八年级数学上册 第十一章 三角形 11.2 与三角形有关的角 11.2.1 三角形的内角教案课件
- 格式:ppt
- 大小:869.50 KB
- 文档页数:11
人教版八年级数学上册11.2.1.1《三角形的内角》教学设计一. 教材分析《三角形的内角》是人教版八年级数学上册第11.2.1.1节的内容,本节课主要让学生了解三角形的内角和定理,即三角形的三个内角之和等于180度。
学生通过本节课的学习,能够掌握三角形的内角和定理,并为后续学习三角形分类、三角函数等知识打下基础。
二. 学情分析八年级的学生已经学习了多边形的概念和性质,对多边形的内角和有一定的了解。
但部分学生可能对多边形的内角和与三角形的内角和之间的关系理解不透彻。
此外,学生在学习过程中可能对一些概念和定理的证明过程感到困惑,需要教师在教学中进行引导和解释。
三. 教学目标1.知识与技能:让学生掌握三角形的内角和定理,能够运用定理解决相关问题。
2.过程与方法:通过观察、操作、探究等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和问题解决能力。
四. 教学重难点1.重点:三角形的内角和定理。
2.难点:三角形的内角和定理的证明过程。
五. 教学方法1.引导发现法:教师引导学生观察、操作、探究,发现三角形的内角和定理。
2.讲解法:教师对三角形的内角和定理进行讲解,解释定理的证明过程。
3.互动讨论法:学生之间进行合作交流,共同解决问题。
六. 教学准备1.教学课件:制作三角形的内角和定理的课件,包括图片、动画、例题等。
2.教学道具:准备一些三角形模型,用于学生观察和操作。
3.练习题:准备一些有关三角形的内角和定理的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾多边形的内角和,为新课的学习做好铺垫。
2.呈现(10分钟)教师利用课件展示三角形的内角和定理,让学生初步了解定理的内容。
3.操练(10分钟)教师引导学生观察三角形模型,让学生亲自动手测量三角形的内角,验证内角和定理。
4.巩固(10分钟)教师通过讲解和举例,让学生深入理解三角形的内角和定理,并解答学生的疑问。
11.2.1 三角形内角和定理学校:___________姓名:___________班级:___________一.选择题(共10小题)1.(2018•昆明)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()A.90° B.95° C.100°D.120°2.(2018•长春)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44° B.40° C.39° D.38°3.(2018•黄石)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75° B.80° C.85° D.90°4.(2018•河北二模)如图,将直角三角形ABC折叠,使点A与点B重合,折痕为DE,若∠C=90°,∠A=35°,则∠DBC的度数为()A.40° B.30° C.20° D.10°5.(2018•河北模拟)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°6.(2018•大庆模拟)如图,△ABC 中,∠A=50°,D是BC延长线上一点,∠ABC和∠ACD的平分线交于点E,则∠E的度数为()A.40° B.20° C.25° D.30°7.(2018•绿园区一模)如图,在△ABC中,点D在AB边上,点E在AC 边上DE∥BC,点B、C、F在一条直线上,若∠ACF=140°,∠ADE=105°,则∠A的大小为()A.75° B.50° C.35° D.30°8.(2018•长春模拟)如图,在△ABC 中,点D在边BA的延长线上,∠ABC 的平分线和∠DAC的平分线相交于点M,若∠BAC=80°,∠C=60°,则∠M 的大小为()A.20° B.25° C.30° D.35°9.(2018•裕华区一模)如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38° B.39° C.42° D.48°10.(2018•津南区二模)如图,△ABC 纸片中,∠A=56°,∠C=88°.沿过点B的直线折叠这个三角形,使点C 落在AB边上的点E处,折痕为BD、则∠EDB的度数为()A.76° B.74° C.72° D.70°二.填空题(共8小题)11.(2018•永州)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE 相交于点D,则∠BDC= .12.(2018•滨州)在△ABC中,若∠A=30°,∠B=50°,则∠C= .13.(2018•微山县一模)如图,点E 在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.14.(2018•兴化市一模)如果将一副三角板按如图方式叠放,那么∠1= .15.(2018•南开区模拟)如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1= .∠A1BC的平分线与∠A1CD 的平分线交于点A2,得∠A2,…,∠A2009BC的平分线与∠A2009CD的平分线交于点A2010,得∠A2010,则∠A2010= .16.(2018•岐山县三模)如图,AE 是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,∠DAE 度.17.(2018•下城区二模)在△ABC中,∠ABC,∠ACB的角平分线交于点P,若∠BPC=110°,则∠A= °.18.(2018•安阳县一模)如图,△ABC 中,∠B=35°,∠BCA=75°,请依据尺规作图的作图痕迹,计算∠α= °三.解答题(共3小题)19.(2018•南岸区模拟)如图,BG ∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.20.(2018•门头沟区一模)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.(2018•淄博)已知:如图,△ABC 是任意一个三角形,求证:∠A+∠B+∠C=180°.参考答案与试题解析一.选择题(共10小题)1.解:∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选:B.2.解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.3.解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.4.解:∵∠C=90°,∠A=35°,∴∠ABC=55°,由折叠可得,∠A=∠ABD=35°,∴∠DBC=∠ABC﹣∠ABD=55°﹣35°=20°.故选:C.5.解:给图中标上∠1、∠2,如图所示.∵∠1+45°+90°=180°,∴∠1=45°,∵∠1=∠2+30°,∴∠2=15°.又∵∠2+∠α=180°,∴∠α=165°.故选:A.6.解:∵由三角形的外角的性质可知,∠E=∠ECD﹣∠EBD,∵∠ABC的平分线与∠ACD的平分线交于点E,∴∠EBC=∠ABC,∠ECD=∠ACD,∵∠ACD﹣∠ABC=∠A=50°,∴(∠ACD﹣∠ABC)=25°,∴∠E=∠ECD﹣∠EBD=25°,故选:C.7.解:∵DE∥BC,∴∠DEC=∠ACF=140°,∴∠AED=180°﹣140°=40°,∵∠ADE=105°,∴∠A=180°﹣105°﹣40°=35°,故选:C.8.解:∵∠BAC=80°,∠C=60°,∴∠ABC=40°,∵∠ABC的平分线和∠DAC的平分线相交于点M,∴∠ABM=20°,∠CAM=,∴∠M=180°﹣20°﹣50°﹣80°=30°,故选:C.9.解:∵将△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°,故选:A.10.解:∵∠A=56°,∠C=88°,∴∠ABC=180°﹣56°﹣88°=36°,∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,∴∠CBD=∠DBE=18°,∠C=∠DEB=84°,∴∠EDB=180°﹣18°﹣88°=74°.故选:B.二.填空题(共8小题)11.解:∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.12.解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°13.解:∵CD平分∠ACE,∠DCA=65°,∴∠ACE=2∠DCA=130°,又∵∠A=70°,∴∠B=130°﹣70°=60°,故答案为:60°.14.解:给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.故答案为:105°.15.解:∵∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∠ACD=2∠A1CD,∠ABC=2∠A1BC,∴2∠A1CD=∠A+2∠A1BC,即∠A1CD=∠A+∠A1BC,∴∠A1==,由此可得∠A2010=.故答案为:,.16.解:∵AE是△ABC的角平分线,∴∠CAE=∠BAC=×128°=64°,∵AD⊥BC,∴∠CAD=90°﹣∠C=90°﹣36°=54°,∴∠DAE=∠CAE﹣∠CAD=64°﹣54°=10°.故答案为:10.17.解:如图所示:∵∠ABC,∠ACB的角平分线交于点P,∴∠ABP=∠PBC,∠ACP=∠PCB,∵∠BPC=110°,∴∠PBC+∠PCB=70°,∴∠ABC+∠ACB=140°,∴∠A=180°﹣140°=40°.故答案为:40.18.解:∵∠B=35°,∠BCA=75°,∴∠BAC=70°,∵由作法可知,AD是∠BAC的平分线,∴∠CAD=∠BAC=35°,∵由作法可知,EF是线段BC的垂直平分线,∴∠BCF=∠B=35°,∵∠ACF=∠ACB﹣∠BCF=40°,∴∠α=∠CAD+∠ACF=75°,故答案为:75.三.解答题(共3小题)19.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BCE=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.20.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.21.证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.。
第十一章三角形
11.1 与三角形有关的线段【高、中线(重心)、角平分线】
两边之差<第三边<两边之和。
按边分类、三角形的稳定性。
11.2 与三角形有关的角
三角形内角和定理:三角形三个内角的和等于180º。
直角三角形的两个锐角互余。
有两个角互余的三角形是直角三角形。
推论:三角形的外角等于与它不相邻的两个内角的和。
备注:推论和定理一样,可以作为进一步推理的依据。
11.3 多边形及其内角和
多边形:在平面内,由一些线段首尾顺次相接组成的封闭式图形。
对角线:连接多边形不相邻的两个顶点的线段。
正多边形:各个角都相等,各条边都相等的多边形。
n边形内角和等于(n-2)×180º。
多边形的外角和等于360º。
作者留言:
非常感谢!您浏览到此文档。
为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!
良好的学习态度能够更好的提高学习能力。
良好的学习态度应该包括:
1、主动维持学习的兴趣,不断提升学习能力。
2、合理安排学习的时间。
3、诚挚尊重学习的对象,整合知识点。
4、信任自己的学习能力,制定学习复习计划。
5、做题的时候要学会反思、归类、整理出对应的解题思路。
因此,良好的学习态度的养成,应该从养成良好的学习习惯开始。
无论是初学者,还是学有所成者,都应该有一个良好的学习态度,都应该有一个良好的学习习惯。