知识要点:1直线和圆有三种位置关系:相交、相切和相离2. 直线和圆有唯一公共点(即直线和圆相切)时,这条直线叫做圆的切线,这个唯一的共点叫做切点。
3. 直线和圆相交,即d<r;直线和圆相切,即d=r;直线和圆相离,即d>r;O_4. 切线的性质定理:圆的切线垂直于过切点的直径推论1经过圆心且垂直于切线的直线必过切点。
推论2经过切点且垂直于切线的直线必过圆心。
5. 切线的判定定理:经过直径的一端,并且垂直于这条直径的直线是圆的切线6. 和三角形三边都相切的圆可以作出一个,并且只能作出一个,这个圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。
7. 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这个点的连线平分两切线的夹角,且平分过两切点的两条半径的夹角。
【典型例题】例1.如图,AO 是△ABC 的中线,圆O 与AB 边相切于点D 。
(1)要使圆O 与AC 边也相切,应增加条件_________。
(任写一个) (2)增加条件后,请你证明圆O 与AC 边相切。
分析:(1)答案不唯一,可以是∠B =∠C 、AB =AC 、∠BAO =∠CAO 、AO ⊥BC 等。
(2)增加条件∠B =∠C 后,圆O 与AC 边相切。
证明:连结OD ,作OE ⊥AC ,垂足为E 。
∵圆O 与AB 边相切于点D ∴∠BDO =∠CEO =90° ∵AO 是△ABC 的中线, ∴OB =OC 又∵∠B =∠CCEO BDO ∆≅∆∴ ∴OE =OD∵OD 是圆O 的半径 ∴OE 是圆O 的半径 ∴圆O 与AC 边相切。
5.6 直线和圆的位置关系(2)学习目标:掌握切线的性质定理,并能运用切线的性质定理进行计算与证明。
学习重点:切线的性质定理以及运用切线的性质定理进行计算与证明。
学习难点:运用切线的性质定理进行计算与证明。
学习过程:一、课前抽测:我们有哪些方法判定一条直线是圆的切线?二、自主学习:自学教材,并完成下列问题如右图,直线l 是圆O 的切线,切点为A ,圆O 的半径为r .(1)圆心O 到切线l 的垂线段的长度等于 ;(2)圆心O 到切线l 的垂线段是 ;结论: 切线的性质定理:三、合作探究:问题1:切线性质定理的推导图(2)中,AB 与CD 要么垂直,要么不垂直.假设AB 与CD 不垂直,过点O 作一条直径垂直于CD 、垂足为M ,则OM <OA ,即圆心O 到直线CD 的距离小于⊙O 的半径,因此CD 与⊙O 相交,这与已知条件“直线CD 与⊙O 相切”相矛盾,所以AB 与CD 垂直.A问题2:例题探究例2 市广场上有一个圆形喷水池,如图是它的平面示意图.图中的圆环部分是喷水池的围墙.为了测量圆环的面积,小明和小颖取来一个卷尺,拉直后使它与内圆相切于点C,与外圆相交于点A,B,量得AB的长为12m,你能由此求出圆环的面积吗?(结果精确到0.1m2)四、当堂检测(1)AB是⊙O的直径,BC是⊙O的切线,AC交⊙O于D,AB=6,BC=8,则BD等于()A.4 B.3.6 C.4.8 D.5.2(2)Rt△ABC中,∠C=90°,AB=10,AC=6,以C为圆心作⊙C和AB相切,则⊙C 的半径长为()A.8 B.4 C.9.6 D.4.8(3)如图,直线l是圆O的切线,切点为A,∠OBA=50°,求∠AOB【自我评价】。
《直线与圆的位置关系》教材:华东师大版实验教材九年级上册授课教师:一、教材分析:1、教材的地位和作用圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广泛;学好本章内容,能提高解题的综合能力.而本节的内容紧接点与圆的位置关系,它体现了运动的观点,是研究有关性质的基础,也为后面学习圆与圆的位置关系及高中继续学习几何知识作铺垫.2、教学目标知识目标:使学生从具体的事例中认知和理解直线与圆的三种位置关系并能概括其定义,会用定义来判断直线与圆的位置关系,通过类比点与圆的位置关系及观察、实验等活动探究直线与圆的位置关系的数量关系及其运用.过程与方法:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想.情感态度与价值观:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想.3、教学重、难点重点:理解直线与圆的相交、相离、相切三种位置关系;难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用.二、教法与学法分析教无定法,教学有法,贵在得法.数学是一门培养人的思维、发展人的思维的基础学科.在教学过程中,不仅要对学生传授数学知识,更重要的应该是对他们传授数学思想、数学方法.初三学生虽然有一定的理解力,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象,所以我以参与式探究教学法为主,整堂课紧紧围绕“情景问题——学生体验——合作交流”的模式,并发挥微机的直观、形象功能辅助演示直线与圆的位置关系,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维.这样,一方面可激发学生学习的兴趣,提高学生的学习效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学会学习.三、教学过程:我的教学流程设计是:1、创设情景、孕育新知;2、启发诱导、探索新知;3、讲练结合、巩固新知;教案设计说明:(1)本节课的设计体现了“学会学习,为终身学习作准备”的理念,让学生在“数学活动”中获得学习的方法、能力和数学的思想,同时获得对数学学习的积极情感.(2)教师是教学工作的服务者,教师的责任是为学生的发展创造一个和谐、开放、富有情趣的学习新知识的探究氛围.本课引用唐朝诗人王维的千古绝唱“大漠孤烟直,长河落日圆”配以美伦美奂的景色,营造了探索问题的氛围;例题和提高练习的选用,让学生体会到数学知识无处不在,应用数学无处不有,让学生感受到“生活处处不数学”,从而在生活中主动发觉问题加以解决,达到“乐学”的目的;把实际问题与数学知识紧密联系,逐步渗透数学建模的思想方法,让学生掌握到更多的技能技巧.(3)课前设问,呈现本课知识目标.课前的3个设问,直奔主题,学生对本课应掌握的知识一目了然,重点分明.(4)变式训练,把学生置于创新思维的深入培养过程之中.众所周知,实施素质教育的突破口是创新教育,要培养学生的创新能力,就要有让学生进行创新思维的问题,而变式训练就是让学生展开创新思维的主阵地.教师在教学活动中应努力的去挖掘教材,有意识的去训练学生的思维,从而使学生逐渐形成良好的个性思维品质和良好的数学学习习惯.。
5.6 直线和圆的位置关系(1)学习目标:1、经历探索直线与圆的位置关系的过程。
2、理解直线与圆有相交、相切、相离三种位置关系。
3、通过直线和圆的位置关系的探究,渗透类比、分类、数形结合的思想,培养观察、分析和发现问题的能力。
学习过程:一、自主探究:1、自学课本32——33页。
预习疑难摘要:2、尝试活动:在纸上画一个圆,把直尺边缘看成一条直线,任意移动直尺,你发现直线和圆有几个公共点?有几种位置关系?并画图说明。
3、前面已经研究了点和圆的位置关系,点和圆有几种位置关系?它们的数量特征分别是什么?(1)如果把点换成一条直线,直线和圆又有哪几种位置关系呢?观察并测量:圆心到直线l的距离d与半径r分别有怎样的关系?(2)反过来,若已知d<r,d=r,d>r,你能判断直线与圆的位置关系吗?4、清晨,一轮红日从海平面升起,把太阳看成一个圆,海平面看成一条线,你能发现,太阳与海平面间有几种位置关系?你能举出生活中类似的实例吗?二、合作交流、成果展示:1、(1)结合问题2,说说什么是直线和圆相交、相切、相离?(2)结合问题3,说说如何由“形”归纳出“数”,由“数”判断“形”?2、要判断直线与圆的位置关系,关键是:3、直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?三、应用规律,巩固新知:(一)初步应用:1、已知圆的直径为13cm ,圆心到直线的距离为(1)6cm(2)6.5cm(3)7cm分别指出直线和圆有几个公共点,并说明理由。
2、已知直线l 与半径为r的⊙O相交,且点O到直线l的距离为5,求r 的取值范围。
例1:在Rt△ABC中,∠C=90°,AB=8cm ,AC=4cm.(1)以C为圆心,当半径的长为多少时,AB与有⊙C相切?(2)以点C为圆心,分别以2cm和4cm的长为半径作两个圆,这两个圆与直线AB有怎样的位置关系?(二)联系拓展:1、若⊙O的直径为6cm,直线l上一点C 到圆心O的距离为3cm,则直线l与⊙O的位置关系是。
第三章直线与圆、圆与圆的位置关系章节概述:直线与圆、圆与圆的位置关系,是初中几何类题型中较难的部分,许多同学在学习这部分内容时,较容易忽略最基本的定义、性质,拿到题目仍感无从下手。
本节课,老师将带领同学们一起系统地全面地梳理直线与圆、圆与圆的位置关系的内容,使同学们能够清晰地理解知识要点、掌握解题思路与步骤,全面突破直线与圆、圆与圆的位置关系!§3.1 直线与圆的位置关系教学目标:1.理解相交、相切、相离的概念并掌握判断方法2.掌握切线的判定、性质与定理3.理解并掌握弦切角、切割线定理与割线定理例1:已知⊙O的半径为3cm,点P是直线l上一点,OP长为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.相交、相切、相离都有可能解析:判断直线和圆的位置关系,必须明确圆心到直线的距离.直线和圆的位置关系与数量之间的联系:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.特别注意:这里的5不一定是圆心到直线的距离.解:因为垂线段最短,所以圆心到直线的距离小于等于5.此时和半径3的大小不确定,则直线和圆相交、相切、相离都有可能.故选D.例2:△ABC中,∠C=90°,AC=3,BC=4.给出下列三个结论:①以点C为圆心,2.3 cm 长为半径的圆与AB相离;②以点C为圆心,2.4 cm长为半径的圆与AB相切;③以点C为圆心,2.5 cm长为半径的圆与AB相交;则上述结论中正确的个数是()A.0个B.1个C.2个D.3个解析:此题是判断直线和圆的位置关系,需要求得直角三角形斜边上的高.先过C作CD⊥AB 于D,根据勾股定理得AB=5,再根据直角三角形的面积公式,求得CD=2.4.①,即d>r,直线和圆相离,正确;②,即d=r,直线和圆相切,正确;③,d<r,直线和圆相交,正确.共有3个正确解:①,d>r,直线和圆相离,正确;②,d=r,直线和圆相切,正确;③,d<r,直线和圆相交,正确.故选D.即时练习:1、已知在直角坐标系中,以点A (0,3)为圆心,以3为半径作⊙A ,则直线y =kx +2(k ≠0)与⊙A 的位置关系是( )A .相切B .相交C .相离D .与K 值有关2、请用尺规作图:过圆上一点作已知圆的切线3、已知:直线y =kx (k ≠0)经过点(3,4).(1)k =(2)将该直线向上平移m (m >0)个单位,若平移后得到的直线与半径为6的⊙O 相离(点O 为坐标原点),则m 的取值范围为例3:如图,以△ABC 的直角边AB 为直径的半圆O 与斜边AC 交于点D ,E 是BC 边的中点.若AD 、AB 的长是方程x 2-6x +8=0的两个根,则图中阴影部分的面积为解析:本题主要考查了扇形的面积计算,一元二次方程的求解,切线的性质,勾股定理,相似三角形的判定与性质,根据方程的解判断出△AOD 是等边三角形是解题的关键.先利用因式分解法解方程求出AD 、AB 的长,然后连接OD 、BD 、OE ,并判定△AOD 是等边三角形,根据直径所对的圆周角是直角可得BD ⊥AC ,根据直角三角形斜边上的中线等于斜边的一半可得BE BC DE ==21,再根据到线段两端点距离相等的点在线段的垂直平分线上可得OE 垂直平分BD ,然后根据勾股定理求出BD 的长,再根据相似三角形对应边成比例列式求出BC 的长,从而得到BE 的长度,最后根据阴影部分的面积等于四边形OBED 的面积减去扇形BOD 的面积,列式进行计算即可求解.解:x 2-6x +8=0,(x -2)(x -4)=0,解得x 1=2,x 2=4,∴AD =2,AB =4,∵AB 是直径,∴AO =BO =21AB =2,连接OD ,则AO =OD =AD =2, ∴△AOD 是等边三角形,连接BD ,则BD ⊥AC ,∵E 是BC 边的中点,∴DE =BE =21BC ,连接OE ,则OE 是线段BD 的垂直平分线, 在Rt △AOD 中,3222=+=AD AB BD ,∵∠A =∠A ,∠ADB =∠ABC =90°,∴△ABC ∽△ADB ,∴AD AB BD BC =,即2432=BC , 解得:34=BC ,BE =21BC =32,∴S 四边形OBED =2S △OBE =2×21×2×32=34,又∠BOD =180°-∠AOD =180°-60°=120°,∴S 扇形BOD =ππ343602120020=•• ∴S 阴影部分的面积=S 四边形OBED -S 扇形BOD =π3434-故答案为:π3434- 例4:如图,正方形ABCD 的边长为2,⊙O 的直径为AD ,将正方形沿EC 折叠,点B 落在圆上的F 点,则BE 的长为解析:本题考查的是切线的判定与性质,根据三角形全等判定CF 是圆的切线,然后由翻折变换,得到对应的角与对应的边分别相等,利用切线的性质结合直角三角形,运用勾股定理求出线段的长.解:如图:连接OF ,OC .在△OCF 和△OCD 中,∵OF =OD ,OC =OC ,CF =CD ,∴△OCF ≌△OCD ,∴∠OFC =∠ODC =90°,∴CF 是⊙O 的切线.∵∠CFE =∠B =90°,∴E ,F ,O 三点共线.∵EF =EB ,∴在△AEO 中,AO =1,AE =2-BE ,EO =1+BE ,∴()()22211BE BE -+=+,解得: 32=BE ;故答案是:32. 例5:在正方形ABCD 中,E 为AD 中点,AF 丄BE 交BE 于G ,交CD 于F ,连CG 延长交AD 于H .下列结论:①CB CG =;②41=BC HE ;③31=GF EG ;④以AB 为直径的圆与CH 相切于点G ,其中正确的是解析:本题综合考查了切线的性质与判定、全等三角形的判定与性质、正方形的性质等知识点.解答③选项时,也可以利用相似三角形的判定与性质.解:连接OG 、OC .∵AF 丄BE ,∴∠ABE =∠DAF ;在Rt △ABE 和Rt △DAF 中,∵⎪⎩⎪⎨⎧=∠=∠=∠=∠090ADF BAE DA AB DAF ABE ,∴Rt △ABE ≌Rt △DAF (ASA ),∴AE =DF (全等三角形的对应边相等);又∵E 为AD 中点,∴F 为DC 的中点;∵O 为AB 的中点,∴OC ∥AF ,∴OC ⊥BE ,∴∠BOC =∠GOC ;在△BOC 和△GOC 中,∵()⎪⎩⎪⎨⎧=∠=∠=公共边CO OC GOC BOC OG OB ,∴△BOC ≌△GOC ,∴∠OBC =∠OGC =90°,即OG ⊥CH ,∴以AB 为直径的圆与CH 相切于点G ;故④正确;∵以AB 为直径的圆与CH 相切于点G ,AB ⊥BC ,∴CG =CB ;故①正确;∵AD ∥BC ,∴CGHG BG EG BC HE ==;∵CG =CB ,∴HG =HE ;又∵E 为AD 中点, ∴AH =HE =HG ,即点H 为AE 的中点,∴4141==AD AD BC HE ;故②正确; ∵点F 是CD 的中点,∴AD DF 21=;∴AD AF 25=(勾股定理); ∵21tan ===∠AD DF AG EG DAF ,∴AG =2EG ,∴AD EG AE 215== ∴AD EG 105=∴AD AG 55= ∴AD AG AG AF FG 1053==-=∴31=GF EG ;故③正确; 综上所述,正确的说法有:①②③④.故答案是:①②③④.即时练习:1、如图,D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA =∠CBD .(1)求证:CD 是⊙O 的切线;(2)过点B 作⊙O 的切线交CD 的延长线于点E ,若BC =6,tan ∠CDA =32,求BE 的长. 2、已知:Rt △ABC 中,AC ⊥BC ,CD 为AB 边上的中线,AC =6cm ,BC =8cm ;点O 是线段CD 边上的动点(不与点C 、D 重合);以点O 为圆心、OC 为半径的⊙O 交AC 于点E ,EF ⊥AB 于F .(1)求证:EF 是⊙O 的切线.(如图1)(2)请分析⊙O 与直线AB 可能出现的不同位置关系,分别指出线段EF 的取值范围.3、三等分角仪--把材料制成如图所示的阴影部分的形状,使AB 与半圆的半径CB 、CD 相等,PB 垂直于AD .这便做成了“三等分角仪”.如果要把∠MPN 三等分时,可将三等分角仪放在∠MPN 上,适当调整它的位置,使PB 通过角的顶点P ,使A 点落在角的PM 边上,使角的另一边与半圆相切于E 点,最后通过B 、C 两点分别作两条射线PB 、PC ,则∠MPB =∠BPC =∠CPN .请用推理的方法加以证明.4、(2012•扬州)如图1,在平面直角坐标系中,矩形OABC 的顶点O 在坐标原点,顶点A 、C 分别在x 轴、y 轴的正半轴上,且OA =2,OC =1,矩形对角线AC 、OB 相交于E ,过点E 的直线与边OA 、BC 分别相交于点G 、H .(1)①直接写出点E 的坐标:②求证:AG =CH .(2)如图2,以O 为圆心,OC 为半径的圆弧交OA 与D ,若直线GH 与弧CD 所在的圆相切于矩形内一点F ,求直线GH 的函数关系式.(3)在(2)的结论下,梯形ABHG 的内部有一点P ,当⊙P 与HG 、GA 、AB 都相切时,求⊙P 的半径.例6:已知:如图,在⊙O 中,AB 是直径,四边形ABCD 内接于⊙O ,∠BCD =130°,过D 点的切线PD 与直线AB 交于点P ,则∠ADP 的度数为解析:考查圆与切线的位置关系及其切线角之间的关系.解:连接BD ,则∠ADB =90°,又∠BCD =130°,故∠DAB =50°,所以∠DBA =40°;又因为PD 为切线,故∠PDA =∠ABD =40°,即∠PDA =40°.例7:如图,四边形ABED 内接于⊙O ,E 是AD 延长线上的一点,若∠AOC =122°,则∠B = 度,∠EDC = 度.解析:本题主要考查了圆周角定理和圆内接四边形的性质.解:由圆周角定理得,∠B =21∠AOC =61°,∵四边形ADCB 内接于⊙O ,∴∠EDC =∠B =61°. 即时练习:1、如图,P A 、PB 切⊙O 于点A 、B ,AC 是⊙O 的直径,且∠BAC =35°,则∠P = 度.2、如图,P A 切⊙O 于A 点,C 是弧AB 上任意一点,∠P AB =58°,则∠C 的度数是 度 例8:如图,P A 、PB 分别切⊙O 于点A 、B ,C 为弧AB 上任意一点,过点C 作⊙O 切线交P A 于点D ,交PB 于点E ,若P A =6,则△PDE 的周长为 .解析:本题考查了切线长定理的应用能力.解:根据切线长定理得:CD =AD ,CE =BE ,P A =PB ,则△PDE 的周长=2P A =6×2=12.例9:如图等腰梯形ABCD 是⊙O 的外切四边形,O 是圆心,腰长4cm ,则∠BOC = 度,梯形中位线长 cm .解析:本题考查了切线长定理、等腰梯形的性质和梯形的中位线定理,是基础知识要熟练掌握.即时练习:1、如图,AB 为半⊙O 的直径,C 为半圆弧的三等分点,过B ,C 两点的半⊙O 的切线交于点P ,若AB 的长是2a ,则P A 的长是2、(2012•岳阳)如图,AB 为半圆O 的直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,AD 与CD 相交于D ,BC 与CD 相交于C ,连接OD 、OC ,对于下列结论:①OD 2=DE •CD ;②AD +BC =CD ;③OD =OC ;④S 梯形ABCD =21CD •OA ;⑤∠DOC =90°,其中正确的是( ) A 、①②⑤ B 、②③④ C 、③④⑤ D 、①④⑤例10:已知如图,P 为⊙O 外一点,过点P 作⊙O 的切线,切点为C ,过P ,O 两点作⊙O 的割线交⊙O 于A 、B 两点,且PC =4cm ,P A =3cm ,则⊙O 的半径R = cm 解析:此题主要运用了切割线定理的有关知识来解决问题.解:∵PC 是切线,∴PC 2=P A •PB ;又∵PC =4,P A =3,∴16=3(3+AB ),∴AB =37,∴半径R =67. 即时练习:1、如图,已知Rt △ABC 的两条直角边AC ,BC 的长分别为3,4,以AC 为直径作圆与斜边AB 交于点D ,则AD =2、已知:如图,P A 是圆的切线,A 为切点,PBC 是圆的割线,且BC =2PB ,求PB PA = . A 组1、如图,时钟的钟面上标有1,2,3,…,12共12个数,一条直线把钟面分成了两部分.请你再用一条直线分割钟面,使钟面被分成三个不同的部分且各部分所包含的几个数的和都相等,则其中的两个部分所包含的几个数分别是 和 .2、如图,PA 为O 的切线,A 为切点,4=PA 半径3=OB 则APO ∠cos = .3、如图,AB 是O 的直径,AD 是O 的切线,点C 在O 上,3,2,//==OD AB OD BC ,则BC 的长为 .4、如图,P 是O 外一点,PB PA ,分别和O 切于C B A ,、是AB 上任意一点,过C 作O 的切线分别交PB PA 、于E D 、,若PDE ∆的周长为12,则PA 长为多少?5、如图,若正111C B A ∆内接于正ABC ∆的内切圆,则111C B A ∆与ABC ∆的面积之比. 6.如图,已知点E 是矩形ABCD 的边AB 上一点,15,3:5:==EC EA BE ,把BEC ∆沿折痕EC 向上翻折,若点B 恰好在AD 上,设这个点为F .(1)求BC AB ,的长度各是多少?(2)若O 内切于以C B E F ,,,为顶点的四边形,求O 的面积.B 组7.如图,在矩形ABCD 中,AB =2,CD =4,圆D 的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O 重合,绕着O 点转动三角板,使它的一条直角边与圆D 切于点H ,此时两直角边与AD 交于F E ,两点,则EFO ∠tan 的值为.8、已知AB 是O 的直径,PB 切O 于点B ,APB ∠的平分线分别交AB BC ,于点E D ,,交O 于点PA F ,交O 于点︒=∠60,A C ,线段BD AE ,的长是一元二次方程0322=+-kx x (k 为常数)的两个根.(1)求证:AE PB BD PA ⋅=⋅;(2)求证:O 的直径为k ;(3)求FPA ∠tan .9、如图,从O 外一点A 作O 的切线AC AB ,,切点分别为C B ,,且O 直径6=BD ,连接AO CD ,.(1)求证:AO CD //;(2)设y AO x CD ==,,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)若11=+CD AO ,求AB 的长.10、(1)已知,如图①,在平行四边形ABCD 中,F E ,是对角线BD 上的两点,且DE BF =.求证:CF AE =;(2)已知,如图②,AB 是O 的直径,CA 与O 相切于点A .连接CO 交O 于点D ,CO 的延长线交O 于点E .连接︒=∠30,,ABD BD BE ,求EBO ∠和C ∠的度数. §3.2 内切圆教学目标:1. 掌握内切圆的定义与作图2. 掌握内切圆的性质例1:如图,直线a 、b 、c 表示三条互相交叉的公路,现要建一个货物中转站.要求它到三条公路的距离相等,则可供选择的地址有 处.解析:此题考查了角平分线与内心的关系解:∵△ABC 内角平分线的交点到三角形三边的距离相等,∴△ABC 内角平分线的交点满足条件;如图:点P 是△ABC 两条外角平分线的交点,过点P 作PE ⊥AB ,PD ⊥BC ,PF ⊥AC ,∴PE =PF ,PF =PD ,∴PE =PF =PD ,∴点P 到△ABC 的三边的距离相等,∴△ABC 两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故填4.例2:如图,△ABC 中,∠C =90°,AB =c ,BC =a ,AC =b ,I 是内心,圆I 与AB 、BC 、AC 分别相切于D 、E 、F 点。
5.6 直线和圆的位置关系(1)学习目标:1、经历探索直线与圆的位置关系的过程。
2、理解直线与圆有相交、相切、相离三种位置关系。
3、通过直线和圆的位置关系的探究,渗透类比、分类、数形结合的思想,培养观察、分析和发现问题的能力。
学习过程:一、自主探究:1、自学课本32——33页。
预习疑难摘要:2、尝试活动:在纸上画一个圆,把直尺边缘看成一条直线,任意移动直尺,你发现直线和圆有几个公共点?有几种位置关系?并画图说明。
3、前面已经研究了点和圆的位置关系,点和圆有几种位置关系?它们的数量特征分别是什么?(1)如果把点换成一条直线,直线和圆又有哪几种位置关系呢?观察并测量:圆心到直线l的距离d与半径r分别有怎样的关系?(2)反过来,若已知d<r,d=r,d>r,你能判断直线与圆的位置关系吗?4、清晨,一轮红日从海平面升起,把太阳看成一个圆,海平面看成一条线,你能发现,太阳与海平面间有几种位置关系?你能举出生活中类似的实例吗?二、合作交流、成果展示:1、(1)结合问题2,说说什么是直线和圆相交、相切、相离?(2)结合问题3,说说如何由“形”归纳出“数”,由“数”判断“形”?2、要判断直线与圆的位置关系,关键是:3、直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?三、应用规律,巩固新知:(一)初步应用:1、已知圆的直径为13cm ,圆心到直线的距离为(1)6cm(2)6.5cm(3)7cm分别指出直线和圆有几个公共点,并说明理由。
2、已知直线l 与半径为r的⊙O相交,且点O到直线l的距离为5,求r 的取值范围。
例1:在Rt△ABC中,∠C=90°,AB=8cm ,AC=4cm.(1)以C为圆心,当半径的长为多少时,AB与有⊙C相切?(2)以点C为圆心,分别以2cm和4cm的长为半径作两个圆,这两个圆与直线AB有怎样的位置关系?(二)联系拓展:1、若⊙O的直径为6cm,直线l上一点C 到圆心O的距离为3cm,则直线l与⊙O的位置关系是。