导数的八个求导公式和四则运算求导
- 格式:doc
- 大小:231.50 KB
- 文档页数:5
导数的求法【知识要点】一、求导的方法1、利用常见八种函数的导数公式① (C 为常数) ② ③0='C 1()()n n x nx n Q -'=∈x x cos )(sin ='④ ⑤ ⑥ x x sin )(cos -='1(log )log x a a e x '=x x 1)(ln ='⑦ ⑧a a a x x ln )(='x x e e =')(2、利用导数的运算法则① ② ③ '''()u v u v ±=±'''()uv u v uv =+'''2()(0)u u v uv v v v -=≠3、利用复合函数的求导法则设函数在点处有导数,函数在点处的对应点处有导数,()u x ϕ=x ()x u x ϕ''=)(u f y =x u ()u y f u ''=则复合函数在点处有导数,且,或写作(())y f x ϕ=x x u x y y u '''=⋅(())()()x f x f u x ϕϕ'''=二、导数的求法一般有四种:(1)利用导数的概念解答;(2)利用八种初等函数的导数公式解答;(3)利用导数的四则运算法则解答;(4)利用复合函数的求导法则求导.【方法讲评】方法一 利用导数的概念解答解题方法 求函数的导数的一般步骤是:①求函数的改变量)(x f y =)(/x f ;②求平均变化率;③取极限,得导)()(x f x x f y -∆+=∆xx f x x f x y ∆-∆+=∆∆)()(数=. /y xy x ∆∆→∆0lim【例1】 求函数在附近的平均变化率,并求出在该点处的导数. 2()f x x x =-+1x =-【点评】求函数的导数的一般步骤是:①求函数的改变量;②)(x f y =)(/x f )()(x f x x f y -∆+=∆求平均变化率;③取极限,得导数=. x x f x x f x y ∆-∆+=∆∆)()(/y xy x ∆∆→∆0lim 【反馈检测1】将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:)为,计算第时和第时,原油温度的瞬C 2()715(08)f x x x x =-+≤≤2h 6h 时变化率,并说明它们的意义.方法二利用八种初等函数的导数公式解答 解题方法直接利用八种初等函数的导数公式解答. 【例2】求函数的导数. ()f x=【解析】 113122211()()22f x x x x ----'''===-=-由题得【点评】在使用时,要注意函数的形式,如果是就不能利用该公式了,因为1()()n n x nx n Q -'=∈(3)n x 它的底数是,不是,是复合函数,不是初等函数. 学科#网3x x 【反馈检测2】求函数的导数. 44()cos sin 22x x f x =-方法三利用导数的四种运算法则解答 解题方法直接套导数的四种运算法则. 【例3】已知函数,则=________.))(ln 2()(2x x f x x f -'+=)4(f ' A . B .6 C .8 D .6-2【点评】本题中的处理是一个难点,有许多同学不知道把它怎么办.其实是一个常数,求导(2)f '(2)f '时,把它看作常数,利用就可以了.再给x 赋值得到的方程,即可求出的值.[()]()Cf x Cf x ''=(2)f '(2)f '【反馈检测3】设,求.x xe x f x ln )(=)(x f '方法四 利用复合函数的求导公式解答解题方法 函数在点处有导数,函数在点处的对应点处()u x ϕ=x ()x u x ϕ''=)(u f y =x u 有导数,则复合函数在点处有导数,且,或写作()u y f u ''=(())y f x ϕ=x x u x y y u '''=⋅(())()()x f x f u x ϕϕ'''=【例4】已知,求. 21x y -=y '【解析】1211211,22u x v u x v u -=-=∴=-===设1112y u v x ∴==-= 【点评】函数在点处有导数,函数在点处的对应点处有导数()u x ϕ=x ()x u x ϕ''=)(u f y =x u ,则复合函数在点处有导数,且,或写作()u y f u ''=(())y f x ϕ=x x u x y y u '''=⋅(())()()x f x f u x ϕϕ'''=【反馈检测4】已知,求. sin 2()x f x x=()f x '高中数学常见题型解法归纳及反馈检测第17讲:导数的求法参考答案【反馈检测1答案】在第时和第时,原油温度的瞬时变化率分别为和,说明在附近,原油温2h 6h 3-52h 度大约以的速率下降,在第附近,原油温度大约以的速率上升. 3/C h 6h 5/C h【反馈检测2答案】sin x -【反馈检测2详细解析】 442222()cos sin (cos sin )(cos sin )222222x x x x x x f x =-=+- 22(cos sin )cos 22x x x =-=()(cos )sin f x x x ''∴==-【反馈检测3答案】(1ln ln )x e x x x ++【反馈检测3详细解析】 )(ln ln )(ln )()ln ()('+'+'='='x xe x e x x e x x xe x f xx x x . xxe x xe x e x x x 1ln ln ⋅++=)ln ln 1(x x x e x ++=【反馈检测4】 2sin 22cos 2x x x x-【反馈检测4详细解析】 22(sin 2)(sin 2)(sin 2)(sin 2)()x x x x x x x f x x x '''--'==2sin 2cos cos 2u x v u u v u x ''==∴===设(sin 2)2cos 2x x '∴= 22(sin 2)2cos 2(sin 2)2cos 2()x x x x x x f x x x --'∴== 2sin 22cos 2x x x x-=。
导数公式及运算法则
八个公式:
y=c(c为常数) y'=0;
y=x^n y'=nx^(n-1);
y=a^x y'=a^xlna y=e^x y'=e^x;
y=logax y'=logae/x y=lnx y'=1/x ;
y=sinx y'=cosx ;y=cosx y'=-sinx ;
y=tanx y'=1/cos^2x ;
y=cotx y'=-1/sin^2x。
运算法则:
加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'
乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x)
除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。
若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。
寻找已知的函数在某点的导数或其导函数的过程称为求导。
实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。
反
之,已知导函数也可以反过来求原来的函数,即不定积分。
导数及其应用第1课时 变化率与导数、导数的计算1.导数的概念:函数y =)(x f 的导数)(x f ',就是当Δx →0时,函数的增量Δy 与自变量的增量Δx 的比xy ∆∆ 的 ,即)(x f '= = .2.导函数:函数y =)(x f 在区间(a, b)内 的导数都存在,就说)(x f 在区间( a, b )内 ,其导数也是(a ,b )内的函数,叫做)(x f 的 ,记作)(x f '或x y ', 函数)(x f 的导函数)(x f '在0x x =时的函数值 ,就是)(x f 在0x 处的导数.3.导数的几何意义:设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的 .4.求导数的方法 (1) 八个基本求导公式)('C = ; )('n x = ;(n∈Q) )(sin 'x = , )(cos 'x =)('x e = , )('x a = )(ln 'x = , )(log 'x a =(2) 导数的四则运算[]')()(x v x u ±= ])(['x Cf =][')()(x v x u = , )()('x u = )0)((≠x v (3) 复合函数的导数设)(x u θ=在点x 处可导,)(u f y =在点)(x u θ=处可导,则复合函数)]([x f θ在点x 处可导, 且)(x f '= ,即x u x u y y '⋅'='.12+x 在x 0到x 0+Δx 之间的平均变化率. 解 ∵Δy=11)(11)(11)(20202020220+++∆+--+∆+=+-+∆+x x x x x x x x x .11)(2,11)()(220200202020+++∆+∆+=∆∆∴+++∆+∆+∆=x x x xx x y x x x x x x变式训练1. 求y=x 在x=x 0处的导数解 )())((lim lim lim00000000000x x x x x x x x x x x x x x x y x x x +∆+∆+∆+-∆+=∆-∆+=∆∆→∆→∆→∆.211lim 0000x x x x x =+∆+=→∆例2. 求下列各函数的导数: (1);sin 25x xx x y ++=(2));3)(2)(1(+++=x x x y(3);4cos 212sin 2⎪⎭⎫⎝⎛--=x x y (4).1111xxy ++-=解 (1)∵,sin sin 23232521xx x xxx x x y ++=++=-∴y′.cos sin 2323)sin()()(232252323x x x x x x x x x x-----+-+-='+'+'=(2)y=(x 2+3x+2)(x+3)=x 3+6x 2+11x+6,∴y′=3x 2+12x+11.(3)∵y=,sin 212cos 2sin x x x =⎪⎭⎫ ⎝⎛--∴.cos 21)(sin 21sin 21x x x y ='='⎪⎭⎫ ⎝⎛='(4)xx x xx x x y -=+--++=++-=12)1)(1(111111, ∴.)1(2)1()1(21222x x x x y -=-'--='⎪⎭⎫ ⎝⎛-=' 变式训练2:求y=tanx的导数. 解 y′.cos 1cos sin cos cos )(cos sin cos )(sin cos sin 22222x x xx x x x x x x x =+='-'='⎪⎭⎫ ⎝⎛=例3. 已知曲线y=.34313+x (1)求曲线在x=2处的切线方程;(2)求曲线过点(2,4)的切线方程.解 (1)∵y′=x 2,∴在点P (2,4)处的切线的斜率k='y |x=2∴曲线在点P (2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.(2)设曲线y=34313+x 与过点P (2,4)的切线相切于点⎪⎭⎫⎝⎛+3431,300x x A ,则切线的斜率k='y |0x x ==20x .∴切线方程为),(343102030x x x x y -=⎪⎭⎫ ⎝⎛+-即.34323020+-⋅=x x x y ∵点P (2,4)在切线上,∴4=,343223020+-x x 即,044,0432020302030=+-+∴=+-x x x x x ∴,0)1)(1(4)1(00020=-+-+x x x x∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为4x-y-4=0或x-y+2=0.变式训练3:若直线y=kx 与曲线y=x 3-3x 2+2x 相切,则k= . 答案 2或41-例4. 设函数bx ax x f ++=1)( (a,b∈Z ),曲线)(x f y =在点))2(,2(f 处的切线方程为y=3.(1)求)(x f 的解析式; (2)证明:曲线)(x f y =上任一点的切线与直线x=1和直线y=x 所围三角形的面积为定值,并求出此定值.(1)解2)(1)(b x a x f +-=', 于是⎪⎪⎩⎪⎪⎨⎧=+-=++,0)2(1,3212b a b a 解得⎩⎨⎧-==,1,1b a 或⎪⎪⎩⎪⎪⎨⎧-==.38,49b a 因为a,b ∈Z ,故.11)(-+=x x x f (2)证明 在曲线上任取一点⎪⎪⎭⎫ ⎝⎛-+11,00x xx . 由200)1(11)(--='x x f 知,过此点的切线方程为)()1(11110200020x x x x x x y -⎥⎦⎤⎢⎣⎡--=-+--. 令x=1,得1100-+=x xy ,切线与直线x=1交点为⎪⎪⎭⎫⎝⎛-+11,100x x . 令y=x ,得120-=x y ,切线与直线y=x 的交点为)12,12(00--x x .直线x=1与直线y=x 的交点为(1,1). 从而所围三角形的面积为22212211121112100000=--=----+x x x x x .所以,所围三角形的面积为定值2.变式训练4:偶函数f (x )=ax 4+bx 3+cx 2+dx+e 的图象过点P (0,1),且在x=1处的切线方程为y=x-2,求y=f (x )的解析式解 ∵f(x )的图象过点P (0,1),又∵f(x )为偶函数,∴f(-x )=f (x )故ax 4+bx 3+cx 2+dx+e=ax 4-bx 3+cx 2-dx+e.∴b=0,d=0. ②∴f(x )=ax 4+cx 2+1.∵函数f (x )在x=1处的切线方程为y=x-2,∴可得切点为(1,-1)∴a+c+1=-1. ③∵)1('f =(4ax 3+2cx)|x=1=4a+2c ,∴4a+2c=1.由③④得a=25,c=29-函数y=f (x )的解析式为.12925)(24+-=x x x f第2课时 导数的概念及性质1. 函数的单调性⑴ 函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则)(x f 为 . (逆命题不成立)(2) 如果在某个区间内恒有0)(='x f ,则)(x f .注:连续函数在开区间和与之相应的闭区间上的单调性是一致的.(3) 求可导函数单调区间的一般步骤和方法: ① 确定函数)(x f 的 ;② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根;③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺序排列起来, 然后用这些点把函数)(x f 的定义区间分成若干个小区间;④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区间内的增减性.2.可导函数的极值⑴ 极值的概念: 设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称)(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点.⑵ 求可导函数极值的步骤: ① 求导数)(x f ';② 求方程)(x f '=0的 ;③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y =)(x f 在这个根处取得 ; 如果在根的左侧附近为负,右侧为正,那么函数y =)(x f 在这个根处取得 .说明:“极值点”不是“点”,而是方程0)(/=x f 的根。
求导方法总结全部如下:
1.公式法。
这个方法需要熟练掌握导数的基本公式。
2.导数四则运算公式:导数的乘法和除法公式要能熟练运用。
3.复合函数的链式法则是非常重要的求导方法。
链式法则在应用时一般分成4步:分解-各自求导-相乘-回代。
4.反函数求导法。
利用这种方法求导时,要注意:先取反函数,然后对反函数siny 求导,特别注意此时y是自变量,所以siny 的导数是cosy。
5.对数求导法。
一般两种情况会使用对数求导法,这两种情况都是对等式两端同时取自然对数,利用对数的运算性质对函数进行变形。
6.隐函数求导法。
隐函数是隐藏在一个方程中的函数,要用到链式法则。
7.参数方程求导法。
注意参数方程求导公式。
8.高阶导数。
导数的基本公式和四则运算法则
导数是微积分中的一个重要概念,它描述了函数在某一点处的变化率。
在求解导数时,我们可以利用一些基本公式和四则运算法则来简化计算过程。
首先,导数的基本公式包括:
1. 对常数函数求导,常数函数的导数为0。
2. 幂函数求导,对于函数f(x) = x^n,其导数为f'(x) = nx^(n-1)。
3. 指数函数求导,指数函数e^x的导数仍为e^x。
4. 三角函数求导,常见的三角函数sin(x)和cos(x)的导数分别为cos(x)和-sin(x)。
其次,利用四则运算法则,我们可以对复合函数进行求导。
四则运算法则包括:
1. 和差法则,对于函数f(x) = g(x) ± h(x),其导数为f'(x) = g'(x) ± h'(x)。
2. 积法则,对于函数f(x) = g(x) h(x),其导数为f'(x) =
g'(x) h(x) + g(x) h'(x)。
3. 商法则,对于函数f(x) = g(x) / h(x),其导数为f'(x) = (g'(x) h(x) g(x) h'(x)) / h(x)^2。
通过这些基本公式和四则运算法则,我们可以更轻松地求解各
种函数的导数,从而更好地理解函数的变化规律和性质。
在实际应
用中,导数的概念和计算方法也被广泛地运用于物理、工程、经济
学等领域,为我们解决实际问题提供了重要的数学工具。
因此,熟
练掌握导数的基本公式和四则运算法则对于学习和应用微积分知识
都是至关重要的。
1.基本求导公式⑴ 0)(='C (C 为常数)⑵ 1)(-='n nnxx ;一般地,1)(-='αααxx 。
特别地:1)(='x ,x x 2)(2=',21)1(x x -=',xx 21)(='。
⑶ x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a xx 。
⑷ x x 1)(ln =';一般地,)1,0( ln 1)(log ≠>='a a ax x a 。
2.求导法则 ⑴ 四则运算法则设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,)()()()()())()((2≠'-'='x g x g x g x f x g x f x g x f ,特别21()()()()g x g x g x ''=-。
3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 4、 常用的不定积分公式(1) ⎰⎰⎰⎰⎰+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 43,2,),1( 11433221αααα; (2) C x dx x+=⎰||ln 1; C e dx e xx +=⎰; )1,0( ln ≠>+=⎰a a C a a dx a x x ; (3)⎰⎰=dx x f k dx x kf )()((k 为常数) 5、定积分 ⑴⎰⎰⎰+=+bab abadx x g k dx x f k dx x g k x f k )()()]()([2121⑵ 分部积分法设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则 6、线性代数 特殊矩阵的概念(1)、零矩阵 ,000022⎥⎦⎤⎢⎣⎡=⨯O (2)、单位矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100010001 n I 二阶,100122⎥⎦⎤⎢⎣⎡=⨯I (3)、对角矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A 000000021 (4)、对称矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==752531212,A a a ji ij (5)、上三角形矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n a a a a a a A 000022211211下三角形矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A 000000021 (6)、矩阵转置⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a a a a a A 212222111211转置后⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n nn n T a a a a a a a a a A 2122212121116、矩阵运算 ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+h d g c f b e a h g f ed c b a B A 7、MATLAB 软件计算题例6 试写出用MATLAB 软件求函数)e ln(2x x x y ++=的二阶导数y ''的命令语句。
求导公式大全范文一、常数函数y=C,其中C为常数。
则导数为0。
二、幂函数1. y = x^n,其中 n 是常数。
则导数为 dy/dx = n*x^(n-1)。
三、指数函数1. y = e^x。
则导数为 dy/dx = e^x。
2. y = a^x,其中 a 是常数。
则导数为 dy/dx = a^x * ln(a)。
四、对数函数1. y = ln(x),其中 x > 0。
则导数为 dy/dx = 1/x。
2. y = log_a(x),其中 a > 0 且a ≠ 1、则导数为 dy/dx = 1 / (x * ln(a))。
五、三角函数1. y = sin(x)。
则导数为 dy/dx = cos(x)。
2. y = cos(x)。
则导数为 dy/dx = -sin(x)。
3. y = tan(x)。
则导数为 dy/dx = sec^2(x)。
4. y = cot(x)。
则导数为 dy/dx = -csc^2(x)。
5. y = sec(x)。
则导数为 dy/dx = sec(x) * tan(x)。
6. y = csc(x)。
则导数为 dy/dx = -csc(x) * cot(x)。
六、反三角函数1. y = arcsin(x),其中 -1 ≤ x ≤ 1、则导数为 dy/dx = 1 /sqrt(1 - x^2)。
2. y = arccos(x),其中 -1 ≤ x ≤ 1、则导数为 dy/dx = -1 / sqrt(1 - x^2)。
3. y = arctan(x)。
则导数为 dy/dx = 1 / (1 + x^2)。
4. y = arccot(x)。
则导数为 dy/dx = -1 / (1 + x^2)。
5. y = arcsec(x),其中,x,≥ 1、则导数为 dy/dx = 1 / (x * sqrt(x^2 - 1))。
6. y = arccsc(x),其中,x,≥ 1、则导数为 dy/dx = -1 / (x* sqrt(x^2 - 1))。
体验高考
1.(2013·江西高考)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)= .
2.(09辽宁文15)若函数
2
()
1
x a
f x
x
+
=
+
在1
x=处取极值,则
a= .
本题是导数部分的基础,考察的知识点是导数的求值,熟练掌握导数的基本求导公式和四则运算法则是求解这类题目的敲门砖.若单独出题,本部分题目以填空、选择的形式出现, 另外,本部分作为一切导数题的必备基础,贯穿出现在所有的导数题型中。
解题基本思路:题1:用换元法求函数解析式——求)
('x
f——求)1('f
题2:由题意知:)1('f=0,解a
知识铺垫
一、大纲要求
能利用基本初等函数的导数公式和导数的四则运算法则求简单的导数,能求简单的复合函数(仅限于形如)
(b
ax
f+的复合函数)的导数。
二、知识点回顾
1基本初等函数的导数公式:
2导数的四则运算法则:
3简单复合函数的求导:函数))((x g f 是复合函数,且)(x f 和)(x g 都可导,则='))((x g f ?
三、典型例题
4.(山东省实验中学2013届高三适应训练)已知)1('2)(2xf x x f +=,则=)0('f . 思路分析:先求)1('f ——则)1('2)0('f f =
解:)1('22)('f x x f +=Θ
)1('22)1('f f +=∴
即:2)1('=-f
2)1('-=f
4)1('2)0('-==∴f f
四、方法指导
熟练掌握求导公式和四则运算法则,并会灵活运用即可
5、近几年热点
1.(2014·黄石模拟(文))已知x x x f ln )(=,若2)('0=x f ,则=0x ( )
A .2e
B .e
1 D .ln
2 2.(2011江西,5分)若x x x x f ln 42)(2--=,则0)('>x f 的解集为( )
A .(0,+∞)
B .(-1,0)∪(2,+∞)
C .(2,+∞)
D .(-1,0)
训练
1.(山东省青岛市2013届高三上学期期中考试文)已知1()cos ,f x x x
=则()()2
f f ππ'+= A .2π
- B .3π C .1π- D .3π-
2. (山东省济南外国语学校2013届高三上学期期中考试文) 函数f(x)的定义域为R ,f(-1)=2,对任意x R ∈,2)(/>x f ,则()24f x x >+的解集为
( )
A.(-1,1)
B.(-1,+∞)
C.(-∞,-l)
D.(-∞,+∞)
3.(山东省实验中学2013届高三第三次诊断性测试文)已知
)1('2)(2xf x x f +=,则=)0('f .
4.(山东省潍坊市寿光现代中学2012届高三12月段检测)已知
()()2f x x 3xf 1'=+为
A.—2
B.—1
5.(山东潍坊诸城一中2012届高三10月阶段测试文)函数cosx x y 2=的导数为
A.xsinx 2cosx x y'2-=
B.sinx x xcosx 2y'2+=
C.sinx x xcosx 2y'2-=
D.sinx x xcosx y'2-=
6.(山东省淄博市第一中学2012届高三第一学期期中文)若函数f(x)=x 2+a x +1
在x =1处取极值,则a =________. 7.(山东省潍坊市2012届高三10月三县联考文)函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a = ( )
A .2
B .3
C .4
D .5
8.(2013·山西模拟)已知函数f(x)=x +12+sin x x2+1
,其导函数记为f′(x),则f(2 012)+f′(2 012)+f(-2 012)-f′(-2 012)=________.
第十二单元 导数的八个求导公式和四则运算求导答案
体验高考
高考热点
训练
1.
2.
3.【答案】-4
【解析】函数的导数为'()22'(1)f x x f =+,所以'(1)22'(1)f f =+,解得
'(1)2f =-,所以2()4f x x x =-,所以'()24f x x =-,所以'(0)4f =-。
4.【答案】B
5.【答案】C
6.【答案】3
7.【答案】D
8.【解析】由已知得f (x )=1+2x +sin x x 2+1
, 则f ′(x )=2+cos x x 2+1-2x +sin x ·2x x 2+12
令g (x )=f (x )-1=2x +sin x x 2+1
,显然g (x )为奇函数,f ′(x )为偶函数,所以f ′(2 012)-f ′(-2 012)=0,f (2 012)+f (-2 012)=g (2 012)+1+g (-2 012)+1=2,
所以f (2 012)+f ′(2 012)+f (-2 012)-f ′(-2 012)=2.
【答案】2。