16汽车系统动力学-转向系统动力学及控制解析
- 格式:ppt
- 大小:2.83 MB
- 文档页数:37
绪篇概论和基础理论本篇首先介绍:1.车辆动力学的发展历史;2.车辆动力学理论对实际车辆设计所作的贡献;3.车辆动力学的研究内容和范围及其未来的发展趋势;4.介绍车辆动力学模型建立的基础理论和方法。
第一章车辆动力学概述§1-1 历史回顾车辆动力学是近代发展起来的一门新兴学科。
有关车辆行驶振动分析的理论研究,最早可追溯到100年前。
事实上,直到20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester(兰切斯特)、美国的Olley(奥利尔)、法国的Broulhiet(勃劳希特)开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。
开始出现有关转向、稳定性、悬架方面的文章。
同时,人们对轮胎侧向动力学的重要性也开始有所认识。
1.首先要肯定Frederick (费雷德里克)W.Lanchester对这门学科的早期发展所做的贡献。
在他所处的时代,尽管缺乏成熟的理论,但作为当时最杰出的工程师,他对车辆设计的见解不但敏锐,而且深刻。
即使在今天,Lanchester的思想仍有一定的借鉴意义。
2.对本学科发展有卓越贡献的人物是Maurice (莫里斯)Olley,他率先系统地提出了操纵动力学分析理论。
3.Olley这样总结了20世纪30年代早期的车辆设计状况:“那时,已经零星出现了一些尝试性的方法,其目的在于提高车辆的行驶性能,但实际上却几乎没有什么作用。
坐在后座的乘客仍然象压载物一般,被施加在后轮后上方的位置。
人们对车辆转向不稳定的表现已习以为常,而装有前制动器的前桥摆振几乎成为了汽车驾驶中的必然现象。
工程师使所有的单个部件都制作得精致完好,但将它们组装成整车时,却很少能得到令人满意的性能。
”就在这个时期,人们对行驶平顺性和操纵稳定性之间的重要协调关系开始有所认识。
但对车辆性能的评价,仍主要凭经验而非数学计算。
1932年,Olley在美国凯迪拉克(Cadillac)公司建立了著名的“K2”试验台(一个具有前、后活动质量的车架),来研究前后悬架匹配及轴距对前后轮相位差的影响。
第五章汽车转向系统动力学,第五章汽车转向系统动力学问题的提出汽车转向系统动力学是研究驾驶员给系统以转向指令后汽车在曲线行驶中的运动学和动力学特性。
这一特性影响到汽车操纵的方便性和稳定性,所以也是汽车安全性的重要因素之一,因而成为汽车系统动力学中重要研究内容之一。
汽车操纵稳定性是与汽车的车速密不可分的,早期的低速汽车还谈不上稳定性的问题,最早出现稳定性的问题,是在具有较高车速的轿车上或赛车上,目前,随着车速的不断提高,轿车、大客车、载货汽车的设计都离不开汽车操纵稳定性的研究。
近年来,有许多学者研究这一问题,并取得很多成果。
操纵性不好的汽车的主要表现:1.“飘” -有时驾驶员并没有发出转向的指令,而汽车开始自己改编本方向,使人感到汽车漂浮2.“贼”-有时汽车像受惊的马,忽东忽西,汽车不听驾驶员的指令;3.“反应迟钝”-驾驶员虽然发出指令。
但是汽车还没有转向反映,转向过程反应较慢;4.“晃”-驾驶员发出了稳定的转型指令,可使汽车左右摇摆,行驶方向难以稳定,当汽车受到路面不平,或者是侧向风扰动时,汽车就会出现左右摇摆;5.“丧失路感”-正常汽车转弯的程度,会通过转向盘在驾驶员的手上产生相应的感觉,有些汽车操纵性不好的汽车,特别是在汽车车速较高时,或转向急剧时会丧失这种感觉,这会增加驾驶员操纵困难,或影响驾驶员的正确判断6.“失去控制”-某些汽车的车速超过一个临界值以后,驾驶员已经不能控制器行驶的方向。
汽车的操纵稳定性:在驾驶者不感到过分紧张、疲劳的条件下,汽车能遵循驾驶者通过转向系及转向车轮给定的方向行驶,且当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。
汽车的操纵性:汽车能及时而准确的反映驾驶员主观操作的能力,也就是按照驾驶员的愿望维持或改变原来的行驶路线的能力。
汽车的稳定性:汽车在外力干扰下,仍能保持或很快恢复原来行驶状态和方向,而不致丧失控制、发生侧滑或翻车的能力。
101两者的关系:操纵性的丧失常导致侧滑、回转、甚至翻车;而稳定性的破坏也往往使汽车失去操纵性,处于危险状态。
汽车转向行驶的动力学方程引言:汽车转向是指通过转动方向盘,使车辆改变行进方向的过程。
在汽车转向过程中,涉及到许多力的作用,如转向力、转向阻力、惯性力等。
为了研究汽车转向行驶的动力学特性,需要建立相应的动力学方程。
本文将对汽车转向行驶的动力学方程进行详细介绍。
一、转向力的作用在汽车转向行驶过程中,转向力起着至关重要的作用。
转向力是指由转向机构传递到转向轮的力,它使得转向轮能够改变车辆行进方向。
转向力的大小与方向盘的转动角度成正比,可以用以下公式表示:转向力 = 方向盘转动角度× 转向力系数二、转向阻力的影响除了转向力外,转向阻力也会对汽车转向行驶产生影响。
转向阻力是由转向系统的摩擦力和阻尼力造成的,它会抵消部分转向力,影响车辆的转向灵活性。
转向阻力的大小取决于转向系统的设计和质量,一般情况下,转向阻力可以通过增加液压助力装置来减小。
三、惯性力的作用在汽车转向行驶过程中,惯性力也会对转向产生影响。
惯性力是指车辆由于转向而产生的向外甩出的力,它会阻碍车辆的转向。
惯性力的大小与车辆的质量和转弯半径有关,质量越大、转弯半径越小,惯性力越大。
为了克服惯性力的影响,需要施加更大的转向力。
四、动力学方程的建立为了描述汽车转向行驶的动力学特性,可以建立如下的动力学方程:转向力 - 转向阻力 = 惯性力根据这个动力学方程,可以进一步推导出具体的数学表达式,从而研究汽车转向行驶过程中各种力的变化规律。
五、影响转向行驶的因素除了转向力、转向阻力和惯性力外,还有一些其他因素也会对汽车转向行驶产生影响。
其中包括路面摩擦力、车辆的速度、车轮的转动角度等。
这些因素的变化都会对汽车的转向行驶产生影响,需要进行综合考虑。
六、转向系统的优化设计通过对汽车转向行驶的动力学方程进行研究,可以得出一些优化设计的原则。
例如,提高转向力的传递效率、减小转向阻力、降低惯性力的影响等。
这些原则可以指导转向系统的设计和改进,提高汽车的转向性能和操控稳定性。
汽车系统动力学的发展现状仲鲁泉2014020326摘要:汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有汽车在垂直和横向两个方面的动力学内容。
介绍车辆动力学建模的基础理论、轮胎力学及汽车空气动力学基础之外,重点介绍了受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动力学,以及行驶动力学和操纵动力学内容。
本文主要讲述的是通过对轮胎和悬架的系统动力学研究,来探究汽车系统动力学的发展现状。
关键词:轮胎;悬架;系统动力学;现状0 前言汽车系统动力学是讨论动态系统的数学模型和响应的学科。
它是把汽车看做一个动态系统,对其进行研究,讨论数学模型和响应。
是研究汽车的力与其汽车运动之间的相互关系,找出汽车的主要性能的内在联系,提出汽车设计参数选取的原则和依据。
车辆动力学是近代发展起来的一门新兴学科。
有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。
事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。
开始出现有关转向、稳定性、悬架方面的文章。
同时,人们对轮胎侧向动力学的重要性也开始有所认识。
在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。
在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。
在随后的20年中,车辆动力学的进展甚微。
进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。
这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。
随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。
人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。
电动助力转向系统动力学建模与分析电动助力转向系统动力学建模与分析福建工程学院机电及自动化工程系丁志刚钟勇[摘要]本文介绍了汽车的电动助力转向系统(EPS )的基本结构,建立了E PS 系统的动力学模型,并通过对动力学模型的分析得到E PS 系统的状态空间模型。
[关键字]电动助力转向;动力学模型;状态空间模型汽车转向系统是用来改变或保持汽车行驶方向的机构。
其性能直接关系到汽车的操纵稳定性和舒适性。
汽车转向系统的发展历经了无助力转向系统、液压助力转向系统(HPS )、电控液压助力转向系统(EHPS )、电动助力转向系统(EPS )、线控转向系统(SBW )。
电动助力转向相比于液压助力转向,改善了汽车的转向助力特性,减少了能量消耗,结构紧凑,质量降低,维护方便,对环境的影响减少。
近20几年来,随着电子技术的发展,传感器、电机及其控制理论的发展和完善,EPS 技术日趋完善,EPS 的助力型式也从低速范围助力型向全速范围助力型发展,并且其控制形式与功能也进一步加强。
新一代的EPS 则不仅在低速和停车时提供助力,而且还能在高速时提高汽车的操纵稳定性。
主要体现在模型创新与试验创新2个方面。
1EPS 系统的基本结构根据助力电机布置位置的不同,电动助力转向分为转向齿条助力式、转向齿轮助力式、转向轴助力式,如图1所示。
(a)齿条助力式(b)齿轮助力式(c)转向柱助力式图1EPS 的3种形式电动助力转向系统主要包括转向盘、转向轴、助力电机、减速机构、传感器、ECU 、转向器等部件(图2)。
ECU 根据车速传感器和扭矩传感器输出的信号计算所需的转向助力,并通过功率放大模块控制直流电动机的转动,电动机的输出经过减速机构减速增扭后,驱动齿轮齿条机构,产生相应的转向助力。
1方向盘;2输入轴;3传感器;4扭杆;5蜗轮蜗杆;6输出轴;7转矩信号;8车速信号;9电机;10电流控制;11动力开关;12离合器;12小齿轮;14拉杆;15齿条;16车化图2EP S 的基本结构电动助力转向系统很容易实现在不同的车速下实时地为汽车转向提供不同的助力效果,减轻了汽车在低速时方向盘的操纵力,提高了操纵的灵便性和高速行驶的稳定性[1]。
车辆转向系统动力学研究车辆转向系统是汽车中一个非常重要的组成部分。
它通过操纵方向盘,使车辆按照驾驶员的意愿改变行驶方向。
在日常生活中,我们经常可以看到车辆转向的动作,但很少有人关注到这背后涉及到的动力学问题。
本文旨在探讨车辆转向系统的动力学研究,深入了解其中的原理和相关理论。
1.转向系统的基本组成车辆转向系统由多个部件组成,其中最核心的是转向机构。
转向机构通过机械力的传递,将驾驶员的方向盘转变为车轮的转向角度。
在传统的机械转向系统中,通常采用齿轮、皮带等方式进行传递。
而在近年来,电动转向系统的出现,使得传动方式更加灵活和高效。
2.转向系统的动力学原理在车辆转向时,驾驶员施加在方向盘上的力矩通过转向机构传递到车轮上,从而使车辆改变行驶方向。
在转向过程中,需要克服许多外界因素的干扰,如道路摩擦力、悬挂系统的影响等。
因此,转向系统的动力学原理十分复杂。
3.转向系统的稳定性转向系统的稳定性是指车辆在转向过程中是否能够保持平衡,并且稳定地按照驾驶员的意愿行驶。
稳定性问题对于驾驶员的操控能力和行车安全至关重要。
研究表明,车辆稳定性受多个因素影响,包括车辆的质量分布、悬挂系统的刚度以及转向机构的设计等。
4.非线性特性与控制转向系统的非线性特性是指在不同工况下,转向系统的动力学特性表现出不同的行为。
这种非线性特性对汽车控制系统的设计和优化提出了巨大挑战。
为了提高车辆转向系统的控制性能,研究人员通常采用PID控制器、模糊控制等方法来补偿非线性特性,进而实现转向系统的稳定性和灵活性。
5.动力学仿真模型的建立为了更好地理解和研究转向系统的动力学行为,研究人员常常通过建立动力学仿真模型来模拟车辆转向过程。
这些模型可以基于多种理论和方法,如质点模型、刚体模型以及多体动力学模型等。
通过仿真模型的建立,可以研究转向系统在不同工况下的动态响应以及优化设计方案。
6.自动驾驶技术对转向系统的影响随着自动驾驶技术的快速发展,传统的转向系统正面临着巨大的改变和挑战。
车辆动力学及控制
车辆动力学及控制是一门涉及多学科的领域,其研究对象是汽车
行驶时所涉及到的物理过程以及行驶过程中的各种力学和动力学效应。
这些效应包括了车的加速、减速、转弯、悬挂、制动、稳定性控制等。
首先,车的加速是指车辆在行驶时增加速度的过程。
车辆的加速
受到发动机输出功率和扭矩的影响,同时也受到车的重量、空气阻力、摩擦阻力等因素的影响。
因此,汽车的设计需要确保具有足够的动力
输出以满足用户的需要,同时还必须考虑车辆的性能、燃油效率和低
排放等因素。
其次,制动是指车辆减速或停止的过程。
汽车的制动系统包括了
刹车盘、刹车片、制动碟和刹车液等组件,以及制动辅助系统如制动
助力器、制动泵等。
汽车的制动系统的设计必须确保制动距离短、制
动力平衡、防抱死等性能要求,同时还需要考虑制动系统对车辆稳定
性的影响。
此外,车的转弯是指汽车在曲线道路上运动时的行车状态。
因为
弯道速度往往比车的设计速度要慢,因此汽车必须考虑侧向加速度和
离心力等动态因素,以确保车辆在弯道中稳定而安全地行驶。
最后,在解决这些动力学和控制问题时,车辆的悬挂系统起着非
常重要的作用。
悬挂系统能够吸收路面的颠簸和减震,从而保证了汽
车的舒适性和稳定性。
悬挂系统的设计必须考虑到汽车的重量分布、
行驶路况和车速等因素,以满足车辆的稳定性和行驶舒适性要求。
综上所述,车辆动力学及控制的研究涉及到多学科的知识,包括了机械工程、电子工程、力学等学科。
在车辆设计和制造中,必须对这些知识有深入的了解,以确保汽车的安全性、稳定性和性能,满足用户和环境的要求。