钢筋混凝土轴心受压构件计算
- 格式:ppt
- 大小:1.26 MB
- 文档页数:36
4钢筋混凝土受压构件承载力计算钢筋混凝土受压构件的承载力计算是建筑结构设计中非常重要的一个步骤。
本文将围绕钢筋混凝土受压构件的承载力计算进行详细介绍。
首先,我们需要了解一些与承载力计算相关的基本概念。
1.构件尺寸和几何性质:构件的尺寸和几何性质,如截面面积、高度、宽度等,是计算承载力的基础。
这些参数可以通过结构设计的过程或者实际测量获得。
2.受力分析:在进行承载力计算之前,我们需要对受力分析进行准确的估计。
受力分析包括水平力、垂直力、弯矩和剪力等。
3.材料性能:钢筋混凝土由钢筋和混凝土组成,每种材料都具有其特定的力学性能。
钢筋的弹性模量、屈服强度和抗压强度是承载力计算的关键参数。
混凝土的抗压强度也是一个重要的参数。
计算步骤如下:1.根据结构设计图,确定所需计算的受压构件的几何尺寸。
通常情况下,我们可以使用截面面积来计算构件的承载力。
2.判定构件的计算长度。
构件的计算长度取决于构件的支撑条件和构件的几何形状。
常见的计算长度包括等于构件高度的长度、2倍构件高度的长度和4倍构件高度的长度等。
$$R_c = \phi \cdot A_c \cdot f_{cd}$$其中,$R_c$为构件的抗压承载力(kN),$\phi$为构件的抗压承载力系数(通常为0.65),$A_c$为构件的截面面积(m²),$f_{cd}$为混凝土的抗压强度(MPa)。
4.计算钢筋的抗拉强度。
根据人民共和国行业标准GB1499.2-2024《钢筋机械连接的技术规定》,钢筋的抗拉强度可以通过以下公式计算:$$R_s = A_s \cdot f_{yd}$$其中,$R_s$为钢筋的抗拉承载力(kN),$A_s$为钢筋的截面面积(m²),$f_{yd}$为钢筋的屈服强度(MPa)。
5.比较构件的抗压强度和钢筋的抗拉强度。
如果构件的抗压强度大于钢筋的抗拉强度,则构件的承载力为钢筋的抗拉强度;如果构件的抗压强度小于钢筋的抗拉强度,则构件的承载力为构件的抗压强度。
3、钢筋混凝土受压构件的强度计算第三章钢筋混凝土受压构件的强度计算桥梁结构中的桥墩、桩、主拱圈、斜拉桥的索塔,以及单层厂房柱、拱、屋架上弦杆,多层和高层建筑中的框架柱、剪力墙、筒体,烟囱的筒壁等均属于受压构件。
受压构件按受力情况分为轴心受压构件和偏心受压构件两类。
第一节配有纵向钢筋和普通箍筋的轴心受压构件当构件受到位于截面形心的轴向压力时,为轴心受压构件。
钢筋混凝土轴心受压构件按箍筋的作用及配置方式可分为普通箍筋柱和螺旋箍筋柱两种,本节介绍配有纵向钢筋和普通箍筋的轴心受压构件。
3.1.1 一般构造要求1、混凝土标号轴心受压构件的正截面承载力,主要由混凝土提供,一般多采用C20~C30混凝土,或者采用更高标号的混凝土。
2、截面尺寸轴心受压构件截面尺寸不宜过小,因长细比越大,承载力越小,不能充分利用材料强度。
矩形截面的最小尺寸不宜小于250mm。
3、纵向钢筋纵向受力钢筋一般选R235、HRB335级钢筋,有特殊要求时,可用HRB400级钢筋。
钢筋的直径不应小于12mm,净距不应小于5Omm 且不应大于35Omm。
在构件截面上,纵向受力钢筋至少应有4根并且在截面每一角隅处必须布置一根。
柱内设置纵向钢筋的目的是:a、提高柱的承载力,以减小构件的截面尺寸;b、防止因偶然偏心产生的破坏;c、改善构件破坏时的延性;d、减小混凝土的徐变。
为此,《公桥规》规定:构件全部纵向钢筋的配筋百分率不应小于0.5%(当混凝土强度等级在C50及以上时,不应小于0.6%);同时,一侧钢筋的配筋百分率不应小于0.2%。
轴心受压构件在加载后荷载维持不变的条件下,由于混凝土徐变,随着荷载作用时间的增加,混凝土的压应力逐渐变小,钢筋的压力逐渐变大,初期变化比较快,经过一定时间后趋于稳定。
在荷载突然卸载时,构件回弹,由于混凝土徐变变形的大部分不可恢复,故当荷载为零时,会使柱中钢筋受压而混凝土受拉,若柱的配筋率过大,还可能将混凝土拉裂;若柱中纵筋和混凝土之间有很强的粘应力时,则可能同时产生纵向裂缝。
轴心受压构件长细比详细计算公式及扩展
长细比的计算公式如下:
λ=L/d
其中,λ为长细比,L为构件的长度,d为构件的截面尺寸(一般指最小截面尺寸,如矩形截面的宽度或圆形截面的直径)。
1.普通钢筋混凝土构件:λ≤60
2.预应力混凝土短期受拉构件:λ≤35
3.预应力混凝土长期受拉构件:λ≤25
以上是常见的构件长细比限制,对于特殊构件或特殊材料,限制值可能有所不同。
在进行具体的构件设计时,需要结合实际情况进行计算和判断。
扩展的长细比计算公式如下:
1.矩形截面长细比计算公式:
-构件为矩形截面,不考虑抗弯预应力,截面面积为A,截面惯性矩为I,截面高度为h,长细比为λ,宽度为b;
-λ=L/d=L/(b/√12)=√12*L/b
-公式中√12是矩形截面抗弯构件的长细比的系数。
2.圆形截面长细比计算公式:
-构件为圆形截面,直径为d,长细比为λ;
-λ=L/d
3.T形截面长细比计算公式:
-构件为T形截面,不考虑抗弯预应力,截面上翼缘的高度为h1,宽度为b1,截面下翼缘的高度为h2,宽度为b2;
-λ=L/d=L/((b1h1+b2h2)/2)
以上是一些常见截面形状的长细比计算公式。
在实际工程设计中,可能还会有其他特殊形状的截面,需要根据具体情况进行计算。
在进行长细比计算时,需要注意以下几点:
1.计算中要考虑截面惯性矩的效应,通常会取截面最不利的惯性矩进行计算。
2.考虑截面的有效高度,对于有孔洞或开口的截面,需要减去孔洞或开口的高度。
3.不同材料的长细比限制值可能有所不同,需要根据不同材料的特性进行计算和判断。
混凝土轴心抗压、轴心抗拉强度设计值 fc 、ft应按表 4.1.4 采用。
混凝土强度设计值(N/mm2)强度种类混凝土强度等级C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80fc7.2 9.6 11.9 14.3 16.7 19.1 21.1 23.1 25.3 27.5 29.7 31.8 33.8 35.9ft0.91 1.10 1.27 1.43 1.57 1.71 1.80 1.89 1.96 2.04 2.09 2.14 2.18 2.22注:1 计算现浇钢筋混凝土轴心受压及偏心受压构件时,如截面的边长或直径小于 300mm,则表中混凝土的强度设计值应乘以系数 0.8;当构件质量(如混凝土成型、截面和轴线尺寸等)确有保证时,可不受此限制;2 离心混凝土的强度设计值应按专门标准取用。
混凝土是一种脆性材料,在受拉时很小的变形就要开裂,它在断裂前没有残余变形。
图4-12 混凝土劈裂抗拉试验示意图1-上压板2-下压板3-垫层4-垫条混凝土的抗拉强度只有抗压强度的1/10~1/20,且随着混凝土强度等级的提高,比值降低。
混凝土在工作时一般不依靠其抗拉强度。
但抗拉强度对于抗开裂性有重要意义,在结构设计中抗拉强度是确定混凝土抗裂能力的重要指标。
有时也用它来间接衡量混凝土与钢筋的粘结强度等。
混凝土抗拉强度采用立方体劈裂抗拉试验来测定,称为劈裂抗拉强度fts。
该方法的原理是在试件的两个相对表面的中线上,作用着均匀分布的压力,这样就能够在外力作用的竖向平面内产生均布拉伸应力(图4-12),混凝土劈裂抗拉强度应按下式计算:式中fts——混凝土劈裂抗拉强度,MPa;P——破坏荷载,N;A——试件劈裂面面积,mm2。
混凝土轴心抗拉强度ft 可按劈裂抗拉强度fts换算得到,换算系数可由试验确定。
各强度等级的混凝土轴心抗压强度标准值fck 、轴心抗拉强度标准值ftk应按表4-17采用。