导数的基本公式及四则运算法则
- 格式:pptx
- 大小:488.90 KB
- 文档页数:54
1.基本求导公式⑴ 0)(='C (C 为常数)⑵ 1)(-='n n nx x ;一般地,1)(-='αααx x 。
特别地:1)(='x ,x x 2)(2=',21)1(x x -=',xx 21)(='。
⑶ x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。
⑷ x x 1)(ln =';一般地,)1,0( ln 1)(log ≠>='a a ax x a 。
2.求导法则 ⑴ 四则运算法则设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,)()()()()())()((2≠'-'='x g x g x g x f x g x f x g x f ,特别21()()()()g x g x g x ''=-。
3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 常用的不定积分公式(1) ⎰⎰⎰⎰⎰+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 43,2,),1( 11433221αααα; (2) C x dx x+=⎰||ln 1; C e dx e xx +=⎰; )1,0( ln ≠>+=⎰a a C a a dx a x x ; (3)⎰⎰=dx x f k dx x kf )()((k 为常数) 5、定积分()()|()()bb a af x dx F x F b F a ==-⎰⑴⎰⎰⎰+=+bab abadx x g k dx x f k dx x g k x f k )()()]()([2121⑵ 分部积分法设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则⎰⎰-=bab abax du x v x v x u x dv x u )()()()()()(6、线性代数 特殊矩阵的概念 (1)、零矩阵 ,000022⎥⎦⎤⎢⎣⎡=⨯O (2)、单位矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100010001 n I 二阶,100122⎥⎦⎤⎢⎣⎡=⨯I (3)、对角矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A 000000021 (4)、对称矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==752531212,A a a ji ij (5)、上三角形矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n a a a a a a A 000022211211下三角形矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A 000000021 (6)、矩阵转置⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a aa a a A 212222111211转置后⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n T a a a a a a a a a A 2122212121116、矩阵运算 ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+h d g c f b e a h g f ed c b a B A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=dh cf dg ce bh af bg ae h g f e d c b a AB 7、MATLAB 软件计算题例6 试写出用MATLAB 软件求函数)e ln(2x x x y ++=的二阶导数y ''的命令语句。
导数的定义与计算方法导数是微积分中的重要概念之一,用于研究函数的变化率和曲线的切线斜率。
本文将从导数的定义入手,介绍导数的计算方法,并给出一些例题来帮助读者更好地理解和应用导数。
一、导数的定义在数学上,给定一个函数y=f(x),其导数定义为函数在某一点x处的变化率。
导数可以用极限来表示,即:f'(x) = lim Δx→0 (f(x+Δx) - f(x))/Δx其中f'(x)表示函数f(x)在点x处的导数,Δx为自变量的增量。
导数的值可以表示函数在该点的切线斜率,即函数曲线在该点处的速率。
二、导数的计算方法导数的计算方法有多种,下面列举几种常见的:1. 基本导数公式对于常见的基本函数,存在一些导数的基本公式,如:- 常数函数导数为零:d/dx(c) = 0,其中c为常数;- 幂函数导数为功率减一:d/dx(x^n) = nx^(n-1),其中n为常数;- 指数函数导数等于自身:d/dx(e^x) = e^x;- 对数函数导数为倒数:d/dx(ln(x)) = 1/x。
通过应用基本导数公式,可以计算更复杂函数的导数。
2. 导数的四则运算规则对于已知的函数f(x)和g(x),导数的四则运算规则如下:- 和差法则:(f(x) ± g(x))' = f'(x) ± g'(x)- 积法则:(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)- 商法则:(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2以上规则为导数的基本运算规则,可以根据需要进行组合和推广。
3. 链式法则如果函数y=f(g(x))是由两个函数复合而成,那么它的导数可以用链式法则来计算。
链式法则可以表示为:d/dx(f(g(x))) = f'(g(x)) * g'(x)通过链式法则,可以求解更复杂的复合函数的导数,进一步扩展了导数的计算方法。
导数的四则运算法则实用导数的四则运算法则是求解导函数的基本法则,它包括求和、差、积和商四种基本运算。
这些法则对于解决复杂函数的导数问题非常实用,在解题过程中能够简化计算,提高效率。
下面我将详细介绍导数的四则运算法则的应用。
1.和的导数法则:如果函数f(x)和g(x)都是可导函数,则它们的和的导数等于它们的导数之和,即(f(x)+g(x))'=f'(x)+g'(x)。
这个法则告诉我们,对于求解两个函数相加的导数问题时,我们只需要分别求出每个函数的导数,然后将它们相加即可。
2.差的导数法则:如果函数f(x)和g(x)都是可导函数,则它们的差的导数等于它们的导数之差,即(f(x)-g(x))'=f'(x)-g'(x)。
这个法则告诉我们,在求解两个函数相减的导数问题时,我们只需要分别求出每个函数的导数,然后将它们相减即可。
3.积的导数法则:如果函数f(x)和g(x)都是可导函数,则它们的乘积的导数等于第一个函数的导数乘以第二个函数本身再加上第一个函数本身乘以第二个函数的导数,即(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
这个法则告诉我们,在求解两个函数相乘的导数问题时,我们需要将每个函数的导数与另一个函数本身相乘,然后将这两部分结果相加。
4.商的导数法则:如果函数f(x)和g(x)都是可导函数且g(x)≠0,则它们的商的导数等于分子函数的导数乘以分母函数本身再减去分子函数本身乘以分母函数的导数,然后除以分母函数的平方,即(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/g(x)^2这个法则告诉我们,在求解两个函数相除的导数问题时,我们需要用分子函数的导数乘以分母函数本身减去分子函数本身乘以分母函数的导数,然后除以分母函数的平方。
以上就是导数的四则运算法则的应用。
导数的四则运算法则1.求和规则:如果f(x)和g(x)都是可导函数,则它们的和的导数等于各自函数的导数之和。
即:(f+g)'(x)=f'(x)+g'(x)2.差规则:如果f(x)和g(x)都是可导函数,则它们的差的导数等于各自函数的导数之差。
即:(f-g)'(x)=f'(x)-g'(x)3.乘法规则:如果f(x)和g(x)都是可导函数,则它们的乘积的导数等于第一个函数的导数乘以第二个函数加上第一个函数乘以第二个函数的导数。
即:(f*g)'(x)=f'(x)*g(x)+f(x)*g'(x)4.除法规则:如果f(x)和g(x)都是可导函数且g(x)不等于零,则它们的商的导数等于第一个函数的导数乘以第二个函数减去第一个函数乘以第二个函数的导数,再除以第二个函数的平方。
即:(f/g)'(x)=(f'(x)*g(x)-f(x)*g'(x))/(g(x))^2这些四则运算法则可以用于计算复杂函数的导数。
下面通过一些简单的例子来说明这些规则的具体应用。
例子1:计算函数f(x)=x^3+2x^2-3x+1的导数。
解:对于这个函数,可以按照求和规则和乘法规则分别对各项进行求导。
f'(x)=(x^3)'+(2x^2)'+(-3x)'+(1)'=(3x^2)+(4x)+(-3)=3x^2+4x-3例子2:计算函数g(x)=(2x^2+3x-1)/(x+2)的导数。
解:应用乘法规则和除法规则对该函数进行求导。
g'(x)=((2x^2+3x-1)'*(x+2)-(2x^2+3x-1)*(x+2)')/(x+2)^2=(((4x+3)*(x+2))-((2x^2+3x-1)*1))/(x+2)^2=(4x^2+11x+6-2x^2-3x+1)/(x+2)^2=(2x^2+8x+7)/(x+2)^2通过这两个简单的例子,我们可以看到四则运算法则在计算导数中的应用。
导数运算法则公式加减乘除
导数运算法则是微积分中的重要内容,它包括加法法则、减法法则、乘法法则和除法法则。
下面我将从多个角度全面地解释这些法则。
首先是加法法则,它表示如果一个函数是两个函数的和,那么它的导数等于这两个函数的导数之和。
具体公式表达为,(f+g)' = f' + g',其中f和g是两个可导函数。
接下来是减法法则,它表示如果一个函数是两个函数的差,那么它的导数等于这两个函数的导数之差。
具体公式表达为,(f-g)' = f' g',其中f和g是两个可导函数。
然后是乘法法则,它表示如果一个函数是两个函数的乘积,那么它的导数等于第一个函数的导数乘以第二个函数再加上第一个函数乘以第二个函数的导数。
具体公式表达为,(fg)' = f'g + fg',其中f和g是两个可导函数。
最后是除法法则,它表示如果一个函数是两个函数的商,那么它的导数等于分母函数乘以分子函数的导数减去分子函数乘以分母
函数的导数,再除以分母函数的平方。
具体公式表达为,(f/g)' = (f'g fg') / g^2,其中f和g是两个可导函数,且g不等于0。
总之,这些导数运算法则是微积分中非常重要的内容,它们帮助我们计算复杂函数的导数,从而更好地理解函数的变化规律和性质。
希望这些解释能够帮助你更好地理解导数运算法则。