3.2独立性检验的基本思想及其初步应用学案
- 格式:doc
- 大小:267.13 KB
- 文档页数:4
独立性检验的基本思想及初步应用教案第一章:独立性检验简介1.1 学习目标:(1)理解独立性检验的定义及作用;(2)了解独立性检验在实际应用中的重要性;(3)掌握独立性检验的基本步骤。
1.2 教学内容:(1)独立性检验的定义;(2)独立性检验的实际应用案例;(3)独立性检验的基本步骤。
1.3 教学活动:(1)介绍独立性检验的概念;(2)通过实际案例让学生了解独立性检验的应用;(3)引导学生掌握独立性检验的基本步骤。
第二章:卡方检验2.1 学习目标:(1)理解卡方检验的原理;(2)掌握卡方检验的计算方法;(3)学会判断卡方检验的结果。
2.2 教学内容:(1)卡方检验的原理;(2)卡方检验的计算方法;(3)卡方检验的结果判断。
2.3 教学活动:(1)讲解卡方检验的原理;(2)通过示例让学生掌握卡方检验的计算方法;(3)引导学生学会判断卡方检验的结果。
第三章:列联表与独立性检验3.1 学习目标:(1)了解列联表的概念;(2)掌握列联表的绘制方法;(3)学会利用列联表进行独立性检验。
3.2 教学内容:(1)列联表的概念;(2)列联表的绘制方法;(3)利用列联表进行独立性检验。
3.3 教学活动:(1)介绍列联表的概念;(2)通过示例让学生掌握列联表的绘制方法;(3)引导学生学会利用列联表进行独立性检验。
第四章:独立性检验的应用4.1 学习目标:(1)学会运用独立性检验解决实际问题;(2)掌握独立性检验在调查分析中的作用;(3)了解独立性检验在实际应用中的局限性。
4.2 教学内容:(1)独立性检验在实际问题中的应用;(2)独立性检验在调查分析中的作用;(3)独立性检验的局限性。
4.3 教学活动:(1)讲解独立性检验在实际问题中的应用;(2)通过案例分析让学生了解独立性检验在调查分析中的作用;(3)引导学生认识独立性检验的局限性。
第五章:练习与拓展5.1 学习目标:(1)巩固所学独立性检验知识;(2)提高运用独立性检验解决实际问题的能力;(3)培养学生的创新意识和拓展能力。
3.2.1 《独立性检验的基本思想及其初步应用》学案【学习目标】1.了解利用列联表、等高条形图来判断两个分类变量之间是否有关系。
2.了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能解决实际问题。
【学习重点】了解独立性检验的基本思想及实施步骤。
【学习难点】K的含义。
独立性检验的基本思想;随机变量2【教学过程】一、情境引入,提出问题请看视频:问题1、你认为吸烟与患肺癌有关系吗?怎样用数学知识说明呢?二、阅读教材,探究新知1.分类变量2.列联表为研究吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果:表3—7 吸烟与患肺癌列联表单位:人由以上列联表,我们估计①在不吸烟者中患肺癌的比例为________;②在吸烟者中患肺癌的比例为。
得出结论:还有其它方法来判断吸烟和患肺癌有关呢? 3.等高条形图等高条形图能说明什么呢?三、小组讨论,合作交流问题2、你有多大程度判断吸烟与患肺癌有关?用什么方法进行检验呢? 探究:bc ad -的大小能说明了什么?探究:2K 的大小能说明什么?探究:632.5691987421487817)209942497775(99652≈⨯⨯⨯⨯-⨯⨯=k 这个值到底能告诉我们什么呢?四、形成概念,重点精讲独立性检验“独立性检验”的具体做法步骤为:第一步:;第二步:;第三步:。
k:在实际应用中,要在获取样本数据之前通过下表确定临界值表3-11 临界值表五、新知运用,归纳展示为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取500名学生,得到如下列联表:单位:人能够有95%的把握认为高中生的性别与是否喜欢数学课程之间有关系吗?六、课堂检测,节节达标1.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是 ( )A.若635.62K ,则有99%的把握认为吸烟与患肺病有关,那么100名吸烟者中,有 99个患肺病。
《3.2独立性检验的基本思想及其初步应用》教学案学习目标1、通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,让学生亲身体验独立性检验的实施步骤与必要性.并了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用;2、能利用统计量2K来分析两个分类变量是否有关系;教学重点:理解独立性检验的基本思想;独立性检验的步骤.教学难点:1、理解独立性检验的基本思想;2、了解随机变量K2的含义;3、独立性检验的步骤.学习过程一、知识建构1、分类变量:对于性别变量,取值为:男、女;这种变量的不同取“值”表示______ _______,这类变量称为分类变量注意:分类变量的取值一定是离散的2、问题探究:为了调查吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果(单位:人)在不吸烟者中患肺癌的比重是,在吸烟者中患肺癌的比重是说明:吸烟者和不吸烟者患肺癌的可能性______,吸烟者患肺癌的可能性_______3、完成以下内容.第一步:列联表(用字母表示吸烟与患肺癌的列联表):第二步:0:“ ”.用A 表示不吸烟,B 表示不患肺癌,则AB 表示_________________________ 假设0H ()P AB⇔=__________________________ 所以0H 成立的条件下应该有:an≈ (n =a +b +c +d ) 因此ad -ad -与患肺癌之间关系越强,第三步:构造随机变量2K = (其中 n =a +b +c +d ) 计算随机变量2K 的观测值k .(简称卡方公式) 第四步:查表得出结论K k = ______________________________________因为k ≥_________,就推断“吸烟与患肺癌没有关系”,这种推断犯错误的概率不超过_________;即认为吸烟与患肺癌____________总结:以上这种利用随机变量K 2来判断“两个分类变量有关系”的方法称为______________________二、形成能力在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶,而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶.能否在犯错误的概率不超过0.01的前提下认为秃顶与患心脏病有关系?为什么?三、课堂检测1、 分类变量Y X 和的列联表如下:则下列说法正确的是:A .bc ad -越小,说明Y X 和关系越弱B .bc ad -越大,说明Y X 和关系越强C .2()bc ad -越大,说明Y X 和关系越强 D .2()bc ad -越接近于0,说明Y X 和关系越强2、为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:K 数学课程之间有关系?为什么?。
第三章 统计案例3.2独立性检验的基本思想及其初步应用一、学习目标1、了解独立性检验的基本思想、方法及初步应用。
了解独立性检验的常用方法:等高条形图及2k 统计量法。
2、了解实际推断原理和假设检验的基本思想、方法及初步应用。
3、能运用自己所学知识对具体案例进行检验。
【重点、难点】重点:1、了解独立性检验的基本思想、方法及初步应用。
了解独立性检验的常用方法:等高条形图及2k 统计量法。
2、了解实际推断原理和假设检验的基本思想、方法及初步应用。
3、能运用自己所学知识对具体案例进行检验。
难点:1、实际推断原理和假设检验的基本思想、方法及初步应用。
2、解决独立性检验与其它知识(如概率)等的综合应用题。
二、学习过程 【导入新课】1.与列联表相关的概念(1)分类变量:变量的不同“___”表示个体所属的_________,像这样的变量称为分类变量. (2)列联表:①列出的_____分类变量的_______,称为列联表.②一般地,假设有两个分类变量X 和Y ,它们的取值分别为 {}{}2121,,y y x x 和其样本频数列联表(称为2×2列联表)为:2.等高条形图等高条形图与表格相比,图形更能直观地反映出两个分类变量间是否 _________,常用等高条形图展示列表数据的_________. 3.独立性检验的基本思想(1)定义:利用随机变量__来判断“两个分类变量_______”的方法称为独立性检验.(2)公式:=2k ____________________,其中=n ________.(3)独立性检验的具体做法:①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后k.查表确定_______k的_______k.②利用公式计算随机变量2③如果_____,就推断“X与Y有关系”,这种推断犯错误的概率不超过α;否则,就认为在_____________不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中_________________支持结论“X与Y有关系”.典型例题类型一利用等高条形图判断两个分类变量是否相关例1.下列关于等高条形图的叙述正确的是( )A.从等高条形图中可以精确地判断两个分类变量是否有关系B.从等高条形图中可以看出两个变量频数的相对大小C.从等高条形图可以粗略地看出两个分类变量是否有关系D.以上说法都不对例2、为了解铅中毒病人与尿棕色素为阳性是否有关系,分别对病人组和对照组的尿液作尿棕色素定性检查,结果如下:病人与尿棕色素为阳性是否有关系?类型二独立性检验的基本思想例3、为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.能否在犯错误的概率不超过0.1的前提下,认为“学生选报文、理科与对外语的兴趣有关”?类型三独立性检验的综合应用例4、某高校共有学生15 000人,其中男生10 500人,女生4 500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:变式拓展1、在调查的480名男人中有38名患有色盲,520名女人中有6名患有色盲,分别利用图形和独立性检验的方法来判断色盲与性别是否有关?你所得到的结论在什么范围内有效?2、在一次重要会议上,为了搞好对外宣传工作,会务组选聘了16名男记者和14名女记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语.根据以上数据完成以下2×2列联表:会俄语不会俄语总计男女总计30并回答能否在犯错误的概率不超过0.10的前提下认为性别与会俄语有关?3、某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如图.记成绩不低于90分者为“成绩优秀”.(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;(2)由以上统计数据作出列联表,并判断能否在犯错误的概率不超过0.1的前提下认为:“成绩优秀”与教学方式有关.三、学习反思1.判断两个分类变量是否有关系的两种常用方法(1)利用数形结合思想,借助等高条形图来判断两个分类变量是否相关是判断变量相关的常见方法.(2)一般地,在等高条形图中,b a a + 与 dc c+ 相差越大,两个分类变量有关系的可能性就越大.2、独立性检验的步骤:第一步,确定分类变量,获取样本频数,得到列联表.第二步,根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查表确定临界值0k .第三步,利用公式()()()()d b c a d c b a bc ad n k ++++-=22)( 计算随机变量2k 的观测值k .第四步,作出判断.如果0k k >,就推断“X 与Y 有关系”这种推断犯错误的概率不超过α,否则就认为在犯错误的概率不超过α的前提下不能推断“X 与Y 的关系”,或者在样本数据中没有发现足够证据支持结论“X 与Y 有关系”.四、随堂检测1、某地区甲校高二年级有1 100人,乙校高二年级有900人,为了统计两个学校高二年级在学业水平考试中的数学学科成绩,采用分层抽样的方法在两校共抽取了200名学生的数学成绩,如下表:(已知本次测试合格线是50分,两校合格率均为100%) 甲校高二年级数学成绩:(1)计算x,y的值,并分别估计以上两所学校数学成绩的平均分(精确到1分).(2)若数学成绩不低于80分为优秀,低于80分为非优秀,根据以上统计数据写下面2×2列联表,并回答能否在犯错误的概率不超过0.05的前提下认为“两个学校的数学成绩有差异?”。
独立性检验的基本思想及初步应用教学目标:1. 了解独立性检验的基本思想及其在实际问题中的应用。
2. 学会使用假设检验方法判断两个分类变量之间是否具有独立性。
3. 掌握利用独立性检验解决实际问题的基本步骤。
教学内容:第一章:独立性检验的基本思想1.1 独立性检验的定义1.2 独立性检验的基本原理1.3 独立性检验的应用场景第二章:列联表与卡方检验2.1 列联表的定义及制作2.2 卡方检验的原理及计算2.3 卡方检验的判断标准第三章:假设检验方法3.1 假设检验的定义及类型3.2 独立性检验的假设条件3.3 独立性检验的步骤及注意事项第四章:实际问题中的应用4.1 案例一:产品质量检验4.2 案例二:消费者偏好调查4.3 案例三:疾病与性别关系的分析第五章:总结与拓展5.1 独立性检验在实际问题中的应用范围5.2 独立性检验的局限性5.3 独立性检验与其他统计方法的比较教学方法:1. 讲授:讲解独立性检验的基本思想、原理及应用。
2. 案例分析:分析实际问题,引导学生运用独立性检验解决问题。
3. 小组讨论:分组讨论案例,培养学生的合作与交流能力。
4. 练习与反馈:布置课后习题,及时了解学生掌握情况,给予针对性的指导。
教学评估:1. 课后习题:检验学生对课堂内容的掌握程度。
2. 案例分析报告:评估学生在实际问题中运用独立性检验的能力。
3. 课堂表现:观察学生在课堂讨论、提问等方面的参与度。
教学资源:1. 教材:独立性检验相关章节。
2. 案例材料:产品质量检验、消费者偏好调查、疾病与性别关系等实际问题。
3. 计算器:用于计算卡方值及概率。
教学时数:1. 共计4课时,每课时45分钟。
2. 分配如下:第一章1课时,第二章1课时,第三章1课时,第四章1课时。
第六章:多组独立性检验6.1 多组独立性检验的定义6.2 多组独立性检验的方法6.3 多组独立性检验的应用案例第七章:非参数检验7.1 非参数检验的定义及意义7.2 非参数检验方法简介7.3 独立性检验与非参数检验的比较第八章:独立性检验的软件操作8.1 统计软件的选择与操作8.2 独立性检验的软件实现8.3 结果解读与分析第九章:独立性检验在实际问题中的应用案例分析9.1 案例一:市场调查与分析9.2 案例二:教育公平性研究9.3 案例三:医学研究中的应用第十章:总结与展望10.1 独立性检验在统计学中的地位与作用10.2 独立性检验的发展趋势10.3 独立性检验在未来的挑战与机遇教学方法:1. 讲授:讲解多组独立性检验、非参数检验及软件操作相关知识。
3.2.1 《独立性检验的基本思想及其初步应用》教学设计【教学目标】1.知识与技能:通过对典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能解决实际问题。
2.过程与方法:通过设置问题,引导学生自主发现、合作探究、归纳展示、质疑对抗,使学生成为课堂主体。
3.情感、态度与价值观:通过本节课学习,让学生体会统计方法在决策中的作用;合作探究的学习过程,使学生感受发现、探索的乐趣及成功展示的成就感,培养学生学习数学知识的积极态度。
【教学重点】了解独立性检验的基本思想及实施步骤。
【教学难点】独立性检验的基本思想;随机变量2K的含义。
【学情分析】本节课是在学习了统计、回归分析的基本思想及初步应用后,利用独立性检验进一步分析两个分类变量之间是否有关系,为以后学习统计理论奠定基础。
【教学方式】多媒体辅助,合作探究式教学。
【教学过程】一、情境引入,提出问题请看视频:[设计意图说明]好的课堂情景引入,能激发学生的求知欲,是新问题能够顺利解决的前提之一。
问题1、你认为吸烟与患肺癌有关系吗?怎样用数学知识说明呢?[设计意图说明]提出问题,引导学生自主探究,指明方向,步步深入。
二、阅读教材,探究新知1.分类变量对于性别变量,其取值为男和女两种:[设计意图说明]利用图像向学生展示变量的不同取值,更加形象的表示分类变量的概念。
这种变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量。
生活中有很多这样的分类变量如:是否吸烟宗教信仰国籍民族……2.列联表为研究吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果:表3—7 吸烟与患肺癌列联表单位:人不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计9874919965究每个分类变量只取两个值,这样的列联表称为22 列联表)。
问题1、吸烟与患肺癌有关系吗?由以上列联表,我们估计①在不吸烟者中患肺癌的比例为________;②在吸烟者中患肺癌的比例为。
《3.2 独立性检验的基本思想及其初步应用》导学案2【课标要求】1.了解独立性检验的基本思想、方法及其简单应用;2.理解判断两个分类变量是否有关系的常用方法、独立性检验中K2的含义及其实施步骤.【核心扫描】1.能够根据题目所给数据列出列联表及求K2.(重点)2.独立性检验的基本思想和方法.(难点)自学导引1.分类变量和列联表(1)分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.(2)列联表①定义:列出的两个分类变量的频数表,称为列联表.②2×2列联表一般地,假设两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称2×2列联表)为提示(1)这里的“变量”和“值”都应作为“广义”的变量和值来理解.例如:对于性别变量,其取值有“男”和“女”两种,这里的“变量”指的是“性别”,这里的“值”指的是“男”或“女”.因此,这里说的“变量”和“值”不一定是取具体的数值.(2)分类变量是大量存在的.例如:吸烟变量有吸烟与不吸烟两种类别,而国籍变量则有多种类别.2.独立性检验K2=n ad-bc2a+b c+d a+c b+d,其中n=a+b+c+d3.P(K2≥6.635)≈0.01和P(K2≥10.828)≈0.001,哪种说法是正确的?提示两种说法均正确.P(K2≥6.635)≈0.01的含义是在犯错误的概率不超过0.01的前提下,认为两变量相关;而P(K2≥10.828)≈0.001的含义是在犯错误的概率不超过0.001的前提下,认为两变量相关.名师点睛1.在2×2列联表中,如果两个分类变量没有关系,则应满足ad-bc≈0,因此|ad-bc|越小,关系越弱;|ad-bc|越大,关系越强.2.独立性检验的基本思想(1)独立性检验的基本思想类似于反证法,要确认“两个分类变量有关系”这一结论成立的可信程度,首先假设该结论不成立,即假设结论“两个分类变量没有关系”成立,在该假设下我们构造的随机变量K2应该很小,如果由观测数据计算得到的K2的观测值很大,则在一定程度上说明假设不合理,根据随机变量K2的含义,可以通过P(K2≥6.635)≈0.01来评价假设不合理的程度,由实际计算出k≥6.635,说明假设不合理的程度约为99%,即“两个分类变量有关系”这一结论成立的可信程度约为99%.(2)在实际问题中要记住以下几个常用值:①k>6.635有99%的把握认为“X与Y有关系”;②k>3.841有95%的把握认为“X与Y有关系”;③k>2.706有90%的把握认为“X与Y有关系”;④k≤2.706就认为没有充分证据显示“X与Y有关系”.(3)反证法原理与独立性检验原理的比较反证法原理:在假设H0下,如果推出一个矛盾,就证明了H0不成立.独立性检验原理:在假设H0下,如果出现一个与H0相矛盾的小概率事件,就推断H0不成立,且该推断犯错误的概率不超过这个小概率.3.两个分类变量相关性检验方法利用独立性检验来考察两个分类变量是否有关系,能较精确地给出这种判断的可靠程度,具体的做法是:①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查表确定临界值k0.②计算随机变量K2的观测值k.③如果k≥k0,就推断“X与Y”有关系,这种推断犯错误的概率不超过α,否则就认为在犯错误的概率不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够证据支持结论“X与Y有关系”.题型一有关“相关的检验”【例1】某校对学生课外活动进行调查,结果整理成下表:试用你所学过的知识进行分析,能否在犯错误的概率不超过0.005的前提下,认为“喜欢体育还是文娱与性别有关系”?[思路探索]解判断方法如下:假设H0“喜欢体育还是喜欢文娱与性别没有关系”,若H0成立,则K2应该很小.∵a=21,b=23,c=6,d=29,n=79,∴k=n ad-bc2a+b c+d a+c b+d=-2++++≈8.106.且P(K2≥7.879)≈0.005即我们得到的K2的观测值k≈8.106超过7.879,这就意味着:“喜欢体育还是文娱与性别没有关系”这一结论成立的可能性小于0.005,即在犯错误的概率不超过0.005的前提下认为“喜欢体育还是喜欢文娱与性别有关”.[规律方法] (1)利用K2=n ad-bc2a +b c+d a+c b+d求出K2的观测值k的值.再利用临界值的大小来判断假设是否成立.(2)解题时应注意准确代数与计算,不可错用公式,准确进行比较与判断.【变式1】为研究学生的数学成绩与对学习数学的兴趣是否有关,对某年级学生作调查得到如下数据:解由公式得K2的观测值k=-286×103×95×94≈38.459.∵38.459>10.828,∴有99.9%的把握说学生学习数学的兴趣与数学成绩是有关的.题型二有关“无关的检验”【例2】为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.试分析学生选报文、理科与对外语的兴趣是否有关?[思路探索] 要在选报文、理科与对外语有无兴趣之间有无关系作出判断,可以运用独立性检验的方法进行判断.解列出2×2列联表代入公式得K2k=-2236×125×211×150≈1.871×10-4.∵1.871×10-4<2.706,∴可以认为学生选报文、理科与对外语的兴趣无关.[规律方法] 运用独立性检验的方法:(1)列出2×2列联表,根据公式计算K2的观测值k.(2)比较k与k0的大小作出结论.【变式2】某教育机构为了研究人具有大学专科以上学历(包括大学专科)和对待教育改革态度的关系,随机抽取了392名成年人进行调查,所得数据如下表所示:解 根据列联表给出的数据,可计算出K 2的观测值k =-2196×196×68×324≈1.78,因为 1.78<2.706,所以我们没有充分理由说“人具有大学专科以上学历(包括大学专科)和对待教育改革的态度有关”.题型三 独立性检验的基本思想【例3】 某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,结果如下表:甲厂(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.附:K 2=n ad -bc 2a +bc +d a +cb +d,审题指导 (1)分别计算甲、乙两厂优质品的频数与500的比值即为所求. (2)根据已知数据填充2×2列联表,进行独立性检验.[规范解答] (1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%;(2分)乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%.(4分)(2)(8分)k =-2500×500×680×320≈7.353>6.635,(10分)所以有99%的把握认为“两个分厂生产的零件的质量有差异”.(12分) 【题后反思】 (1)解答此类题目的关键在于正确利用K 2=n ad -bc 2a +bc +d a +cb +d计算k 的值,再用它与临界值的大小作比较来判断假设检验是否成立,从而使问题得到解决.(2)此类题目规律性强,解题比较格式化,填表计算分析比较即可,要熟悉其计算流程,不难理解掌握.【变式3】 下表是某地区的一种传染病与饮用水的调查表:(1)(2)若饮用干净水得病5人,不得病50人,饮用不干净水得病9人,不得病22人.按此样本数据分析这种疾病是否与饮用水有关,并比较两种样本在反映总体时的差异.解(1)假设H0:传染病与饮用水无关.把表中数据代入公式得:K2的观测值k=-2≈54.21,∵54.21>10.828,所以拒绝H0.146×684×518×312因此我们有99.9%的把握认为该地区这种传染病与饮用不干净水有关.(2)依题意得2×2列联表:≈5.785.此时,K2的观测值k=14×72×55×31由于5.785>5.024所以我们有97.5%的把握认为该种疾病与饮用不干净水有关.两个样本都能统计得到传染病与饮用不干净水有关这一相同结论,但(1)中我们有99.9%的把握肯定结论的正确性,(2)中我们只有97.5%的把握肯定.误区警示因未理解P(K2≥k0)的含义而致错【示例】某小学对232名小学生调查中发现:180名男生中有98名有多动症,另外82名没有多动症,52名女生中有2名有多动症,另外50名没有多动症,用独立性检验方法判断多动症与性别是否有关系?[错解] 由题目数据列出如下列联表:k=≈42.117>10.828.100×132×180×52所以有0.1%的把握认为多动症与性别有关系.应该是有(1-P(K2≥10.828))×100%=(1-0.001)×100%的把握,而不是P(K2≥10.828)×100%=0.001×100%的把握.[正解] 由题目数据列出如下列联表:k=-2100×132×180×52≈42.117>10.828.所以有99.9%的把握认为多动症与性别有关系.本题的错误之处在于不能正确理解独立性检验步骤的含义,当计算的K2的观测值k大于临界值k0时,就可推断在犯错误的概率不超过α的前提下说X与Y有关系,这一点需牢记.。
人教版高中选修2-33.2独立性检验的基本思想及其初步课程设计一、独立性检验概述在概率论和数理统计中,独立性检验是指检验两个离散随机变量之间是否独立的方法。
在实际问题中,常常需要研究两个随机变量之间的关系,是否存在关联。
例如,对于一个大学招生的案例,一个人的高中成绩和大学录取情况可以是两个随机变量,我们需要使用独立性检验来判断这两个随机变量是否有关联。
二、独立性检验方法独立性检验方法有很多种,其中最常用的是卡方检验。
2.1 卡方检验卡方检验是一种统计检验方法,用于检验分类资料之间的独立性。
它的基本思想是,将观察结果与理论期望作比较,确定两者之间是否有显著差异来判断两个随机变量之间是否独立。
卡方检验的基本步骤包括:1.假设零假设为两个随机变量独立,对这个假设建立尽可能充分的理论模型。
2.将实际观察值与理论值进行比较,计算出统计量。
3.利用卡方分布表来获得临界值,以判断是否拒绝零假设。
2.2 其他方法在实际应用中,除了卡方检验,还有很多独立性检验的方法。
例如,t检验中的独立样本t检验,ANOVA中的多元卡方检验等等。
这些方法在不同的领域和场合有不同的应用。
三、课程设计建议针对高中选修2-33.2独立性检验,可以设计以下课程教学内容:3.1 概念讲解在课程开头,可以先为学生介绍独立性检验的基本概念,包括随机变量、独立性、检验方法等。
这部分内容可以通过举例子、讲解理论、使用模拟仿真等方式进行,让学生对独立性检验有一个初步的认识。
3.2 卡方检验的具体操作在学生掌握了基本概念之后,可以进一步教授卡方检验的具体操作方法。
在讲解过程中,教师可采取课堂讲解方式,为学生演示计算过程和判断方法。
并且可以为学生演示如何使用统计软件完成卡方检验。
同时,为了让学生更好的掌握卡方检验的操作,可以设计一些实际案例,让学生进行计算和判断实验。
3.3 讨论与总结在课程结束时,可以组织学生进行小组讨论和总结。
讨论的主题可以是卡方检验的应用与展望,或是针对课程内容的总结与反思。
3.2.2独立性检验的基本思想及其初步应用学案
3.2.2独立性检验的基本思想及其初步应用
学习目标
通过对典型案例的探究,进一步巩固独立性检验的基本思想、方法,并能运用K 2
进行独立性检验.
学习重点:独立性检验的应用 学习过程 一.前置测评
(1)某大学在研究性别与职称(分正教授、副教授)之间是否有关系,你认为应该收集哪些数据
?。
(2)某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:
为了判断主修统计专业是否与性别有关系,根据表中的数据,得到
K
22
50(1320107)
4.84423272030
⨯⨯-⨯=≈⨯⨯⨯,∵K 2≥3.841, 所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为 。
专
业
性别
非统计专业 统计
专业
男 13 10 女 7 20
式有关的结论?
有效无效合计
口服58 40 98
注射64 31 95
合计122 71 193
谈一谈:结合例1和例2你如何理解独立性检验。
三、巩固练习:
某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为“高中生学习状况与生理健康有关”?
不健康
健
康
总
计
不优秀
4
1
62
6
667
优秀
3
7
29
6
333
总计
7
8
92
2
100。
§ 3.2独立性检验的基本思想及其初步应用
【学习目标】
1、了解分类变量的意义。
2、了解2×2列联表的意义。
3、了解随机变量2
K 的意义。
4、通过对典型案例分析,了解独立性检验的基本思想和方法。
【重、难点】
教学重点:理解独立性检验的基本思想及实施步骤。
教学难点:(1)了解独立性检验的基本思想;
(2)了解随机变量2K 的含义,2
K 太大认为两个分类变量是有关系的。
【使用说明 学法指导】
1. 课前:预习课本,处理课前预习案
2. 课中:导入新课,预习检测,问题小组讨论,问题展示点评,拓展提
升,当堂训练,及时评价,反馈总结。
3. 课后:巩固练习作业,即基础性作业、个性化作业和考试化
【课前预习案】
【新知自学】
1、数据的表示方法
(1)变量的不同值表示个体所属的不同类别,像这种变量称为 变量 (2)用图表列出两个分类变量的频数表,称为 ; 与表格相比, 更能直观地反映出两个分类变量间是否相互影响; 常用 展示列联表数据的频率特征. 2、2×2列联表:
假设有两个分类变量X 和Y ,它们的取值分别为 和 ,其样本频数列联表(称为2×2列联表)为:
2
K = 其中d c b a n +++=为样本容量. 3、独立性检验定义 利用随机变量2
K
来判断“两个分类变量有关系”的方法称
为 .
4、独立性检验的具体做法
(1)根据实际问题的需要确定容许推断“两个分类变量X 与Y 有关系”
犯错误概率的上界a ,然后查表确定临界值0k ;
(2)由2×2列联表计算
2
K =的观测值k d c b a n d c d b c a b a bc ad n +++=++++-,)
)()()(()(2
(3)把k 的值与临界值比较确定X 与Y 有关的程度或无关。
如果0k k ≥,则推断“在犯错误的概率不超过a 的前提下认为X 与Y 有关系”(或有a -1的把握认为X 与Y 有关系); 如果0k k <,则推断“不能在犯错误的概率不超过a 的前提下认为X 与Y 有关系”(或没有a -1的把握认为X 与Y 有关系).
【课堂探究案】
探究1:有甲乙两个班级进行一门课程考试,按照学生考试成绩优秀和不优秀
[当堂训练]
1、下面是一个2×2列联表:
则表中a 、b 处的值分别为( )
A. 94、96
B. 52、50
C. 52、60
D. 54、52
2、在建立两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2
R 如下,其中拟合得最好的模型是( )
A. 模型1的相关指数2
R 为0.98 B. 模型2的相关指数2
R 为0.80 C. 模型3的相关指数2
R 为0.50 D. 模型4的相关指数2
R 为0.25 3、如果在犯错误的概率不超过0.05的前提下认为事件A 和B 有关,那么具体算出的数据满足( )
A. >2
K 3.841 B. <2
K 3.841 C. >2
K 6.635 D. <2
K 6.635
4、两个临界值为3.841与6.635。
当2
3.841k ≤时,认为事件A 与B 是 (填“有关的”或“无关的”);当2
6.635k >时,有 的把握说事件A 与B 是 (填“有关的”或“无关的”)。
【课后巩固案】
1、调查男女学生购买食品时是否看出厂日期与性别有无关系时,最有说服力的是( )
A. 期望
B. 方差
C. 正态分布
D. 独立性检验 2、班级与成绩2×2列联表
表中数据m A. 70,73,45,188 B. 17,73,45,90 C. 73,17,45,90 D. 17,73,45,45
3、在独立性检验中,统计量2K 有两个临界值:3.841和6.635,当8
41.32
>K 时,有95%的把握说明两个事件有关,当635.62
>K 时,有99%的把握说明两个事件有关,当841.32
≤K 时,认为没有充分的理由,说明两事件相关,在一项打鼾与患心脏病调查中,共调查了2000人,经计算87.202
=K ,根据这一数据分析,我们有理由认为打鼾与患心脏病之间是 的。
4、根据如图所示的等高条形图回答,吸烟与患肺病是 关系.(“有”或“没有”)。