3.2独立性检验的思想及应用
- 格式:ppt
- 大小:1.42 MB
- 文档页数:18
3. 2.1独立性检验的基本思想及其初步应用教学目标(1)通过对典型案例的探究,了解独立性检验(只要求22列联表)的基本思想、方法及初步应用;(2)经历由实际问题建立数学模型的过程,体会其基本方法。
教学重点:独立性检验的基本方法教学难点:基本思想的领会及方法应用教学过程一、问题情境5月31日是世界无烟日。
有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、慢性阻塞性肺病等都与吸烟有关,吸烟已成为继高血压之后的第二号全球杀手。
这些疾病与吸烟有关的结论是怎样得出的呢?我们看一下问题:某医疗机构为了了解肺癌与吸烟是否有关,进行了一次抽样调查,共调查了9965个人,其中吸烟者2148人,不吸烟者7817人。
调查结果是:吸烟的2148人中有49人患肺癌,2099人未患肺癌;不吸烟的7817人中有42人患肺癌,7775人未患肺癌。
问题:根据这些数据能否断定“患肺癌与吸烟有关”?二、学生活动(1)引导学生将上述数据用下表(一)来表示:(即列联表)不患肺癌患肺癌总计不吸烟7775 42 7817吸烟2099 49 2148总计9874 91 9965(2)估计吸烟者与不吸烟者患肺癌的可能性差异:在不吸烟者中,有427817≈0.54%的人患肺癌;在吸烟的人中,有492148≈2.28%的人患肺癌。
问题:由上述结论能否得出患肺癌与吸烟有关?把握有多大?三、建构数学1、从问题“吸烟是否与患肺癌有关系”引出独立性检验的问题,借助样本数据的列联表,柱形图和条形图的展示,使学生直观感觉到吸烟和患肺癌可能会有关系。
但这种结论能否推广到总体呢?要回答这个问题,就必须借助于统计理论来分析。
2、独立性检验:(1)假设H:患肺癌与吸烟没有关系。
即:“吸烟与患肺癌相互独立”。
用A表示不吸烟,B表示不患肺癌,则有P(AB)=P(A)P(B)若将表中“观测值”用字母代替,则得下表(二):患肺癌未患肺癌合计吸烟 a b b a + 不吸烟 cd d c + 合计c a +d b +d c b a +++学生活动:让学生利用上述字母来表示对应概率,并化简整理。
学校:二中 学科:数学 编写人: 游恒涛 审稿人:马英济3.2.2独立性检验的基本思想及其初步应用教学目标通过对典型案例的探究,进一步巩固独立性检验的基本思想、方法,并能运用K 2进行独立性检验.教学重点:独立性检验的基本方法 教学难点:基本思想的领会及方法应用 教学过程 一.学生活动练习:(1)某大学在研究性别与职称(分正教授、副教授)之间是否有关系,你认为应该收集哪些数据?女教授人数,男教授人数,女副教授人数,男副教授人数。
(2)某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:为了判断主修统计专业是否与性别有关系,根据表中的数据,得到 K 2250(1320107) 4.84423272030⨯⨯-⨯=≈⨯⨯⨯,∵K 2 3.841≥,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为 .(答案:5%)附:临界值表(部分):P (K 2≥k 0)0.10 0.05 0.025 0.010 k 02.7063.8415.0246.635二.数学运用例1 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表: 喜欢数学课程 不喜欢数学课程 总 计 男 37 85 122 女 35 143 178 总 计72228300由表中数据计算得到2K 的观察值 4.514k ≈. 在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么? (学生自练,教师总结)强调:①使得2( 3.841)0.05P K ≥≈成立的前提是假设“性别与是否喜欢数学课程之间没有关系”.如果这个前提不成立,上面的概率估计式就不一定正确; ②结论有95%的把握认为“性别与喜欢数学课程之间有关系”的含义;③在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算2K 的值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.专业性别非统计专业 统计专业男13 10 女7 20例2、为研究不同的给药方式(口服或注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查结果如表所示。
教材:普通高中课程标准实验教科书数学选修32 人教A版章节:2.3独立性检验的基本思想及其初步应用一、内容和内容解析本节课是人教A版(选修)2—3第三章第二单元第一课时的内容.理论性比较强,很多教师为了图省事,在教学过程中采用学生看书自学的方式,我认为不妥。
结合课本内容,拟用两节课的时间完成整节的教学内容,本节为第一节。
山东省教育厅在2010年9月15日“关于印发山东省普通高中学科教学内容调整意见二、教学目标分析1.目标:①知识与技能目标通过生活中案例的探究,理解独立性检验的基本思想,明确独立性检验的基本步骤,会对两个分类变量进行独立性检验,并能利用独立性检验的基本思想来解决实际问题。
②过程与方法目标通过探究引出独立性检验的问题,借助样本数据的列联表分析独立性检验的实施步骤。
③情感态度价值观目标通过本节课的学习,加强数学与现实生活的联系。
以科学的态度评价两个分类变量有关系的可能性。
培养学生运用所学知识,解决实际问题的能力。
教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性。
2.目标解析:在学习中通过对统计案例的分析,理解和掌握独立性检验的方法,体会独立性检验的基本思想在解决实际问题的应用,以提高我们处理生活和工作中的某些问题的能力.新课标指出:学生的数学学习内容应当是现实的、有趣的和富有挑战性的。
从心理学的角度看,青少年有一种好奇的心态、探究的心理。
因此,紧紧地抓住学生的这一特征,利用学生身边的问题设计教学情境,使学生在观察、讨论等活动中,逐步提高数学能力。
本节课学生应该了解的几个问题:1、判断两个分类变量是否有关的几种方法及其不同点⑴列联表⑵三维柱形图⑶二维条形图⑷等高条形图⑸独立性检验的思想及应用2、独立性检验的思想与反证法思想的比较3、k2表达式及k2值表的含义三、教学问题诊断分析1.课本上k2的结构比较复杂,来的也比较突然,学生可能会提出疑问.关于这个问题,可借助两件事独立的定义以及样本容量较大时可以用频率近似表示概率来解决。
3.2.1 《独立性检验的基本思想及其初步应用》教学设计【教学目标】1.知识与技能:通过对典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能解决实际问题。
2.过程与方法:通过设置问题,引导学生自主发现、合作探究、归纳展示、质疑对抗,使学生成为课堂主体。
3.情感、态度与价值观:通过本节课学习,让学生体会统计方法在决策中的作用;合作探究的学习过程,使学生感受发现、探索的乐趣及成功展示的成就感,培养学生学习数学知识的积极态度。
【教学重点】了解独立性检验的基本思想及实施步骤。
【教学难点】独立性检验的基本思想;随机变量2K的含义。
【学情分析】本节课是在学习了统计、回归分析的基本思想及初步应用后,利用独立性检验进一步分析两个分类变量之间是否有关系,为以后学习统计理论奠定基础。
【教学方式】多媒体辅助,合作探究式教学。
【教学过程】一、情境引入,提出问题请看视频:[设计意图说明]好的课堂情景引入,能激发学生的求知欲,是新问题能够顺利解决的前提之一。
问题1、你认为吸烟与患肺癌有关系吗?怎样用数学知识说明呢?[设计意图说明]提出问题,引导学生自主探究,指明方向,步步深入。
二、阅读教材,探究新知1.分类变量对于性别变量,其取值为男和女两种:[设计意图说明]利用图像向学生展示变量的不同取值,更加形象的表示分类变量的概念。
这种变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量。
生活中有很多这样的分类变量如:是否吸烟宗教信仰国籍民族……2.列联表为研究吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果:表3—7 吸烟与患肺癌列联表单位:人不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计9874919965究每个分类变量只取两个值,这样的列联表称为22 列联表)。
问题1、吸烟与患肺癌有关系吗?由以上列联表,我们估计①在不吸烟者中患肺癌的比例为________;②在吸烟者中患肺癌的比例为。
《3.2独立性检验的基本思想及其初步应用》教学案5一.教学目标:1,理解独立性检验的基本思想; 2,理解独立性检验的实施步骤; 3,了解随机变量K 2的含义。
二.教学重点:理解独立性检验的基本思想实施步骤。
教学难点;1、理解独立性检验的基本思想及实施步骤2、了解随机变量K 2的含义。
三.知识链接独立性检验原理:四.新课学习1. 独立性检验的概念:利用随机变量2K 来确定在多大程度上可以认为“__________”的方法,称为两个分类变量的独立性检验。
2. 独立性检验的步骤:设有两个分类变量X 与Y ,他们的取值分别为 和 其样本频数列联表(称2⨯2列联表)为:引入随机变量2K , ____________________2=K ,(其中d c b a n +++=为样本容量)推断X 与Y 有关系可按下列步骤进行: (1)假设0H : X 与Y 没有关系(2)根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界a ,然后查表1-11确定临界值o k(3)利用公式(1),计算随机变量2K 的观测值k 。
(4)如果,就判断“X 与Y 有关系”,这种判断犯错误的概率不超过a ,否则,就认为在犯错误的概率不超过a 的前提下不能推断“X 与Y 有关系”,或则在样本数据中没有发现足够证据支持结论“X 与Y 有关系”,3. 为了使不同样本容量的数据有统一的评判标准,我们利用统计量2K 的观测值k来判断x 与y 有关系的程度。
如果828.10>k ,就有_____的把握认为“x 与y 有关系”; 如果879.7>k ,就有_____的把握认为“x 与y 有关系”; 如果_____>k ,就有99%的把握认为“x 与y 有关系”; 如果_____>k ,就有97.5%的把握认为“x 与y 有关系”;如果841.3>k ,就有_____的把握认为“x 与y 有关系”; 如果706.2>k ,就有_____的把握认为“x 与y 有关系”; 如果706.2≤k,就认为没有充分证据显示“x 与y 有关系” 。