轴心受力构件计算表
- 格式:xlsx
- 大小:15.07 KB
- 文档页数:2
第4章 轴心受力构件4.1 概述轴心受力构件广泛地应用于钢结构承重构件中,如钢屋架、网架、网壳、塔架等杆系结构的杆件,平台结构的支柱等。
这类构件,在节点处往往做成铰接连接,节点的转动刚度在确定杆件计算长度时予以适当考虑,一般只承受节点荷载。
根据杆件承受的轴心力的性质可分为轴心受拉构件和轴心受压构件。
一些非承重构件,如支撑、缀条等,也常常由轴心受力构件组成。
轴心受力构件的截面形式有三种:第一种是热轧型钢截面,如图4-1(a )中的工字钢、H 型钢、槽钢、角钢、T 型钢、圆钢、圆管、方管等;第二种是冷弯薄壁型钢截面,如图4-1(b )中冷弯角钢、槽钢和冷弯方管等;第三种是用型钢和钢板或钢板和钢板连接而成的组合截面,如图4-1(c )所示的实腹式组合截面和图4-1(d ) 所示的格构式组合截面。
轴心受力构件的截面必须满足强度、刚度要求,且制作简单、便于连接、施工方便。
因此,一般要求截面宽大而壁厚较薄,能提供较大的刚度,尤其对于轴心受压构件,承载力一般由整体稳定控制,宽大的截面因稳定性能好从而用料经济,但此时应注意板件的局部屈曲问题,板件的局部屈曲势必影响构件的承载力。
4.2 轴心受力构件的强度轴心受力构件的强度计算是以构件的净截面达到屈服应力为限ynf A N ==σ根据概率极限状态设计法,N 取设计值(标准值乘以荷载分项系数),yf 也去设计值(除以抗力分项系数087.1=Rγ)即f,钢材设计强度见附表1.1,P313。
表达式为fA N n≤ (4.1)nA 为轴心受力构件的净截面面积。
在螺栓连接轴心受力构件中,需要特别注意。
4.3 轴心受力构件的刚度为满足正常使用要求,受拉构件(包括轴心受拉、拉弯构件)、受压构件(轴心受压构件、压弯构件)不宜过分细长,否则刚度过小,制作、运输、安装过程中易弯曲(P118列出四种不利影响)。
受拉和受压构件的刚度通过长细比λ控制][),max(max λλλλ≤=y x (4.4) 式中x x x i l /0=λ,yy y i l /0=λ;][λ为容许长细比,见表4.1,4.2。
第4章 轴心受力构件例题 4.1 某焊接组合工字形截面轴心受压构件的截面尺寸如图4-13所示,承受轴心压力设计值(包括构件自重)N =2000kN ,计算长度l 0y =6m ,l 0x =3m ,翼缘钢板为火焰切割边,钢材为Q345,截面无削弱。
要求验算该轴心受压构件的整体稳定性是否满足设计要求,并计算整体稳定承载力。
图4—13 焊接工字形截面解 (1)截面及构件几何特性计算A =250×12×2+250×8=8000mm 2I y =(250×2743-242×2503)/12=1.1345×108 mm 4 I x =(12×2503×2+250×83)/12=3.126×107 mm 41.1198000/101345.1/8=⨯==A I i y y mm5.628000/10126.3/7=⨯==A I i x x mmλy =l 0y /i y =6000/119.1=50.4 λx =l 0x /i x =3000/62.5=48.0 (2)整体稳定性验算查表4-5,截面关于x 轴和y 轴都属于b 类,λy >λx1.61235/3454.50235/==y y f λ查附表7得φ=0.80169.31180008016.01020003=⨯⨯=A N ϕN/mm 2≈f =310N/ mm 2 故可认为整体稳定性满足要求。
(3)整体稳定承载力计算φAf =0.8016×8000×310=1.988×106N=1988kN 该轴心受压构件的整体稳定承载力为1988kN 。
例题4.2 某焊接T 形截面轴心受压构件截面尺寸如图4—14所示。
承受轴心压力设计值(包括构件自重)N =2000kN ,计算长度l 0x =l 0y =3m ,翼缘钢板为火焰切割边,钢材为Q345,截面无削弱。
轴心受力构件设计轴心受拉构件时需进行强度和刚度的验算,设计轴心受压构件时需进行强度、整体稳定、局部稳定和刚度的验算。
一、轴心受力构件的强度和刚度1.轴心受力构件的强度计算轴心受力构件的强度是以截面的平均应力达到钢材的屈服点为承载力极限状态f A N n ≤=σ (1) 式中 N ——构件的轴心拉力或压力设计值;n A ——构件的净截面面积;f ——钢材的抗拉强度设计值。
采用高强度螺栓摩擦型连接的构件,验算最外列螺栓处危险截面的强度时,按下式计算:f A N n≤='σ (2) 'N =)5.01(1n n N - (3)式中 n ——连接一侧的高强度螺栓总数;1n ——计算截面(最外列螺栓处)上的高强度螺栓数;0.5——孔前传力系数。
采用高强度螺栓摩擦型连接的拉杆,除按式(2)验算净截面强度外,还应按下式验算毛截面强度f A N ≤=σ (4)2.轴心受力构件的刚度计算轴心受力构件的刚度是以限制其长细比保证][λλ≤ (5) 式中 λ——构件的最大长细比;[λ]——构件的容许长细比。
二、 轴心受压构件的整体稳定1.理想轴心受压构件的屈曲形式理想轴心受压构件可能以三种屈曲形式丧失稳定:①弯曲屈曲 双轴对称截面构件最常见的屈曲形式。
②扭转屈曲 长度较小的十字形截面构件可能发生的扭转屈曲。
③弯扭屈曲 单轴对称截面杆件绕对称轴屈曲时发生弯扭屈曲。
2.理想轴心受压构件的弯曲屈曲临界力若只考虑弯曲变形,临界力公式即为著名的欧拉临界力公式,表达式为N E =22l EI π=22λπEA (6) 3.初始缺陷对轴心受压构件承载力的影响实际工程中的构件不可避免地存在初弯曲、荷载初偏心和残余应力等初始缺陷,这些缺陷会降低轴心受压构件的稳定承载力。
1)残余应力的影响当轴心受压构件截面的平均应力p f >σ时,杆件截面内将出现部分塑性区和部分弹性区。
由于截面塑性区应力不可能再增加,能够产生抵抗力矩的只是截面的弹性区,此时的临界力和临界应力应为:N cr =22l EI e π=22lEI π·I I e (7) cr σ=22λπE ·I I e (8) 式中 I e ——弹性区的截面惯性矩(或有效惯性矩);I ——全截面的惯性矩。
钢结构设计轴心受力构件截面强度计算7.1.1 轴心受拉构件,当端部连接及中部拼接处组成截面的各板件都由连接件直接传力时,其截面强度计算应符合下列规定:1 除采用高强度螺栓摩擦型连接者外,其截面强度应采用下列公式计算:2 采用高强度螺栓摩擦型连接的构件,其毛截面强度计算应采用式(7.1.1-1),净截面断裂应按下式计算:3 当构件为沿全长都有排列较密螺栓的组合构件时,其截面强度应按下式计算:式中:N——所计算截面处的拉力设计值(N);f——钢材的抗拉强度设计值(N/mm2);A——构件的毛截面面积(mm2;A n——构件的净截面面积,当构件多个截面有孔时,取最不利的截面(mm2);f u——钢材的抗拉强度最小值(N/mm2);n——在节点或拼接处,构件一端连接的高强度螺栓数目;n1——所计算截面(最外列螺栓处)高强度螺栓数目。
7.1.2 轴心受压构件,当端部连接及中部拼接处组成截面的各板件都由连接件直接传力时,截面强度应按本标准式(7.1.1-1)计算。
但含有虚孔的构件尚需在孔心所在截面按本标准式(7.1.1-2)计算。
7.1.3 轴心受拉构件和轴心受压构件,当其组成板件在节点或拼接处并非全部直接传力时,应将危险截面的面积乘以有效截面系数η,不同构件截面形式和连接方式的η值应符合表7.1.3的规定。
表7.1.3 轴心受力构件节点或拼接处危险截面有效截面系数条文说明7.1.1 原规范在条文说明中给出了式(7.1.1-1)和式(7.1.1-2),并指出“如果今后采用屈强比更大的钢材,宜用这两个公式来计算,以确保安全”。
当前,屈强比高于0.8的Q460钢已开始采用,为此,用这两个公式取代了净截面屈服的计算公式。
对于Q235和Q345钢,用这两个公式可以节约钢材。
当沿构件长度有排列较密的螺栓孔时,应由净截面屈服控制,以免变形过大。
7.1.2 轴压构件孔洞有螺栓填充者,不必验算净截面强度。
7.1.3 有效截面系数是考虑了杆端非全部直接传力造成的剪切滞后和截面上正应力分布不均匀的影响。