5.3简单的轴对称图形(二)
- 格式:doc
- 大小:340.00 KB
- 文档页数:2
§7.2.2 简单的轴对称图形(二)教学目标1.等腰三角形是轴对称图形.2.等腰三角形的性质.3.等边三角形的轴对称性及性质.教学重点等腰三角形的轴对称性及其有关性质.教学难点等腰三角形的“三线合一”的性质.教学过程Ⅰ.巧设现实情景,引入新课[师]上节课我们探讨了简单图形——线段.角的轴对称性,知道线段和角是轴对称图形.除线段和角外,我们还研究过三角形,那大家想一想:三角形是轴对称图形吗?Ⅱ.讲授新课[师]什么是等腰三角形、等边三角形呢?我们共同来回忆一下.[师生共析]三角形的三边,有的各不相等,有的有两边相等,有的三条边都相等.三边都不相等的三角形叫做不等边三角形(scalence triangle);有两条边相等的三角形叫做等腰三角形(isosceles triangle),三条边都相等的三角形叫做等边三角形(equilateral triangle) 也叫正三角形.(如图7-11)图7-11在等腰三角形中,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.等边三角形是特殊的等腰三角形.即底边和腰相等的等腰三角形.[师]有了上述的概念后,同学们来想一想.(出示投影片§7.2.2 A)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.顶角的平分线所在的直线是等腰三角形的对称轴吗?3.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两条腰相等,所以把这两条腰重合对折三角形便可知道:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.……[师]接下来大家来剪一个等腰三角形,然后进行折叠,找出它的对称轴.[师]很好,大家看屏幕:(电脑演示等腰三角形的折叠过程,显示“三线合一”,底角相等)由此我们得到了等腰三角形的性质(师生共同总结,然后出示投影片§7.2.2 C)等腰三角形是轴对称图形.等腰三角形顶角的平分线,底边上的中线,底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.等腰三角形的两个底角相等.[师]我们讨论了等腰三角形的性质,那等边三角形有哪些性质呢?大家来画一个等边三角形,然后剪下来,做一做(出示投影片§7.2.2 D)(1)等边三角形是轴对称图形吗?找出它的对称轴.(2)你能发现它的哪些特征?(学生操作,教师指导)Ⅲ.课堂练习(一)课本P195随堂练习Ⅳ.课时小结这节课我们主要探讨了等腰三角形和等边三角形的轴对称性.由此我们得到了等腰三角形和等边三角形的性质.等腰三角形是轴对称图形.等腰三角形的顶角平分线,底边上的中线、高线互相重合,即三线合一.它们所在的直线是等腰三角形的对称轴.等腰三角形的两底角相等.等边三角形是特殊的等腰三角形,根据其特殊性,再由等腰三角形的性质及三角形的内角和性质,可以得出等边三角形的内角均为60°大家应灵活应用这些性质.Ⅴ.课后作业:课本P228习题7.3 1、2、3、4.课后反思:。
第五章生活中的轴对称3简单的轴对称图形(第2课时)一、学生起点分析学生的知识技能基础:学生在小学已经学习过生活中的轴对称图形,对轴对称图形的特点及对称轴有所了解,并能通过折纸动手制作轴对称图形。
在本章前面一节课中,又学习轴对称现象,对轴对称和轴对称图形的概念有了进一步的了解,具备了动手操作的基本技能。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些折纸活动,解决了一些简单的现实问题,感受到了从数学活动中积累数学经验的过程;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析(1)知识与技能1.本节通过实践操作与思考的有机结合,帮助我们认识简单的轴对称图形。
经历探索简单图形轴对称性的过程,进一步体验轴对称的特征,发展空间观念.2.探索并了解线段垂直平分线的有关性质.3.应用线段垂直平分线的性质解决一些实际问题.4.尺规作图。
(2)过程与方法本节知识是通过对现实生活情景中的轴对称现象引出课题,在观察生活的基础上,从生活实践中探索轴对称现象的共同特征,进一步发展空间观念,体会轴对称在生活中的广泛运用和丰富的文化价值。
因此,在学习中,首先要养成善于观察的习惯,从不同的情境中,通过思考、分析,总结共性,学会学习。
(3)情感态度与价值观1.培养学生的抽象思维和空间观念,结合教学进行审美教育,让学生充分感知数学美,激发学生热爱数学的情感。
2.结合教材和联系生活实际培养学生的学习兴趣和热爱生活的情感。
3.通过小组折叠协作活动,培养学生协作学习的意识和研究探索的精神。
三、教学设计分析按照学生的认识规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法为辅。
教学中,精心设计了一个又一个带有启发性和思考性的问题,创设问题情境,诱导学生思考、操作,教师适时地演示,并用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于自主探索、合作交流的积极状态,从而培养学生的思维能力。
核心素养下如何上好一节初中概念课——以《5.3简单的轴对称图形(2)》为例摘要:本文以初中数学概念课《5.3简单的轴对称图形(2)》为例,探讨了教学目标、核心素养和教学策略等内容。
通过对线段轴对称性和线段垂直平分线的概念、性质以及尺规作图方法的深入分析,旨在提供一种有效的教学方法,以帮助学生深刻理解相关数学概念。
关键词:初中数学教学;数学素养;概念理解初中数学作为学生数学学习中的基础学科,在培养学生的逻辑思维、分析能力和问题解决能力方面扮演着关键角色。
数学概念的深入理解不仅有助于学生建立坚实的数学基础,还为他们未来的学习和职业发展奠定了基础。
本论文将聚焦于初中数学概念课程中的一个重要主题——《5.3简单的轴对称图形(2)》,探讨如何通过教学方法的优化,更好地促进学生的数学素养和概念理解。
一、教学目标与核心素养在初中数学概念课《5.3简单的轴对称图形(2)》中,设定了一系列有针对性的教学目标,旨在引导学生深刻理解几何学中的核心概念,培养他们的数学思维、观察力和创造力,从而为未来的数学学习打下坚实的基础。
首先,教学目标之一是让学生深入探索线段的轴对称性。
轴对称性是几何学中的重要概念,它有助于学生培养准确的几何直觉和分析问题的能力。
通过在课程中引导学生从不同角度观察图形,发现图形中的轴对称关系,可以帮助他们培养抽象思维和发现规律的能力。
这种能力在数学学习和实际问题解决中都具有重要作用。
其次,教学目标还包括让学生理解线段垂直平分线的概念与性质。
线段垂直平分线及其性质是几何中的一个基础概念,通过教授它,可以培养学生的几何想象力和逻辑推理能力。
学生需要理解,线段垂直平分线将线段分成两个等长的部分,并且连接线段两端的任意点到垂直平分线的距离相等。
这种理解不仅加深了学生对几何图形的认识,还为他们今后学习更复杂几何概念打下了坚实基础。
最后,课程的教学目标之一是让学生能够用尺规作线段的垂直平分线。
尺规作图作为一种古老而又有趣的几何方法,不仅帮助学生理解几何原理,还培养了他们的实际操作能力。
初中尺规作图数学史尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.平面几何作图,限制只能用直尺、圆规.在历史上最先明确提出尺规限制的是伊诺皮迪斯.他发现以下作图法:在已知直线的已知点上作一角与已知角相等.这件事的重要性并不在于这个角的实际作出,而是在尺规的限制下从理论上去解决这个问题.在这以前,许多作图题是不限工具的.伊诺皮迪斯以后,尺规的限制逐渐成为一种公约,最后总结在《几何原本》之中.初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条:⑴ 经过两已知点可以画一条直线;⑵ 已知圆心和半径可以作一圆;⑶ 两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最著名的尺规作图不能问题是:⑴ 三等分角问题:三等分一个任意角;⑵ 倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶ 化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r 时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个著名问题:⑴ 正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的.·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的.·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解决了两千年来悬而未决的难题.⑵ 四等分圆周只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战.尺规作图的相关延伸:用生锈圆规(即半径固定的圆规)作图1.只用直尺及生锈圆规作正五边形2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA==.3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点.4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、直线与弧交点、两直线交点,在已有一个圆的情况下,那么凡是尺规能作的,单用直尺也能作出!.五种基本作图:初中数学的五种基本尺规作图为:1.做一线段等于已知线段2.做一角等于已知角3.做一角的角平分线4.过一点做一已知线段的垂线5.做一线段的中垂线下面介绍几种常见的尺规作图方法:⑴ 轨迹交点法:解作图题的一种常见方法.解作图题常归结到确定某一个点的位置.如果这两个点的位置是由两个条件确定的,先放弃其中一个条件,那么这个点的位置就不确定而形成一个轨迹;若改变放弃另一个条件,这个点就在另一条轨迹上,故此点便是两个轨迹的交点.这个利用轨迹的交点来解作图题的方法称为轨迹交点法,或称交轨法、轨迹交截法、轨迹法.【例1】 电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A 、B 的距离必须相等,到两条高速公路m 、n 的距离也必须相等,发射塔P 应修建在什么位置?m【分析】 这是一道实际应用题,关键是转化成数学问题,根据题意知道,点P 应满足两个条件,一是在线段AB 的垂直平分线上;二是在两条公路夹角的平分线上,所以点P 应是它们的交点.【解析】 ⑴ 作两条公路夹角的平分线OD 或OE ;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点1C ,2C 就是发射塔的位置.⑵ 代数作图法:解作图题时,往往首先归纳为求出某一线段长,而这线段长的表达式能用代数方法求出,然后根据线段长的表达式设计作图步骤.用这种方法作图称为代数作图法.【例2】 只用圆规,不许用直尺,四等分圆周(已知圆心).【分析】 设半径为1..我们的任务就是做出这个长度..设法构造斜边1.【解析】 具体做法:⑴ 随便画一个圆.设半径为1.⑵ 先六等分圆周.⑶ 以这个距离为半径,分别以两个相对的等分点为圆心,同向作弧,交于一点.(“两个相对的等分点”其实就是直径的两端点啦!两弧交点与“两个相对的等分点”形成的是一个底为2.可算出顶点距圆心距离)的长度等分圆周就可以啦!⑶ 旋转法作图:有些作图题,需要将某些几何元素或图形绕某一定点旋转适当角度,以使已知图形与所求图形发生联系,从而发现作图途径.【例3】 已知:直线a 、b 、c ,且a b c ∥∥.求作:正ABC ∆,使得A 、B 、C 三点分别在直线a 、b 、c 上.c b aD'DC B Acb a【分析】 假设ABC ∆是正三角形,且顶点A 、B 、C 三点分别在直线a 、b 、c 上.作AD b⊥于D ,将ABD ∆绕A 点逆时针旋转60︒后,置于'ACD ∆的位置,此时点'D 的位置可以确定.从而点C 也可以确定.再作60BAC ∠=︒,B 点又可以确定,故符合条件的正三角形可以作出.【解析】 作法:⑴ 在直线a 上取一点A ,过A 作AD b ⊥于点D ;⑵ 以AD 为一边作正三角形'ADD ;⑶ 过'D 作''D C AD ⊥,交直线c 于C ;⑷ 以A 为圆心,AC 为半径作弧,交b 于B (使B 与'D 在AC 异侧).⑸ 连接AB 、AC 、BC 得ABC ∆.ABC ∆即为所求.⑷ 位似法作图:利用位似变换作图,要作出满足某些条件的图形,可以先放弃一两个条件,作出与其位似的图形,然后利用位似变换,将这个与其位似得图形放大或缩小,以满足全部条件,从而作出满足全部的条件.【例4】 已知:一锐角ABC ∆.求作:一正方形DEFG ,使得D 、E 在BC 边上,F 在AC 边上,G 在AB 边上.C B AG'F'E'D'GF E D C B A【分析】 先放弃一个顶点F 在AC 边上的条件,作出与正方形DEFG 位似的正方形''''D E F G ,然后利用位似变换将正方形''''D E F G 放大(或缩小)得到满足全部条件的正方形DEFG .【解析】 作法:⑴ 在AB 边上任取一点'G ,过'G 作''G D BC ⊥于'D⑵ 以''G D 为一边作正方形''''D E F G ,且使'E 在'BD 的延长线上.⑶ 作直线'BF 交AC 于F .⑷ 过F 分别作''FG F G ∥交AB 于G ;作''FE F E ∥交BC 于E .⑸ 过G 作''GD G D ∥交BC 于D .则四边形DEFG 即为所求.⑸ 面积割补法作图:对于等积变形的作图题,通常在给定图形或某一确定图形上割下一个三角形,再借助平行线补上一个等底等高的另一个三角形,使面积不变,从而完成所作图形.【例5】 如图,过ABC ∆的底边BC 上一定点,P ,求作一直线l ,使其平分ABC ∆的面积.【分析】 因为中线AM 平分ABC ∆的面积,所以首先作中线AM ,假设PQ 平分ABC ∆的面积,在AMC ∆中先割去AMP ∆,再补上ANP ∆.只要NM AP ∥,则A M P ∆和AMP ∆就同底等高,此时它们的面积就相等了.所以PN 就平分了ABC ∆的面积.【解析】 作法:⑴ 取BC 中点M ,连接,AM AP ;⑵ 过M 作MN AP ∥交AB 于N ;⑶ 过P 、N 作直线l .直线l 即为所求. NM P CB Al。
辛二七数下教案—42 5.3简单的轴对称图形(二)
教学目标:1.探索简单图形轴对称性,了解线段垂直平分线的有关性质。
2.利
用尺规作已知线段的垂直平分线
教学重点:线段垂直平分线性质。
教学难点:利用尺规作已知线段的垂直平分线。
教学方法:动手实践、讨论
教学工具:多媒体。
课堂教学过程设计:
一、回顾旧知:线段是不是轴对称图形呢?如果是,它的对称轴在哪里?
二、自学探究:
【活动一】线段的垂直平分线概念及性质
做一做:按下面步骤做:
1、用准备的线段AB,对折AB,使得点A、B重合,折痕与AB 的交点为O。
2、在折痕上任取一点C,沿CA将纸折叠;
3、把纸展开,得到折痕CA和CB。
观察自己手中的图形,回答下列问题:
(1)CO与AB 有什么样的位置关系?
(2)AO与OB相等吗?CA与CB 呢?能说明你的理由吗?在折痕上另取一点,
再试一试,你又有什么发现?
规律总结:1、于一条线段并且这条线段的直线叫做这条线段的垂直平分线,又叫线段的线。
2、性质:线段垂直平分线上的到这条线段的距离相等。
●尝试练习:
(1) 如图, AB是△ABC的一条边,,DE是AB的垂直平分线,垂足为E,并交BC于点D,已知AB=8cm,BD=6cm,那么EA=________, DA=____.
(2) 如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于D,如果BC=10cm,那么△BCD的周长是_______cm.
【活动二】利用尺规作已知线段的垂直平分线
1.线段垂直平分线的作法
①折纸法: ②度量法:③尺规法:
2.已知线段AB,利用尺规画出它的垂直平分线.
说出你的作图思路. 议一议:能否说出这种画法的依据,小组讨论交流一下。
A B
作法:
(1)分别以点为圆心,以大于的长为半径作弧(想一想为什么),
两弧相交于C ,D 两点;
(2)作
● 尝试练习:
1.公路l 的同侧的A 、B 两村,共同出资在公路边修建一个停靠站C ,使停靠站到A 、B 两村距离相等,你如何确定停靠站C 的位置。
2. 如图,已知线段EF 垂直平分线段AB ,点P 、D 在EF 上,则图中全等三角形共有( )
A 3对
B 4对
C 5对
D 6对
三、课堂
检测:
已知△DEF ,利用尺规作它的重心。
四、提高练习:
1、如图7-4所示:要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短
.
四、小结:这节课我们主要探讨了1.简单图形轴对称性,线段垂直平分线的有关性质。
2. 利用尺规作已知线段的垂直平分线
教学后记:
L
B
A B。