导数的运算法则与四则运算[下学期]--北师大版
- 格式:pdf
- 大小:983.49 KB
- 文档页数:8
求导的四则运算法则公式求导是微积分中的一个重要概念,而求导的四则运算法则公式更是我们解决导数问题的有力工具。
先来说说加法法则。
假设我们有两个函数 f(x) 和 g(x) ,它们的导数分别为 f'(x) 和 g'(x) ,那么 (f(x) + g(x))' = f'(x) + g'(x) 。
这就好比你有两堆苹果,一堆每天增加的数量是按照 f'(x) 的规律,另一堆按照 g'(x) 的规律增加,那么把这两堆合在一起每天增加的总数,就是这两个规律相加。
举个例子吧,比如说 f(x) = x²,它的导数 f'(x) = 2x ; g(x) = 3x ,它的导数 g'(x) = 3 。
那么 (f(x) + g(x)) 就是 x² + 3x ,它的导数就是 (f(x) + g(x))' = 2x + 3 ,正好就是 f'(x) + g'(x) 。
再看减法法则,(f(x) - g(x))' = f'(x) - g'(x) 。
这就像你有两群羊,一群每天减少的数量按 f'(x) 的规律,另一群按 g'(x) 的规律减少,那么两群羊合在一起每天减少的总数就是这两个规律相减。
比如说 f(x) = 5x²,导数 f'(x) = 10x ; g(x) = 2x ,导数 g'(x) = 2 。
那么 (f(x) - g(x)) 就是 5x² - 2x ,它的导数就是 (f(x) - g(x))' = 10x - 2 ,正是 f'(x) - g'(x) 。
乘法法则稍微复杂点,(f(x)g(x))' = f'(x)g(x) + f(x)g'(x) 。
这有点像两个人合作完成一项任务,一个人的效率变化规律是 f'(x) ,另一个人的工作总量是 g(x) ;反过来,另一个人的效率变化规律是 g'(x) ,这个人的工作总量是 f(x) ,那么他们合作的成果增加的速度就是这两部分相加。