基本初等函数导数公式附导数运算法则
- 格式:doc
- 大小:348.00 KB
- 文档页数:6
基本初等函数的导数公式及导数的运算法则(一)基本初等函数的导数公式表x y x y xy x y y x y cos )6(log )5(ln )4(1)3(5)2()1(125======、求下列函数的导数例 例处的切线方程。
在、求函数2cos 2π==x x y(二)导数的四则运算法则:(2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数)例3、根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.(1)323y x x =-+(2)y = (3)sin ln y x x x =⋅⋅;(4)4x x y =; (5)1ln 1ln x y x -=+. (6)2(251)x y x x e =-+⋅;三.课堂练习1、求下列函数的导数:)1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y xx x y ω 2、已知曲线C :y =3 x 4-2 x 3-9 x 2+4,求曲线C 上横坐标为1的点的切线方程;3、处的导数。
在求3332=++=x x x y 4、处的切线方程。
,在点求曲线)20(1P e y x += ______________________1216______________)42()04(4522处的切线方程为垂直,则过点的切线与直线上的点,若过点是曲线、的坐标为,则于处的切线恰好平行,若曲线上一点,、,上两点、曲线P x y P x y P P AB P B A x x y +-==-= 7、曲线3()2f x x x =+-在0P 点处的切线平行于直线41y x =-,则0P 点的坐标为 .8、已知抛物线2y x bx c =++上的点(1,2)处的切线与直线2y x =-平行,求b ,c 的值。
基本初等函数的导数公式及导数的运算法则导数是微积分中一个重要的概念,它描述了函数在给定点处的变化率。
在微积分中有许多基本的初等函数,它们都有对应的导数公式和导数的运算法则。
下面,我将介绍一些常见的基本初等函数的导数公式及导数的运算法则。
1.常数函数导数公式:如果f(x)=C,其中C为常数,则其导数为f'(x)=0。
2.幂函数导数公式:如果f(x) = x^n,其中n为常数,则其导数为f'(x) = nx^(n-1)。
例如:f(x)=x^3,则f'(x)=3x^23.指数函数导数公式:如果f(x)=e^x,则其导数为f'(x)=e^x。
例如:f(x)=e^2,则f'(x)=e^24.对数函数导数公式:如果f(x) = ln(x),则其导数为f'(x) = 1/x。
例如:f(x) = ln(2),则f'(x) = 1/25.三角函数导数公式:(1) 如果f(x) = sin(x),则其导数为f'(x) = cos(x)。
(2) 如果f(x) = cos(x),则其导数为f'(x) = -sin(x)。
(3) 如果f(x) = tan(x),则其导数为f'(x) = sec^2(x)。
6.反三角函数导数公式:(1) 如果f(x) = arcsin(x),则其导数为f'(x) = 1/√(1-x^2)。
(2) 如果f(x) = arccos(x),则其导数为f'(x) = -1/√(1-x^2)。
(3) 如果f(x) = arctan(x),则其导数为f'(x) = 1/(1+x^2)。
导数的运算法则:1.常数乘法法则:设c为常数,f(x)为可导函数,则(cf(x))' = c*f'(x)。
例如:如果f(x)=2x,则f'(x)=2*1=22.求和差法则:设f(x),g(x)为可导函数,则(f(x)±g(x))'=f'(x)±g'(x)。
几种常见函数的导数基本初等函数的导数公式及导数的运算法则一、常见函数的导数公式:1.常数函数的导数公式:若f(x)=C(C为常数),则f'(x)=0。
2. 幂函数的导数公式:若f(x) = x^n(n为常数),则f'(x) = nx^(n-1)。
3. 指数函数的导数公式:若f(x) = a^x(a为正常数且a≠1),则f'(x) = ln(a)・a^x。
4. 对数函数的导数公式:若f(x) = log_a(x)(a为正常数且a≠1),则f'(x) = 1 / (x • ln(a))。
5.三角函数的导数公式:a) 正弦函数的导数公式:f(x) = sin(x),则f'(x) = cos(x)。
b) 余弦函数的导数公式:f(x) = cos(x),则f'(x) = -sin(x)。
c) 正切函数的导数公式:f(x) = tan(x),则f'(x) = sec^2(x)。
d) 余切函数的导数公式:f(x) = cot(x),则f'(x) = -csc^2(x)。
二、基本初等函数的导数公式:1.(f+g)'(x)=f'(x)+g'(x)(求和法则)2.(a・f)'(x)=a・f'(x)(常数倍法则)3.(f・g)'(x)=f'(x)・g(x)+f(x)・g'(x)(乘积法则)4.(f/g)'(x)=(f'(x)・g(x)-f(x)・g'(x))/(g(x))^2(商法则)5.(fⁿ)'(x)=n・f'(x)・f^(n-1)(x)(幂法则)其中,f'表示f的导数,fⁿ表示f的n次幂,f^(n-1)表示f的n-1次导数。
三、导数的运算法则:1.和差法则:(f+g)'(x)=f'(x)+g'(x);(f-g)'(x)=f'(x)-g'(x)。
1.2.2基本初等函数的导数公式及导数的运算法则(一)教学目的:1熟练掌握基本初等函数的导数公式。
2掌握导数的四则运算法则;
3能利用给出的公式和法则求解函数的导数。
教学重点难点
重点:基本初等函数的导数公式、导数的四则运算法则
难点:基本初等函数的导数公式和导数的四则运算法则的应用
教学安排:两课时
教学过程:
引入:复习巩固导数的基本公式,及其基本运算规律。
且
知识讲解:
一:基本初等函数的导数公式
为了方便我们将可以直接使用的基本初等函数的导数公式表如下:
关于表特别说明:
1 常数函数
的导
数是
0;
2幂函数
导数是以对应幂函数的指数为系数
3
余弦函
数的导数是正弦函数的相反
数。
从图像上来看,正弦函数在区间上单调递增,瞬时变化率为正,
和余弦函数在该区间的正负是一致的,
余弦函数在区间上是单调递减,瞬时变化率为负,
和正弦函数在该区间的正负是相反的,故
有一个负号。
4
的导数是它自身。
5
例1计算下列函数的导数
强调:1幂函数和指数函数是两种不同的函数,关键是看变量所处的
位置是在底数上还是在指数上。
2 导函数的定义域决定于原函数的定义域。
练习:求下列函数的导数。
例2.(课本P14例1)假设某国家在20年期间的年均通货膨胀率为
那么在第10个年头,这种商品的价格上涨的速度大约
是多少(精确到0.01
)?
/年)
在第10个年头,这种商品的价格约为0.08元/年的速度上涨.
提出问题:
10个年头,这种
0.01)?
二导数的计算法则
推论1
导数不变)
2
(常数与函数的积的导数,等于常数乘函数
的导数)
3
解决问题:
公式和求导法则,有
/年)
0.4元/年的速度上涨.例3 根据基本初等函数的导数公式和导数运算法则,求下列函数的导数,并注明定义域。
(1
(2
(3
强调: 1 求导数是在定义域内实行的.
2 求较复杂的函数积、商的导数,必须细心、耐心.
例4(P15例3)日常生活中的饮水通常是经过净化的.随着水纯净
度的提高,所需净化费用不断增加.
已知将1吨水净化到纯净
所需净化费用的瞬时变化率:(1(24
5
38
y x x =+-练习:()
()
32
4
54338x y x
x -+'=
+-
解:净化费用的瞬时变化率就是净化费用函数的导数.
(1)
用的瞬时变化率是52.84元/吨.
(2)
所以,
费用的瞬时变化率是1321元/吨.
强调:
费用的瞬时变化率的
25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快. 五.课堂练习
六.课堂小结
(1)基本初等函数的导数公式表 (2)导数的运算法则 七.布置作业 八.教学后记。