3.2独立性检验的思想及应用
- 格式:ppt
- 大小:1.42 MB
- 文档页数:18
3. 2.1独立性检验的基本思想及其初步应用教学目标(1)通过对典型案例的探究,了解独立性检验(只要求22列联表)的基本思想、方法及初步应用;(2)经历由实际问题建立数学模型的过程,体会其基本方法。
教学重点:独立性检验的基本方法教学难点:基本思想的领会及方法应用教学过程一、问题情境5月31日是世界无烟日。
有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、慢性阻塞性肺病等都与吸烟有关,吸烟已成为继高血压之后的第二号全球杀手。
这些疾病与吸烟有关的结论是怎样得出的呢?我们看一下问题:某医疗机构为了了解肺癌与吸烟是否有关,进行了一次抽样调查,共调查了9965个人,其中吸烟者2148人,不吸烟者7817人。
调查结果是:吸烟的2148人中有49人患肺癌,2099人未患肺癌;不吸烟的7817人中有42人患肺癌,7775人未患肺癌。
问题:根据这些数据能否断定“患肺癌与吸烟有关”?二、学生活动(1)引导学生将上述数据用下表(一)来表示:(即列联表)不患肺癌患肺癌总计不吸烟7775 42 7817吸烟2099 49 2148总计9874 91 9965(2)估计吸烟者与不吸烟者患肺癌的可能性差异:在不吸烟者中,有427817≈0.54%的人患肺癌;在吸烟的人中,有492148≈2.28%的人患肺癌。
问题:由上述结论能否得出患肺癌与吸烟有关?把握有多大?三、建构数学1、从问题“吸烟是否与患肺癌有关系”引出独立性检验的问题,借助样本数据的列联表,柱形图和条形图的展示,使学生直观感觉到吸烟和患肺癌可能会有关系。
但这种结论能否推广到总体呢?要回答这个问题,就必须借助于统计理论来分析。
2、独立性检验:(1)假设H:患肺癌与吸烟没有关系。
即:“吸烟与患肺癌相互独立”。
用A表示不吸烟,B表示不患肺癌,则有P(AB)=P(A)P(B)若将表中“观测值”用字母代替,则得下表(二):患肺癌未患肺癌合计吸烟 a b b a + 不吸烟 cd d c + 合计c a +d b +d c b a +++学生活动:让学生利用上述字母来表示对应概率,并化简整理。
学校:二中 学科:数学 编写人: 游恒涛 审稿人:马英济3.2.2独立性检验的基本思想及其初步应用教学目标通过对典型案例的探究,进一步巩固独立性检验的基本思想、方法,并能运用K 2进行独立性检验.教学重点:独立性检验的基本方法 教学难点:基本思想的领会及方法应用 教学过程 一.学生活动练习:(1)某大学在研究性别与职称(分正教授、副教授)之间是否有关系,你认为应该收集哪些数据?女教授人数,男教授人数,女副教授人数,男副教授人数。
(2)某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:为了判断主修统计专业是否与性别有关系,根据表中的数据,得到 K 2250(1320107) 4.84423272030⨯⨯-⨯=≈⨯⨯⨯,∵K 2 3.841≥,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为 .(答案:5%)附:临界值表(部分):P (K 2≥k 0)0.10 0.05 0.025 0.010 k 02.7063.8415.0246.635二.数学运用例1 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表: 喜欢数学课程 不喜欢数学课程 总 计 男 37 85 122 女 35 143 178 总 计72228300由表中数据计算得到2K 的观察值 4.514k ≈. 在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么? (学生自练,教师总结)强调:①使得2( 3.841)0.05P K ≥≈成立的前提是假设“性别与是否喜欢数学课程之间没有关系”.如果这个前提不成立,上面的概率估计式就不一定正确; ②结论有95%的把握认为“性别与喜欢数学课程之间有关系”的含义;③在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算2K 的值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.专业性别非统计专业 统计专业男13 10 女7 20例2、为研究不同的给药方式(口服或注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查结果如表所示。
教材:普通高中课程标准实验教科书数学选修32 人教A版章节:2.3独立性检验的基本思想及其初步应用一、内容和内容解析本节课是人教A版(选修)2—3第三章第二单元第一课时的内容.理论性比较强,很多教师为了图省事,在教学过程中采用学生看书自学的方式,我认为不妥。
结合课本内容,拟用两节课的时间完成整节的教学内容,本节为第一节。
山东省教育厅在2010年9月15日“关于印发山东省普通高中学科教学内容调整意见二、教学目标分析1.目标:①知识与技能目标通过生活中案例的探究,理解独立性检验的基本思想,明确独立性检验的基本步骤,会对两个分类变量进行独立性检验,并能利用独立性检验的基本思想来解决实际问题。
②过程与方法目标通过探究引出独立性检验的问题,借助样本数据的列联表分析独立性检验的实施步骤。
③情感态度价值观目标通过本节课的学习,加强数学与现实生活的联系。
以科学的态度评价两个分类变量有关系的可能性。
培养学生运用所学知识,解决实际问题的能力。
教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性。
2.目标解析:在学习中通过对统计案例的分析,理解和掌握独立性检验的方法,体会独立性检验的基本思想在解决实际问题的应用,以提高我们处理生活和工作中的某些问题的能力.新课标指出:学生的数学学习内容应当是现实的、有趣的和富有挑战性的。
从心理学的角度看,青少年有一种好奇的心态、探究的心理。
因此,紧紧地抓住学生的这一特征,利用学生身边的问题设计教学情境,使学生在观察、讨论等活动中,逐步提高数学能力。
本节课学生应该了解的几个问题:1、判断两个分类变量是否有关的几种方法及其不同点⑴列联表⑵三维柱形图⑶二维条形图⑷等高条形图⑸独立性检验的思想及应用2、独立性检验的思想与反证法思想的比较3、k2表达式及k2值表的含义三、教学问题诊断分析1.课本上k2的结构比较复杂,来的也比较突然,学生可能会提出疑问.关于这个问题,可借助两件事独立的定义以及样本容量较大时可以用频率近似表示概率来解决。
3.2.1 《独立性检验的基本思想及其初步应用》教学设计【教学目标】1.知识与技能:通过对典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能解决实际问题。
2.过程与方法:通过设置问题,引导学生自主发现、合作探究、归纳展示、质疑对抗,使学生成为课堂主体。
3.情感、态度与价值观:通过本节课学习,让学生体会统计方法在决策中的作用;合作探究的学习过程,使学生感受发现、探索的乐趣及成功展示的成就感,培养学生学习数学知识的积极态度。
【教学重点】了解独立性检验的基本思想及实施步骤。
【教学难点】独立性检验的基本思想;随机变量2K的含义。
【学情分析】本节课是在学习了统计、回归分析的基本思想及初步应用后,利用独立性检验进一步分析两个分类变量之间是否有关系,为以后学习统计理论奠定基础。
【教学方式】多媒体辅助,合作探究式教学。
【教学过程】一、情境引入,提出问题请看视频:[设计意图说明]好的课堂情景引入,能激发学生的求知欲,是新问题能够顺利解决的前提之一。
问题1、你认为吸烟与患肺癌有关系吗?怎样用数学知识说明呢?[设计意图说明]提出问题,引导学生自主探究,指明方向,步步深入。
二、阅读教材,探究新知1.分类变量对于性别变量,其取值为男和女两种:[设计意图说明]利用图像向学生展示变量的不同取值,更加形象的表示分类变量的概念。
这种变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量。
生活中有很多这样的分类变量如:是否吸烟宗教信仰国籍民族……2.列联表为研究吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果:表3—7 吸烟与患肺癌列联表单位:人不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计9874919965究每个分类变量只取两个值,这样的列联表称为22 列联表)。
问题1、吸烟与患肺癌有关系吗?由以上列联表,我们估计①在不吸烟者中患肺癌的比例为________;②在吸烟者中患肺癌的比例为。
《3.2独立性检验的基本思想及其初步应用》教学案5一.教学目标:1,理解独立性检验的基本思想; 2,理解独立性检验的实施步骤; 3,了解随机变量K 2的含义。
二.教学重点:理解独立性检验的基本思想实施步骤。
教学难点;1、理解独立性检验的基本思想及实施步骤2、了解随机变量K 2的含义。
三.知识链接独立性检验原理:四.新课学习1. 独立性检验的概念:利用随机变量2K 来确定在多大程度上可以认为“__________”的方法,称为两个分类变量的独立性检验。
2. 独立性检验的步骤:设有两个分类变量X 与Y ,他们的取值分别为 和 其样本频数列联表(称2⨯2列联表)为:引入随机变量2K , ____________________2=K ,(其中d c b a n +++=为样本容量)推断X 与Y 有关系可按下列步骤进行: (1)假设0H : X 与Y 没有关系(2)根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界a ,然后查表1-11确定临界值o k(3)利用公式(1),计算随机变量2K 的观测值k 。
(4)如果,就判断“X 与Y 有关系”,这种判断犯错误的概率不超过a ,否则,就认为在犯错误的概率不超过a 的前提下不能推断“X 与Y 有关系”,或则在样本数据中没有发现足够证据支持结论“X 与Y 有关系”,3. 为了使不同样本容量的数据有统一的评判标准,我们利用统计量2K 的观测值k来判断x 与y 有关系的程度。
如果828.10>k ,就有_____的把握认为“x 与y 有关系”; 如果879.7>k ,就有_____的把握认为“x 与y 有关系”; 如果_____>k ,就有99%的把握认为“x 与y 有关系”; 如果_____>k ,就有97.5%的把握认为“x 与y 有关系”;如果841.3>k ,就有_____的把握认为“x 与y 有关系”; 如果706.2>k ,就有_____的把握认为“x 与y 有关系”; 如果706.2≤k,就认为没有充分证据显示“x 与y 有关系” 。
独立性检验的基本思想及初步应用一、教学目标1. 让学生理解独立性检验的基本思想,掌握独立性检验的步骤和应用。
2. 培养学生运用独立性检验解决实际问题的能力,提高学生的数据分析素养。
3. 引导学生运用数学软件或计算器进行独立性检验,培养学生的操作能力。
二、教学内容1. 独立性检验的基本思想(1)理解独立性检验的定义和作用。
(2)掌握独立性检验的基本步骤:提出假设、构造检验统计量、确定显著性水平、计算临界值、做出结论。
2. 独立性检验的初步应用(1)学会运用独立性检验解决实际问题,如判断两个分类变量是否独立。
(2)学会运用数学软件或计算器进行独立性检验,提高数据分析能力。
三、教学重点与难点1. 教学重点:(1)独立性检验的基本思想及步骤。
(2)独立性检验在实际问题中的应用。
(3)运用数学软件或计算器进行独立性检验。
2. 教学难点:(1)独立性检验步骤中构造检验统计量的方法。
(2)如何正确选择显著性水平。
四、教学方法与手段1. 教学方法:(1)讲授法:讲解独立性检验的基本思想和步骤。
(2)案例教学法:分析实际问题,引导学生运用独立性检验。
(3)实践操作法:让学生运用数学软件或计算器进行独立性检验。
2. 教学手段:(1)多媒体课件:展示独立性检验的基本思想和步骤。
(2)数学软件或计算器:让学生进行实际操作。
五、教学过程1. 导入新课:通过一个实际问题引入独立性检验的概念,激发学生的兴趣。
2. 讲解独立性检验的基本思想:讲解独立性检验的定义、作用和基本步骤,让学生理解独立性检验的基本思想。
3. 案例分析:分析一个实际问题,引导学生运用独立性检验,体会独立性检验在解决实际问题中的应用。
4. 实践操作:让学生运用数学软件或计算器进行独立性检验,培养学生的操作能力。
5. 总结与反思:总结本节课的主要内容,让学生巩固所学知识,并思考如何更好地运用独立性检验解决实际问题。
六、教学拓展1. 引导学生探讨独立性检验在实际应用中的局限性,如样本量对检验结果的影响。
3.2独立性检验的基本思想及其初步应用【学习目标】通过典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能利用独立性检验的基本思想来解决实际问题。
【学习过程】问题的引入:为研究吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果(单位:人)吸烟与肺癌列联表 患肺癌 不患肺癌 总计 吸烟 49 2099 2148 不吸烟 42 7775 7817 总计9198749965那么吸烟是否对患肺癌有影响? 直观上来判断:在不吸烟的样本中,有_______%患肺癌;在吸烟的样本中,则有______% 由此,吸烟群体和不吸烟群体患肺癌的可能性存在差异.但,这种“差异”有多大呢?能够有一个评判的标准呢?我们可以通过以下的统计分析回答这个问题。
独立性检验:1、把上表中数字用字母代替,得到如下用字母表示的列联表:吸烟与肺癌列联表 不患肺癌 患肺癌 总计 吸烟 a b a+b 不吸烟 c d c+d 总计a+cb+da+b+c+d2、假设0H :吸烟与患肺癌没有关系那么吸烟样本中不患肺癌的比例应该与不吸烟样本中不患肺癌的比例差不多,即: __________________________________________因此:bcad -越小说明吸烟与患肺癌之间的关系______.反之,则_____3、计算2K为了使不同样本变量的数据有统一的评测标准,构造一个随机变量2K = _________________________________________________________ 其中_______________=n 为样本容量.从而,若0H 成立,即“吸烟与患肺癌没有关系”,则2K 应该_______,反之,2K 应该___________。
上题2K =56.632.这个值到底能告诉我们什么?能从中得到什么结论? 4、查表 P (2K >k0) 0.50 0.40 0.25 0.15 0.10 k0 0.4550.7081.3232.0722.706P (K2>k0) 0.05 0.025 0.010 0.005 0.001 k03.8415.0246.6357.87910.828上题中2K =56.632>10.828,所以001.0)828.10(2=>K P 该数据表明了在假设0H 成立的情况下,2K 的值大于10.828的概率非常小,为0.001,是一个小概率事件。
3.2独立性检验的基本思想及其初步应用问题导学预习教材P91~P96的内容,并思考下列问题:1.分类变量与列联表分别是如何定义的?2.独立性检验的基本思想是怎样的?3.独立性检验的常用方法有哪些?1.分类变量和列联表(1)分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.(2)列联表①定义:列出的两个分类变量的频数表称为列联表.②2×2列联表一般地,假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(也称为2×2列联表)为下表.■名师点拨对2×2列联表的理解(1)2×2列联表用于研究两类变量之间是否相互独立,它适用于分析两类变量之间的关系,是对两类变量进行独立性检验的基础.(2)表中|ad-bc|越小,两个变量之间的关系越弱;|ad-bc|越大,两个变量之间的关系越强.2.等高条形图(1)等高条形图与表格相比,更能直观地反映出两个分类变量间是否相互影响,常用等高条形图展示列联表数据的频率特征.(2)观察等高条形图发现aa+b和cc+d相差很大,就判断两个分类变量之间有关系.3.独立性检验(1)定义利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.(2)K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d为样本容量.(3)独立性检验的具体做法①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查表确定临界值k0.②利用公式计算随机变量K2的观测值k.③如果k≥k0,就推断“X与Y有关系”,这种推断犯错误的概率不超过α,否则,就认为在犯错误的概率不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够证据支持结论“X与Y有关系”.■名师点拨独立性检验的基本思想与反证法的思想的相似之处1.判断正误(正确的打“√”,错误的打“×”)(1)列联表中的数据是两个分类变量的频数.( )(2)对事件A 与B 的独立性检验无关,即两个事件互不影响.( ) (3)K 2的大小是判断事件A 与B 是否相关的统计量.( )2. 为直观判断两个分类变量X 和Y 之间是否有关系,设它们的取值分别为{x 1,x 2}和{y 1,y 2},通过抽样得到频数表为:y 1 y 2 x 1 a b x 2cd( ) A .a a +c 与b b +dB .a a +d 与c b +cC .a b +d 和c a +cD .a c +d 和c a +b3.如图是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的比例,从图中可以看出( )A .性别与喜欢理科无关B .女生中喜欢理科的比为80%C .男生比女生喜欢理科的可能性大些D .男生不喜欢理科的比为60% 4.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅临界值表来确定推断“X 和Y 有关系”的可信度,如果k >5.024,那么就推断“X 和Y 有关系”,这种推断犯错误的概率不超过( )P (K 2≥k 0)0.50 0.40 0.25 0.15 0.10 k 0 0.455 0.708 1.323 2.072 2.706 P (K 2≥k 0)0.05 0.025 0.01 0.005 0.001 k 03.8415.0246.6357.87910.828A .0.25 C .0.025D .0.975等高条形图的应用为了解铅中毒病人与尿棕色素为阳性是否有关系,分别对病人组和对照组的尿液作尿棕色素定性检查,结果如下:铅中毒病人与尿棕色素为阳性是否有关系?(1)判断两个分类变量是否有关系的两种常用方法①利用数形结合思想,借助等高条形图来判断两个分类变量是否相关是判断变量相关的常见方法.②一般地,在等高条形图中,a a +b 与c c +d 相差越大,两个分类变量有关系的可能性就越大.(2)利用等高条形图判断两个分类变量是否相关的步骤强化训练某生产线上,质量监督员甲在生产现场时,990件产品中有合格品982件,次品8件;不在生产现场时,510件产品中有合格品493件,次品17件.试利用列联表和等高条形图判断监督员甲在不在生产现场对产品质量好坏有无影响.独立性检验为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.能否在犯错误的概率不超过0.1的前提下,认为“学生选报文、理科与对外语的兴趣有关”?1.把本例条件“理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.”换成“理科对外语有兴趣的有100人,无兴趣的有136人,文科对外语有兴趣的有93人,无兴趣的有32人.”其他条件不变,再求解该问题.解决独立性检验问题的基本步骤(1)根据已知的数据作出列联表.(2)作出相应的等高条形图,可以利用图形做出相应判断.(3)求K2的观测值.(4)判断可能性:与临界值比较,得出事件有关的可能性大小.强化训练某校推广新课改,在两个程度接近的班进行试验,一班为新课改班级,二班为非课改班级,经过一个学期的教学后对期末考试进行分析评价,规定:总分超过550(或等于550分)为优秀,550以下为非优秀,得到以下列联表:(1)请完成列联表;(2)根据列联表的数据,能否在犯错误的概率不超过0.005的前提下认为推广新课改与总成绩是否优秀有关系?参考数据:K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d).基础训练1.在某次飞行航程中遭遇恶劣气候,55名男乘客中有24名晕机,34名女乘客中有8名晕机,在检验这些乘客晕机是否与性别有关时,采用的数据分析方法应是() A.频率分布直方图B.回归分析C.独立性检验D.用样本估计总体2.如表是一个2×2列联表:则表中a,b的值分别为()A.94,72 B.52,523.为考察A,B两种药物预防某疾病的效果,进行动物试验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是()A.药物B的预防效果优于药物A的预防效果B.药物A的预防效果优于药物B的预防效果C.药物A,B对该疾病均有显著的预防效果D.药物A,B对该疾病均没有预防效果4.分类变量X和Y的列表如下,则下列说法判断正确的是________.(填序号)①ad-bc②ad-bc越大,说明X与Y的关系越强;③(ad-bc)2越大,说明X与Y的关系越强;④(ad-bc)2越接近于0,说明X与Y的关系越强.能力提升1.在研究打鼾与患心脏病之间的关系中,通过收集数据、整理分析数据得到“打鼾与患心脏病有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的.下列说法中正确的是()A.100个心脏病患者中至少有99人打鼾B.1个人患心脏病,则这个人有99%的概率打鼾C.100个心脏病患者中一定有打鼾的人D.100个心脏病患者中可能一个打鼾的人都没有2.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:() A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.在犯错误的概率不超过0.001的前提下认为课外阅读量大与作文成绩优秀有关D.在犯错误的概率不超过0.005的前提下认为课外阅读量大与作文成绩优秀有关3.假设有两个分类变量X与Y,它们的可能取值分别为{x1,x2}和{y1,y2},其2×2列联表为:() A.a=5,b=4,c=3,d=2 B.a=5,b=3,c=4,d=2C.a=2,b=3,c=4,d=5 D.a=2,b=3,c=5,d=44.某班主任对全班50名学生进行了作业量的评价调查,所得数据如下表所示:A.0.01B.0.025 C.0.10 D.无充分证据5.独立性检验所采用的思路是:要研究X,Y两个分类变量彼此相关,首先假设这两个分类变量彼此________,在此假设下构造随机变量K2.如果K2的观测值较大,那么在一定程度上说明假设________.6.为研究某新药的疗效,给100名患者服用此药,跟踪调查后得下表中的数据:设H0:服用此药的效果与患者的性别无关,则K2的观测值k≈________,从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为________.7.在调查的480名男性中有38名患有色盲,520名女性中有6名患有色盲,请列出2×2列联表,并估计色盲与性别是否有关系.8.(2018·高考全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如图所示的茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m 和不超过m的工人数填入下面的列联表:(3)根据(2)附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),9.2019年春节,“抢红包”成为社会热议的话题之一.某机构对春节期间用户利用手机“抢红包”的情况进行调查,如果一天内抢红包的总次数超过10次为“关注点高”,否则为“关注点低”,调查情况如下表所示:(1)点高低有关?(2)现要从上述男性用户中随机选出3名参加一项活动,以X表示选中的男性用户中抢红包总次数超过10次的人数,求随机变量X的分布列及数学期望E(X).下面的临界值表供参考:独立性检验统计量K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.。