轴心受压构件计算
- 格式:pptx
- 大小:202.05 KB
- 文档页数:11
轴心受压构件长细比详细计算公式及扩展
长细比的计算公式如下:
λ=L/d
其中,λ为长细比,L为构件的长度,d为构件的截面尺寸(一般指最小截面尺寸,如矩形截面的宽度或圆形截面的直径)。
1.普通钢筋混凝土构件:λ≤60
2.预应力混凝土短期受拉构件:λ≤35
3.预应力混凝土长期受拉构件:λ≤25
以上是常见的构件长细比限制,对于特殊构件或特殊材料,限制值可能有所不同。
在进行具体的构件设计时,需要结合实际情况进行计算和判断。
扩展的长细比计算公式如下:
1.矩形截面长细比计算公式:
-构件为矩形截面,不考虑抗弯预应力,截面面积为A,截面惯性矩为I,截面高度为h,长细比为λ,宽度为b;
-λ=L/d=L/(b/√12)=√12*L/b
-公式中√12是矩形截面抗弯构件的长细比的系数。
2.圆形截面长细比计算公式:
-构件为圆形截面,直径为d,长细比为λ;
-λ=L/d
3.T形截面长细比计算公式:
-构件为T形截面,不考虑抗弯预应力,截面上翼缘的高度为h1,宽度为b1,截面下翼缘的高度为h2,宽度为b2;
-λ=L/d=L/((b1h1+b2h2)/2)
以上是一些常见截面形状的长细比计算公式。
在实际工程设计中,可能还会有其他特殊形状的截面,需要根据具体情况进行计算。
在进行长细比计算时,需要注意以下几点:
1.计算中要考虑截面惯性矩的效应,通常会取截面最不利的惯性矩进行计算。
2.考虑截面的有效高度,对于有孔洞或开口的截面,需要减去孔洞或开口的高度。
3.不同材料的长细比限制值可能有所不同,需要根据不同材料的特性进行计算和判断。
轴心受压构件正截面承载力计算首先,要计算轴心受压构件的正截面承载力,我们需要了解构件的几何参数,例如截面的尺寸和形状,以及构件的材料特性,如弹性模量和抗压强度等。
下面介绍一种常用的计算方法,即欧拉公式。
欧拉公式适用于细长的杆件,可以计算其承载力。
根据欧拉公式,轴心受压构件的正截面承载力可以表示为:Pcr = (π^2 * E * I) / (Lr)^2其中,Pcr 是构件的临界承载力,E 是构件的弹性模量,I 是构件截面的惯性矩,Lr 是约化长度。
对于不同的构件形状,惯性矩I的计算公式也不同。
以下是一些常见形状的惯性矩计算公式:1.矩形截面:I=(b*h^3)/12,其中b是截面的宽度,h是截面的高度;2.圆形截面:I=π*(d^4)/64,其中d是截面的直径;3.方管截面:I=(b*h^3-(b'*h')^3)/12,其中b是外边框的宽度,h是外边框的高度,b'是内边框的宽度,h'是内边框的高度。
约化长度Lr的计算取决于构件的边界条件。
以下是一些常见边界条件的约化长度计算公式:1.双端固定支承:Lr=L;2.一端固定支承、一端支座支承:Lr=0.7*L;3.双端支座支承:Lr=2*L。
通过使用上述公式,我们可以计算出轴心受压构件的正截面承载力。
需要注意的是,上述公式是基于一些理想化假设和条件下推导得出的,实际工程中还需要考虑一些因素,例如构件的稳定性和局部细部构造等。
因此,在实际设计中,应该根据具体情况综合考虑各种因素,并结合相关的规范和标准进行设计和验证,以确保构件的安全性和可靠性。
总之,轴心受压构件正截面承载力计算是工程设计中的重要环节。
通过合理的参数选择和计算,可以确定构件能够安全承受的最大压力,从而保证结构的安全和可靠性。
轴心受压构件的稳定性计算7.2.1 除可考虑屈服后强度的实腹式构件外,轴心受压构件的稳定性计算应符合下式要求:式中:φ——轴心受压构件的稳定系数(取截面两主轴稳定系数中的较小者),根据构件的长细比(或换算长细比)、钢材屈服强度和表7.2.1-1、表7.2.1-2的截面分类,按本标准附录D采用。
表7.2.1-1 轴心受压构件的截面分类(板厚t<40mm)注:1 a*类含义为Q235钢取b类,Q345、Q390、Q420和Q460钢取a类;b*类含义为Q235钢取c类,Q345、Q390、Q420和Q460钢取b类;2 无对称轴且剪心和形心不重合的截面,其截面分类可按有对称轴的类似截面确定,如不等边角钢采用等边角钢的类别;当无类似截面时,可取c类。
表7.2.1-2 轴心受压构件的截面分类(板厚t≥40mm)7.2.2 实腹式构件的长细比λ应根据其失稳模式,由下列公式确定:1 截面形心与剪心重合的构件:1) 当计算弯曲屈曲时,长细比按下列公式计算:式中:l0x、l0y——分别为构件对截面主轴x和y的计算长度,根据本标准第7.4节的规定采用(mm);i x、i y——分别为构件截面对主轴x和y的回转半径(mm)。
2) 当计算扭转屈曲时,长细比应按下式计算,双轴对称十字形截面板件宽厚比不超过15εk者,可不计算扭转屈曲。
式中:I0、I t、I w——分别为构件毛截面对剪心的极惯性矩(m m4)、自由扭转常数(m m4)和扇性惯性矩(m m6),对十字形截面可近似取I w=0;I w——扭转屈曲的计算长度,两端铰支且端截面可自由翘曲者,取几何长度l;两端嵌固且端部截面的翘曲完全受到约束者,取0.5l(mm)。
2 截面为单轴对称的构件:1) 计算绕非对称主轴的弯曲屈曲时,长细比应由式(7.2.2-1)、式(7.2.2-2)计算确定。
计算绕对称主轴的弯扭屈曲时,长细比应按下式计算确定:式中:y s——截面形心至剪心的距离(mm);i0——截面对剪心的极回转半径,单轴对称截面i20=y2s+i2x+i2y(mm);λz——扭转屈曲换算长细比,由式(7.2.2-3)确定。
第一节一、普通箍筋柱二、螺旋箍筋柱以承受轴向压力为主的构件称为受压构件。
凡荷载的合力通过截面形心的受压构件称之为轴心受压构件(compression members with axial load at zero eccentricity)。
若纵向荷载的合力作用线偏离构件形心的构件称之为偏心受压构件。
受压构件(柱)往往在结构中具有重要作用,一旦产生破坏,往往导致整个结构的损坏,甚至倒塌。
按箍筋作用的不同,钢筋混凝土轴心受压构件可分为两种基本类型:一种为配有纵向钢筋及普通箍筋的构件,称为普通箍筋柱(tied columns),如图;另一种为配有纵向钢筋及螺旋箍筋或焊环形箍筋的螺旋箍筋柱(spirally reinforced columns),如图。
一、普通箍筋柱(一)构造要点1、截面形式:正方形、矩形、工字形、圆形;2、截面尺寸:根据正压力、柱身弯距来确定,截面最小边长不宜小于250mm;3、纵筋:(1)纵向受力钢筋的直径不应小于12mm,其净距不应小于50mm,也不应大于350mm,根数不少于4根。
(2)构件的全部纵向钢筋配筋率不宜超过5%。
构件的最小配筋率不应小于0.5%,当混凝土强度等级为C50及以上时不应小于0.6%;同时,一侧钢筋的配筋率不应小于0.2%。
(3)纵向受力钢筋应伸入基础(foundations)和盖梁(caps),伸入长度不应规定的锚固长度。
4、箍筋:(1)箍筋应做成封闭式,以保证钢筋骨架的整体刚度。
(2)箍筋间距应不大于纵向受力钢筋直径的15倍且不大于构件横截面的较小尺寸(圆形截面采用0.8倍直径)且不大于400mm。
纵向受力钢筋搭接范围的箍筋间距,当绑扎搭接钢筋受拉时不大于主钢筋直径的5倍且不大100mm;当搭接钢筋受压时不大于主钢筋直径的10倍且不大于200mm。
纵向钢筋截面面积大于混凝土截面面积3%时,箍筋间距不应大于纵向钢筋直径的10倍且不大于200mm。
(3)箍筋直径不小于8mm且不小于纵向钢筋直径的1/4。