汽车理论:汽车侧向动力学
- 格式:pdf
- 大小:1.02 MB
- 文档页数:45
一.名词解释1、汽车使用性能:汽车能够适用各种使用条件,以最高效率、最低消耗、安全可靠地完成运输工作的能力。
2、滚动阻力系数:车轮在等速平路行驶时滚动时所需之推力与车轮负荷之比。
3、滑移率:在车轮运动中滑动成分所占的比例。
4、制动器制动力:在轮胎周缘克服制动器摩擦力矩所需的力。
5、侧向力系数:6、稳态横摆角速度增益:稳态横摆角速度与前轮转角之比。
7、汽车的动力因数:是剩余牵引力(总牵引力减空气阻力)和汽车总重之比:8、附着椭圆:驱动力或制动力在不同侧偏角条件下的曲线包络线接近于椭圆,称为附着椭圆。
9、汽车前或后轮(总)侧偏角:包括1)考虑到垂直载荷与外倾角变动等因素的弹性侧偏角;2)侧倾转向角;3)变形转向角。
10、回正力矩:是使转向车轮恢复到直线行驶的主要恢复力矩之一,它是由接地面内分布的微元侧反向力产生的。
11侧偏力和轮胎的侧偏现象:侧偏力:汽车在行驶过程中,由于路面的侧向倾斜、侧向风或曲线行驶时的离心力等的作用,车轮中心沿轮胎坐标系Y轴方向有侧向力FY,相应地在地面上产生地面侧向反作用力FY,FY即侧偏力。
侧偏现象:当车轮有侧向弹性时,即使地面侧向反作用力FY没有达到附着极限,车轮行驶方向也将偏离车轮平面cc,这就是轮胎的侧偏现象。
12轮胎坐标系:为了讨论轮胎的力学特性,需要建立一个轮胎坐标系。
规定如下:垂直车轮旋转轴线的轮胎中分平面称为车轮平面。
坐标系的原点O 为车轮平面和地平面的交线与车轮旋转轴线在地平面上投影线的交点。
车轮平面与地平面的交线取为X 轴,规定向前为正。
Z 轴与地面垂直,规定指向上方为正。
Y 轴在地面上,规定面向车轮前进方向时,指向左方为正。
13.侧倾转向:在侧向力作用下车厢发生侧倾,由车厢侧倾所引起的前转向轮绕主销的转动,后轮绕垂直地面轴线的转动,即车轮转向角的变动,称为侧倾转向14.悬架的侧倾角刚度:指侧倾时(车轮保持在地面上),单位车厢转角下,悬架系统给车厢的总弹性恢复力偶矩。
Lateral DynamicsRecommended to read:• Gillespie, Chapter 6• Bosch, 5th ed: pp 350-361 (4th ed: 342-353)Z: verticalInteractionwith x directionOther coursesX: Longitudinal Y: lateralSubsystem characteristicsSteady state handlingTransient handling1. over & under steering2. stability2. lane change1. Lateral tire slip 1 bicycle model no stateslateral tire slip2. bicycle modelwith two states 1. Ackermanngeometry- side wind2. transient cornering 1 Low speed turning. 1 high speed turning. - driver models- closed-loop with drivers in the loop3. influences from load distribution.General questionsSketch your view of the open- and closed-loop system, i.e. without and with the driver. Use a control system block diagram or similarOpen-loop vs closed loop studies of lateral dynamics. Closed-loop studies involve the driver response to feedback in the system. See text in Gillespie, p195, Bosch 5th ed p 354 (4th ed p 346).This course will only treat open-loop vehicle dynamics. How can we upgrade to closed-loop? For example: driver models, simulators or experimentsQuestions on low speed turningDraw a top view of a 4 wheeled vehicle during a turning manoeuvre. How should the wheel steering angles be related to each other for perfect rolling at low speeds?Ackermann steering geometry Array Deviations from Ackerman geometry affect tire wear and steering system forcessignificantly but less influence on directional response.Consider a rigid truck with 1 steered front axle and 2 non-steered rear axles. How do we predict the turning centre?Assume: low speed, small steering angles, low traction.We still cannot assume that each wheel is moving as it is directed. A lateral slip iscreated at all axles. The turning centre is then not only dependent of geometry, but also forces. The difference in the 3 axle vehicle compared to the two axle vehicle is that we now have 3 unknown forces but only 2 relevant equilibrium equations. In other words, the system is not statically determinateApprox. for small angles:Equilibrium: Fyf+Fyr1=Fyr2 and Fyf*lf+Fyr2*lr=0 Compatibility: (αr1+αr2)*lf/lr+αr1=δf -αf Constitutive relations: F yf =C αf *αfF yr1=C αr1*αr1F yr2=C αr2*αr2C α = cornering stiffness [N/rad]Together,3 eqs and 3 unknowns (the three slip angles) can be obtained for the figure below. Note that we assume a lateral force vector at each axle by choosing a slip angle:C αf *αf - C αr1*αr1 + C αr2*αr2 = 0 (Sum of forces in Y direction) C αf *αf *lf - C αr2*αr2*lr= 0 (sum of moments about r1) (αr1+αr2)*lf/lr + αr1 = δf - αf (compatibility)Steady state cornering at high speedIn a steady state curve at high speed, centripetal forces are needed to keep the vehicle on the curved track. Where do we find them? How large must these be? How are they developed in practice?Same C α at all axlesTest, e.g. prescribe steering angle. Calculate slip angles:VfThe centripetal force = F c=m*R*Ω2= m*Vx2/R. It has to be balanced by the wheel/road lateral contact forces:Equilibrium: Fyf+Fyr = F c = m*Vx2/R and Fyf*b-Fyr*c=0(Why not Fyf*b-Fyr*c=I*dΩ/dt ??? )Constitutive equations: F yf=Cαf*αf and F yr=Cαr*αrCompatibility: tan(δ−αf)=(b*Ω+Vy)/Vx and tan(αr)=(c*Ω-Vy)/Vxeliminating Vy for small angles and using Vx=R*Ω: δ−αf+αr=L/RTogether, eliminate slip angles:Fyf=(lr/L)*m*Vx2/R and Fyr=(lf/L)*m*Vx2/Rδ−F yf/Cαf+F yr/Cαr=L/REliminate lateral forces:d = L/R +[(lr/L)/Caf - (lf/L)/Car] * m*Vx2/Rwhich also can be expressed as: δ = L/R + [Wf/Cαf - Wr/Cαr] *Vx2/(g*R)(Wf and Wr are vertical weight load at each axle, respectively.)Wf/Cαf - Wr/Cαr is called understeer gradient or coefficient, denoted K or K us and simplifies to: d = L/R + K *Vx2/(g*R)A more general definition of understeer gradient:Note that this relation between δ , R and Vx is only first order theory. (Why?) Study a 2 axle vehicle in a low speed turn. How do we find the steering angle needed to negotiate a turn at a given constant radius? How do the following quantities vary with steering angle and longitudinal speed:•yaw velocity or yaw rate, i.e. time derivative of heading angle•lateral accelerationFor a low speed turn:Needed steering angle: δ = L / R (not dependent of speed)Yaw rate: Ω = Vx / R = Vx * δ / L (prop. to speed and steering angle)Lateral acceleration: ay = Vx2 / R = Vx2 * δ / L (prop. to speed and steering angle) Since steering angle is the control input, it is natural to define “gains”, i.e. division by δ:Yaw rate gain = Ω/δ =Vx/LLateral acceleration gain: ay/δ = Vx2/LFor a high speed turn:δ = L/R + K *Vx2/(g*R)Yaw rate gain = Ω/δ =(Vx/R) / δ=Vx/(L + K *Vx2/g)Lateral acceleration gain: ay/δ = (Vx2/R) / δ= Vx2/(L + K *Vx2/g)These can be plotted vs Vx:What happens at Critical speed? Vehicle turns in an unstable way, even with steering angle=0.What happens at Characteristic speed? Nothing special, except that twice the steeringangle is needed, compared to low speed or neutral steering..How is the velocity of the centre of gravity directed for low and high speeds?See the differences and similarities between side slip angle for a vehicle and for a single wheel. Bosch calls side slip angle “floating angle”.Some (e.g., motor sport journalists) use the word under/oversteer for positive/negative vehicle side slip angle.Transient corneringNOTE: Transient cornering is not included in Gillespie. This part in the course is defined by the answer in this part of lecture notes. For more details than given on lectures, please see e.g. Wong.To find the equations for a vehicle in transient cornering, we have to start from 3 scalar equations of motion or dynamic equilibrium. Sketch these equations.vm*dV I*d NOTE: It will m*dv/dt (2D vector equation)We like to express them without introducing the heading angle, since we thenwould need an extra integration when solving (to keep track of heading angle). In conclusion, we would like to use “vehicle fixed coordinates”.But the torque equation is straight forward:m*dV y /dt=Fyr+Fxf*sin(δ)+Fyf*cos(δ)x /dt=Fxr+Fxf*cos(δ)-Fyf*sin(δ)Ω/dt= -Fyr*c+Fxf*sin(δ)*b+Fyf*cos(δ)*bv is a vector. Let F also be vectors.NOT be correct if we only consider each component of v (Vx and Vy)separately, like this:=ΣF equation )I*d Ω/dt = ΣMz (1D scalar would like to express all equations as scalarequations . We would alsoMotion of a body on a plane surface:If we consider a rigid body (like a car) travelling on the road, we can analyse the motion of a reference frame attached to the vehicle.The body fixed to the x,y axes start with an orientation θ relative to the Global (earth fixed)system. The body has velocities V x and V y in the x,y system. Relative to the x,y system the point P has velocities:Ω−=y Vx vxΩ+=x Vy vyat time t t δ+, the velocities for P are:)()(Ω+Ω−+=′δδy Vx Vx x v )()(Ω+Ω++=′δδx Vy Vy y vSince the velocities have rotated by the angle δθ, the transformation of the velocities for P at time t t δ+to the original orientation:Time t+YTime tδ t)cos()sin()sin()cos(δθδθδθδθy v x v y v y v x v x v t t ′+′=′′−′=′where subscript “t” refers to coordinate system at time tThe difference of velocities for P in the time interval will then bevyy v vy vx x v vx −′=−′=δδSubstituting the values above:[][]()[][]()Ω+−Ω+Ω+++Ω+Ω−+=Ω−−Ω+Ω++−Ω+Ω−+=x Vy x Vy Vy y Vx Vx vy y Vx x Vy Vy y Vx Vx vx )cos()()()sin()()()sin()()()cos()()(δθδδδθδδδδθδδδθδδδIf consider that t δis very small, then )cos(δθ=1 and )sin(δθ=δθ and divide by t δtVy t x t y t y t Vx t Vx t vy t x t x t Vy t Vy t y t Vx t vx δδδδδδθδδδδδθδδδδδδδθδδδθδδθδδδθδδδδδδ+Ω+Ω−ΩΩ−+Ω=Ω−Ω−−−Ω−=()()()(if we let t=0 and let the global and local coordinate systems align at t=0 we can write dtd t ()()=δδ. We can also defineΩ=tδδθand ignore the second order terms ()()δδ⋅:22Ω−Ω+Ω+=Ω−Ω−Ω−=y dtd x Vx dt dVy ay x dtd y Vy dt dVx axAnd at the center of x,y system x=0, y=0:Ω+=Ω−=Vx dtdVyay Vy dtdVxaxNow, it will be correct if:m*a x = m*(dVx/dt - Vy*Ω) = Fxr + Fxf*cos(δ) - Fyf*sin(δ) m*a y = m*(dVy/dt + Vx*Ω)=Fyr + Fxf*sin(δ) + Fyf*cos(δ) I*d Ω/dt = - Fyr*c + Fxf*sin(δ)*b + Fyf*cos(δ)*bTry to understand the difference between (ax,ay) and (dVx/dt,dVy/dt).[The quantities (ax,ay) are accelerations, while (dVx/dt,dVy/dt) are “changes in velocities”. The driver will have the instantaneous feel of mass forces according to (ax,ay) but he will get the visual input over time according to (dVx/dt,dVy/dt).][Example: If going in a curve with constant longitudinal speed with driver in vehicle centre of gravity: The driver feel only “ax=0 and ay=centrifugal force=radius*Ω*Ω“ in his contact with the seat. However, he sees no changes in the velocity with which outside objects move, i.e. “dVx/dt=0 and dVy/dt=ay-Vx*Ω=radius*Ω*Ω-radius*Ω*Ω=0“.]Constitutive equations: F yf=Cαf*αf and F yr=Cαr*αrCompatibility: tan(δ−αf)=(b*Ω+V y)/V x and tan(αr)=(c*Ω-V y)/V xEliminate lateral forces yields:m*(dV x/dt - V y*Ω) = F xr + F xf*cos(δ) - Cαf*αf*sin(δ)m*(dV y/dt + V x*Ω) = Cαr*αr + F xf x*sin(δ) + Cαf*αf*cos(δ)I*dΩ/dt = -Cαr*αr*c + Fxf*sin(δ)*b + Cαf*αf*cos(δ)*bEliminate slip angles yields (a 3 state non linear dynamic model):m*(dV x/dt - V y*Ω) = Fxr + Fxf*cos(δ) - Cαf*[δ−atan((b*Ω+V y)/V x)]*sin(δ)m*(dV y/dt + V x*Ω) = Cαr*atan((c*Ω-V y)/V x) + Fxf*sin(δ) + Cαf*[δ−atan((b*Ω+V y)/V x)]*cos(δ) I*dΩ/dt = -Cαr*atan((c*Ω-V y)/V x)*c + Fxf*sin(δ)*b + Cαf*[δ−atan((b*Ω+V y)/V x)]*cos(δ)*b For small angles and dV x/dt=0 (V x=constant) and small longitudinal forces at steered axle (here Fxf =0), we get the 2 state linear dynamic model:m*dV y/dt +[(Cαf+Cαr)/V x]*V y + [m*V x+(Cαf*b-Cαr*c)/V x]*Ω=Cαf*δI*dΩ/dt +[(Cαf*b-Cαr*c)/V x]*V y + [(Cαf*b2+Cαr*c2)/V x]*Ω =Cαf*b*δThis can be expressed as:What can we use this for?- transient response (analytic solutions)- eigenvalue analysis (stability conditions)If we are using numerical simulation, there is no reason to assume small angles. Response on ramp in steering angle:• True transients (step or ramp in steering angle, one sinusoidal, etc.) (analysed in time domain) • Oscillating stationary conditions (analysed i frequency domain, transfer functions etc., cf. methods in the vertical art of the course).Examples of variants? Trailer (problem #2), articulated, 6x2/2-truck, all-axle-steering, ...ExampleShow that critical speed for a vehicle is sqrt(-L*g/K), using the differentialequation system valid for transient response. Assume some numerical vehicle parameters. Which is the mode for instability (eigenvector, expressed in lateral speed and yaw speed)?How to find global coordinates? dX/dt=Vx*cos ψ - Vy*sin dY/dt=Vy*cos ψ + Vx*sin X (global,Y (global,earth fixed) earth fixed)heading angle, Vx VyΩSolution sketch (using Matlab notation):» [m I g L l Cf/1000 Cr/1000] = 1000 1000 9.8 3 1.5 100000 80000(These are the assume vehicle parameters in SI units)» K=m*g/2*(1/Cf-1/Cr) = -0.0122 (understeer coefficient)» A=[m 0;0 I] =1000 00 1000 (mass matrix)» Vx=sqrt(-L*g/K)= 48.9898 (critical speed according to formula)» B=-[(Cf+Cr)/Vx m*Vx+(Cf*l-Cr*l)/Vx ;(Cf*l-Cr*l)/Vx (Cf*l*l+Cr*l*l)/Vx];» C=inv(A)*B; [V,D]=eig(C)0.9973 0.9864-0.0739 0.1644D = (diagonal elements are eigenvalues)0.0000 00 -11.9413Note that the first eigenvalue is zero, which means border between stability and instability. This is the proof!The eigenvector is first column of V, i.e. Vy=0.9973 and Ωz=-0.0739 (amplitudes):ExampleVehicles that have lost their balance might sometimes be stabilized through one-sided brake interventions on individual wheels (ESP systems). Which wheels and how much does one have to brake in the following situation?Vx=30 m/s, cornering radius=100 m.Before time=0: Cf=Cr=100000 /radAt time=0, the vehicle loses its road grip on the front axle, which can be modelled as a sudden reduction of cornering stiffness to 50000 N/rad.Assume realistic (and rather simplifying!) vehicle parameters.Solution (very brief and principal):Assume turning to the right, i.e. right side is inner side. Use the differential equation system for transient vehicle response, but add a term for braking m*dV y /dt + [(C αf +C αr )/V x ]*V y + [m*V x +(C αf *b-C αr *c)/V x ]*Ω=C αf *δ I*d Ω/dt + [(C αf *b-C αr *c)/V x ]*V y + [(C αf *b 2+C αr *c 2)/V x ]*Ω =C αf *b*δ ++ Mzwhere Mz=Fr*B/2, Fr=brake forces at the two right wheels, B=track width For t<0: Solve the eqs with dV y /dt = d Ω/dt = Mz=0 and Cf=Cr=100000 and Ω=Vx/radius=30/100 rad/s. This gives values of δ and Vy.For t=0: Insert the resulting values for δ and Vy into the same equation system but with Cf=50000 and do not constrain Mz to zero. Instead calculate Mz, which gives a certain brake force on the two right wheels, Fr.Check whether Fr is possible or not (compare with available friction, µ*normal force). If possible, put most of Fr on the rear wheel since front axle probably has the largest risk to drift outwards in the curve.Longitudinal & lateral load distribution during corneringWhen accelerating, the rear axle will have more vertical load. Explore what happens with the cornering characteristics for each axle. Look at Gillespie, fig 6.3. ...C Part of: Gillespie, fig 6.3o r n e r i n g s t i f f n e s sVertical loadSo, the cornering stiffness will increase at the rear axle and decrease at front axle, due to the longitudinal vertical load distribution during acceleration. This means lesstendency for the rear to drift outwards in a curve (and increased tendency for front axle) when accelerating.The opposite reasoning applies for braking (negative acceleration.)So, longitudinal distribution of vertical loads influence handling properties.NOTE: A larger influence is often found from the combined longitudinal and lateral slip which occurs due to the traction force needed to accelerate.In a curve, the outer wheels will have more vertical load. Explore what happens with the lateral force on an axle, for a given slip angle, if vertical load is distributed differently toSo, lateral distribution of vertical loads influence handling properties.How to calculate the vertical load on inner and outer side wheels, respectively, when the vehicle goes in a curve?First consider the loads on the vehicle body and axle:Force in Springs)(x x Ks Fi ∆+=, )(x x Ks Fo ∆−= where x is the static displacement of the springand Dx is the change in spring length due to body rollSum moments about chassis CGM sx x Ks s x x Ks =∆−−∆+2)(2)(2φs x =∆M K sKs ==φφ2where K φ is the roll stiffness for the axleMoment applied from body to axle=K φ φIf we take the sum of the moments about point A:ΣM A =00222=++−φφK hr RV m t Fzi t FzoThis simplifies to:02)(2=+=−φφK hr RV m t Fzi Fzo022)(2=+=−tK t hr R V m Fzi Fzo φφwe can define the term ∆Fz as∆Fz= (Fzo-Fzi)/2where ∆Fz is where the change of vertical load for each tire on the axleHow can we account for the whole vehicle? If we assume that the chassis is rigid, we can assume that it rotates around the roll centers for each axle. This is shown in the figure below:Roll moment about x axis M φ = {mV 2/R h 1 cos(φ) + mg h 1 sin(φ)} cos(ε)for small angles• M φ = mV 2/R h 1 + mg h 1 φ– Let W=mg• M φ = W h 1 (V 2/Rg+ φ)• If we know M φ = M φf+ M φr• M φ = (K φf +K φr )φthen:(K φf +K φr )φ= W h 1 (V 2/Rg+ φ)(K φf +K φr - W h 1 ) φ= W h 1 V 2/Rg)(121Wh K K Rg VWh r f −+=φφφThis is the roll angle based on the forward speed and curve radius.From previous expression for one axle2∆Fz= 2mV 2/R hr/t + 2K φ φ/twhere hr is the roll axis height. For front axle, Substitute the value the following into the previous equation.For front axle: mV 2/R=Wf/gV 2/RThis results in the relationship: )(11212Wh K K Rg V Wh t K t h Rg V W F r f f f f Zf −+⋅+⋅=∆φφφSimilarly for rear axle:)(11212Wh K K Rg V Wh t K t h Rg V W F r f r r r Zr −+⋅+⋅=∆φφφThese equations allow the exact load on each tire to be calculated. Then the cornering stiffness can be calculated if a functional relationship is known between the cornering stiffness C α and Fz.How is vertical load distributed between front/rear, if we know distribution inner/outer?It depends on roll stiffness at front and rear. Using an extreme example, without any roll stiffness at rear, all lateral distribution is taken by the front axle. .In a more general case:Mxf=kf*φ Mxr=kr*φ , where kf and kr are roll stiffness and φ=roll angle.Eliminating roll angle tells us that Mxf=kf/(kf+kr)*Mx and Mxr=kr/(kf+kr)*Mx, i.e. the roll moment is distributed proportional to the roll stiffness between front and rear axle. We can express each Fz in m*g, ay, geometry and kf/kr. This is treated in Gillespie, page 211-213.How would the diagrams in Gillespie, fig 6.5-6.6 change if we include lateral load distribution in the theory?It results in a new function =func(Vx), (eq 6-48 combined with 6-33 and 6-34). It could be used to plot new diagrams like Gillespie, fig 6.5-6.6:Equations to plot these curves are found in Gillespie, pp 214-217. Gillespie uses the non linear constitutive equation: Fy=Cα*α where Cα=a*Fz-b*Fz2 .What more effects can change the steady state cornering characteristics for a vehicle at high speeds?See Gillespie, pp 209-226: E.g. Roll steer and tractive (or braking!) forces. Braking in a curve is a crucial situation. Here one analyses both road grip, but also combined dive and roll (so called warp motion).Try to think of some empirical ways to measure the curves in diagrams in Gillespie, fig 6.5-6.6.See Gillespie, pp 27-230:Constant radius• Constant speed• Constant steer angle (not mentioned in Gillespie)How to calculate the vertical load on front and rear axles, respectively, when the vehicle accelerates?In general: ΣFz=mg and ΣFz,rear=mg/2+(h/L)*m*ax, where L=wheel base and h=centre of gravity height. ax=longitudinal acceleration. Still valid for braking because ax is then negative.Component CharacteristicsPlot a curve for constant side slip angle, e.g. 4 degrees, in the plane of longitudinal force and lateral force. Do the same for a constant slip, e.g. 4%. Use Gillespie, fig 10.22 as input.See Gillespie Fig 10.23Summary•low speed turning: slip only if non-Ackermann geometry•steady state cornering at high speeds: always slip, due to centrifugal acceleration of the mass, m*v2/R•transient handling at constant speed: always slip, due to all inertia forces, both translational mass and rotational moment of inertia•transient handling with traction/braking: not really treated, except that the system of differential equations was derived (before linearization, when Fx anddVx/dt was still included)•load distribution, left/right, front/rea r: We treated influences by steady state cornering at high speeds. Especially effects from roll moment distribution.Recommended exercise on your own: Gillespie, example problem 1, p 231. (If you try todetermine “static margin”, you would have to study Gillespie, pp 208-209 by yourself.)。
一. 名词解释01.附着椭圆P140汽车运动时,在轮胎上常同时作用有侧向力与切向力。
一定侧偏角下,驱动力增加时,侧偏力逐渐有所减小,这是由于轮胎侧向弹性有所改变。
当驱动力相当大时,侧偏力显著下降,因为此时接近附着极限,切向力已耗去大部分附着力,而侧向能利用的附着力很少。
作用有制动力时,侧偏力也有相似的变化。
驱动力或制动力在不同侧偏角条件下的曲线包络线接近于椭圆,称为附着椭圆。
它确定了在一定附着条件下切向力与侧偏力合力的极限值.02.稳态横摆角速度增益. P147汽车等速行驶时,在前轮角阶跃输入下进入的稳态响应就是等速圆周行驶。
常用稳态横摆角速度与前轮转角之比) 来评价稳态响应. 该比值称为稳态横摆角速度增益或转向灵敏度。
它是描述汽车操纵稳定性的重要指标。
−04.侧偏力和轮胎的侧偏现象P136侧偏力:汽车在行驶过程中,由于路面的侧向倾斜、侧向风或曲线行驶时的离心力等的作用,车轮中心沿轮胎坐标系Y轴方向有侧向力FY,相应地在地面上产生地面侧向反作用力FY,FY即侧偏力。
侧偏现象:当车轮有侧向弹性时,即使地面侧向反作用力FY没有达到附着极限,车轮行驶方向也将偏离车轮平面cc,这就是轮胎的侧偏现象。
07.回正力矩Tz P140在轮胎发生侧偏时,会产生作用于轮胎绕OZ轴的力矩Tz.圆周行驶时,Tz是使转向车轮恢复到直线行驶的主要恢复力矩之一,称为回正力矩.11.轮胎坐标系P136为了讨论轮胎的力学特性,需要建立一个轮胎坐标系。
规定如下:垂直车轮旋转轴线的轮胎中分平面称为车轮平面。
坐标系的原点O 为车轮平面和地平面的交线与车轮旋转轴线在地平面上投影线的交点。
车轮平面与地平面的交线取为X 轴,规定向前为正。
Z 轴与地面垂直,规定指向上方为正。
Y 轴在地面上,规定面向车轮前进方向时,指向左方为正。
12.汽车前或后轮(总)侧偏角P161汽车前、后轮(总)侧偏角包括:1)考虑到垂直载荷与外倾角变动等因素的弹性侧偏角;2)侧倾转向角;3)变形转向角。
一、填空题1、汽车动力性主要由最高车速、加速时间和最大爬坡度三方面指标来评定。
2、汽车加速时间包括原地起步加速时间和超车加速时间。
3、汽车附着力决定于地面负着系数及地面作用于驱动轮的法向反力。
4、我国一般要求越野车的最大爬坡度不小于60%5、汽车行驶阻力主要包括滚动阻力、空气阻力、坡度阻力和加速阻力。
6、传动系损失主要包括机械损失和液力损失。
7、在同一道路条件与车速下,虽然发动机发出的功率相同,但档位越低,后备功率越大,发动机的负荷率就越小,_ 燃油消耗率越大。
8、在我国及欧洲,燃油经济性指标的单位是L/100KM,而在美国燃油经济性指标的单位是mile/USgal。
9、汽车带挂车后省油的原因主要有两个,一是增加了发动机的负荷率,—是增大了汽车列车的利用质量系____________10、制动性能的评价指标主要包括制动效能、制动效能恒定性和制动时方向的稳定性。
11、评定制动效能的指标是制动距离和制动减速度。
12、间隙失效可分为顶起失效、触头失效和托尾失效。
12、车身-车轮二自由度汽车模型,车身固有频率为 2.5Hz,驶在波长为6米的水泥路面上,能引起车身共振的车速为54km/h。
13、在相同路面与车速下,虽然发动机发出的功率相同,但档位越高,后备功率越小,发动机的负荷率就越高,燃_ 油消耗率越低。
14、某车其制动器制动力分配系数 3 =0.6,若总制动器制动力为20000N,则其前制动器制动力为1200N。
15、若前轴利用附着系数在后轴利用附着系数之上,则制动时总是前轮先抱死。
16、汽车稳态转向特性分为不足转向、中心转向和过多转向。
转向盘力随汽车运动状态而变化的规律称为转向盘角__________ 阶段输入。
17、对于前后、左右和垂直三个方向的振动,人体对前后左右方向的振动最为敏感。
18、在ESP系统中,当出现向左转向不足时,通常将左前轮进行制动;19、由于汽车与地面间隙不足而被地面托起、无法通过,称为间隙失效。
汽车理论笔记1汽车六⼤性能及指标动⼒性:汽车在良好路⾯上直线⾏驶时,由汽车受到的纵向外⼒决定的、所能达到的平均⾏驶速度经济性:在保证动⼒性的前提下,汽车以尽量少的燃油消耗量经济⾏驶的能⼒制动性:汽车⾏驶时能在短距离内停车且维持⾏驶⽅向稳定性和在下长坡时能维持⼀定车速的能⼒操纵稳定性:在驾驶者不感到过分紧张、疲劳的情况下,汽车能遵循驾驶者通过转向系统及转向车轮给定的⽅向⾏驶,且当遭遇外界⼲扰时,汽车能抵抗⼲扰⽽保持稳定⾏驶的能⼒平顺性:保持汽车在⾏驶过程中乘员所处的振动环境具有⼀定舒适程度和保持货物完好的性能通过性:汽车可以以⾜够⾼的平均车速,通过坏路、⽆路地带、障碍的能⼒动⼒性:最⾼速度、加速时间、爬坡度经济性:百公⾥燃油消耗或⼀定燃油消耗下的⾏驶⾥程制动性:制动效能、制动效能的恒定性、制动时的⽅向稳定性(跑偏、侧滑)操稳:转向盘⾓阶跃输⼊下的稳态响应---稳定性因数、静态储备系数、转向半径之⽐;转向盘⾓阶跃输⼊下的瞬态响应---固有频率、阻尼⽐、反应时间、⾸峰值时间平顺:车⾝加速度、相对动载、动挠度均⽅根值通过:⽀撑通过性(通过坏路或⽆路)---牵引系数、牵引效率、燃油利⽤指数⼏何通过性(通过障碍)---最⼩离地间隙、纵向通过⾓、接近⾓、离去⾓、最⼩转弯半径、转弯通道圆2驱动-制动对⽐2.1法向载荷驱动:ma Lh F F F ma L h F F F 2ZW 2ZS 21ZW 1ZS 1g g Z Z +-=--=加速度越⼤,轴荷向后转移(由于驱动考虑了空⽓升⼒和坡度,所以形式⽐制动的复杂)制动:制动强度越⼤,轴荷向前转移2.2附着利⽤(驱动强度、结构、分配)附着率:汽车直线⾏驶状况下,充分发挥动⼒作⽤要求的最低附着系数。
即对于⼀定驱动强度,不发⽣滑转所要求的的路⾯最低附着系数。
利⽤附着系数:对于⼀定制动强度z,不发⽣车轮抱死所要求的最⼩路⾯附着系数。
1类问题:已知路⾯和制动强度(等效坡度)下,判断是否有车轮抱死滑移(滑转)(直接FX/Fz求Cφ,与φ⽐较即可)2类问题:已知汽车性能即制动强度(等效坡度),设计路⾯即最低附着系数3类问题:已知路⾯即附着系数,得知汽车可发挥性能即最⼤制动强度(等效坡度)对两驱车,会研究1类问题;对四驱车,会研究2、3类问题;对制动,会研究2、3类问题;此时附着率和利⽤附着系数对⽐更好;由于汽车理论计算题的驱动更多研究2驱,因此⽐制动简单,也不需要研究附着最⼤利⽤效率(因为最⼤⼀定是1)当Cφ1=Cφ2=φ时,地⾯附着被充分利⽤,此时q=φ(驱动)当φ=φ0时,同时抱死且地⾯附着被充分利⽤,此时z=φ(制动)四驱:q/Cφ和1的⽐较可以判断不滑转状态下(或某轮临界滑转下)地⾯附着利⽤程度;Ei=z/φi=zmax/φ和1的⽐较可以判断不抱死状态下(或某轮临界抱死下)地⾯附着最⼤利⽤程度在不考虑有ASR、ABS等驾驶辅助系统情况下,对四驱,某⼀驱动轮滑转后,另⼀个驱动轮地⾯切向⼒不会继续增加,即不会滑转。
侧滑动力学
侧滑动力学是指在车辆运动中,车辆在行驶过程中发生侧向运动的力学现象和相关的研究。
侧滑通常发生在车辆转弯或执行其他横向运动时,这时车辆的轮胎与行驶方向不一致,产生了侧向力,导致车辆出现横向的侧滑运动。
以下是侧滑动力学中一些重要的概念和因素:
1.侧滑角(Side Slip Angle):侧滑角是指车辆行驶方向与车辆速度方向之间的夹角。
当车辆转弯时,由于轮胎的滑移,车轮的方向与车辆速度方向产生差异,形成侧滑角。
2.侧向力(Lateral Force):侧向力是车辆在侧向运动中产生的力。
它是由轮胎与地面之间的相互作用引起的,通常与侧滑角成正比。
3.横摆稳定性:横摆稳定性描述了车辆在横向运动中的稳定性。
一个稳定的车辆在转弯过程中更容易保持方向稳定,而不容易出现过度的侧滑。
4.侧滑角的控制:车辆动力学控制系统通常包括侧滑角的控制。
通过使用车辆稳定性系统、防抱死制动系统(ABS)和电子稳定控制系统(ESC)等技术,可以减少侧滑并提高车辆的稳定性。
5.轮胎特性:轮胎是影响侧滑动力学的重要因素。
轮胎的抓地力、橡胶硬度、胎纹设计等因素都会影响车辆在侧向运动中的性能。
侧滑动力学的研究对于改善车辆的操控性能、提高驾驶安全性以及优化车辆稳定性具有重要意义。
在汽车工程领域,工程师通过模拟和测试来了解车辆的侧滑动力学特性,并设计相应的控制系统以提高车辆的性能和安全性。
1.滚动阻力系数滚动阻力系数 车轮在一定条件下滚动时所需的推力与车轮负荷之比。
2.制动器制动力制动器制动力在轮胎周缘克服制动器摩擦力矩所需的切向力。
3.侧向力系数侧向力系数侧向力与垂直载荷之比。
侧向力与垂直载荷之比。
4.稳态横摆角速度增益稳态横摆角速度增益稳态横摆角速度与前轮转角之比。
稳态横摆角速度与前轮转角之比。
5. 汽车动力因数汽车动力因数 由汽车行驶方程式可导出由汽车行驶方程式可导出则被定义为汽车动力因数。
被定义为汽车动力因数。
6 附着椭圆附着椭圆驱动力或制动力在不同侧偏角条件下的曲线包络线接近于椭圆,一般称为附着椭圆。
7. 汽车前或后轮(总)侧偏角汽车前或后轮(总)侧偏角 汽车行驶过程中,因路面侧向倾斜、侧向风或曲线行驶时离心力等的作用,车轮行驶方向与车轮汽车行驶过程中,因路面侧向倾斜、侧向风或曲线行驶时离心力等的作用,车轮行驶方向与车轮平面的夹角。
平面的夹角。
8.回正力矩.回正力矩是圆周行驶时使转向车轮恢复到直线行驶位置的主要恢复力矩之一,称为回正力矩。
9.挂钩牵引力挂钩牵引力车辆的土壤推力F X 与土壤阻力与土壤阻力 F r 之差之差 10.纵向附着系数纵向附着系数11.制动距离.制动距离制动距离S 是指汽车以给定的初速,从踩到制动踏板至汽车停住所行驶的距离 12.12.侧偏力侧偏力侧偏力汽车行驶过程中,因路面侧向倾斜、侧向风或曲线行驶时离心力等的作用,车轮中心沿轴方向将作用有侧向力,在地面上产生相应的地面侧向反作用力,使得车轮发生侧偏现象,这个力称为侧偏力。
为侧偏力。
13.汽车平顺性及评价指标汽车平顺性及评价指标 汽车行驶平顺性,是指汽车在一般行驶速度范围内行驶时,能保证乘员不会因车身振动而引起不舒服和疲劳的感觉,以及保持所运货物完整无损的性能。
14. 驱动力与(车轮)制动力驱动力与(车轮)制动力dtdu g dtdu g i f dtdu Gm GF F GF F D fi wt d y d d +=++=++=-=)(Dz T 0a u YyF Y F Y F由路面产生作用于车轮圆周上切向反作用力。
侧向动力学3第八章侧向动力学——四轮车辆1研究内容z车厢侧倾z轮荷变化z车轮外倾变化及附加转向效应2车厢侧倾车厢侧倾轴线1.1)侧倾中心:z侧倾轴线通过前、后轴处横断面上的瞬时转动中心;z其位置由悬架导向机构决定,常用图解法确定。
)侧倾轴线车厢相对于地面转动时的瞬时轴线2)侧倾轴线:车厢相对于地面转动时的瞬时轴线;z侧倾轴线是前后侧倾中心的连线。
3确定侧倾中心1)单横臂独立悬架车厢的侧倾中心Om42)双横臂独立悬架的侧倾中心倾O lO r D GO m52定义:单位车厢侧倾转角下,悬架系统给车厢总的弹性恢2.悬架的侧倾角刚度复力偶矩:1)悬架的线刚度悬架的线刚度定义:车轮保持在地面上而车厢作垂直运动时,单位车厢位移下,悬架系统给车厢的总弹性恢复力:6(1)非独立悬架(2)独立悬架恢复力弹性元件导向杆系约束反力789考虑对操纵稳定性和平顺性的影响。
2)侧倾后悬挂质量重力引起的侧倾力矩M Φr Ⅱ12r s s Φr ΠΦh G e G M ≈=3)独立悬架中非悬挂质量的离心力引起的侧倾力矩MΦrⅢ以轮胎接地点为矩:车身与悬架导向机构间的作用力133)独立悬架中非悬挂质量的离心力引起的侧倾力矩MΦrⅢ连接点作用力对车身的力矩14¾悬架总侧倾刚度等于前、后悬架及横向稳定杆的侧倾角刚度之和。
15侧滑极限z条件:侧向力超过侧向附着力z侧翻极限应该在侧滑极限之后,因为侧滑比侧翻容易控制。
16侧翻极限z条件:重力G与离心力mv2/ρ的合力作用线超过外侧车轮着地点以下是有无弹簧的车辆侧翻极限比较:z侧翻极限应该在侧滑极限之后,因为侧滑比侧翻容易控制。
17侧倾时左右轮荷变化1.侧倾时左右轮荷变化¾工字形车架代表车厢,悬挂。
质量为Ms18侧倾时左右轮荷变化1.侧倾时左右轮荷变化工字形车架分别通过前后¾工字形车架分别通过前、后悬架的侧倾中心m01和m02与前后轴相铰接。
19侧倾时左右轮荷变化11.侧倾时左右轮荷变化¾工字形车架通过前后悬架的弹性元件分别与前、后轴相连接。
汽车理论大作业20100410420车辆四班杨江林1.内容本文在MATLAB/Simulink中搭建ABS模型,将ABS对整车的性能影响进行仿真,并对仿真结果进行分析来证明方法的可行性。
2.原理由轮胎纵向力特性可知,车轮的滑移率b s 决定了制动力和侧向力的大小。
公式1给出了车轮滑移率b s 的定义。
式中,为车速,对应线速度,V V 为汽车线速度,r R 为车轮半径,为车轮线速度。
如图1所示为车辆在制动行使时,地面作用于车轮的制动力sb F 和侧向力y F 随车轮制动滑移率b s 的变化关系。
可以看出,侧向力随滑移率b s 的增加而下降,当滑移率从1降为0时,制动力开始随滑移率的增加而迅速增加;当滑移率增至某值opt s 时,制动力则随滑移率的增加而迅速减少。
公式1说明了车速与轮速的关系:当滑移率为1时,车速与轮速相等;当滑移率为0时,车轮已经处于抱死状态。
车轮抱死滑移时,不仅制动力减少,制动强度降低,而且车轮侧向附着力也大大减少。
因此,当前轮抱死滑移时,车辆丧失转向能力;而后轮抱死滑移则属于不稳定工况,易引起车辆急速甩尾的危险。
图1滑移率与附着系数的关系根据制动时附着系数与滑移率的关系曲线可知,当把车轮滑移率的值控制在最佳滑移率20%附近时,汽车将能够获得最好的制动效能同时还拥有较好的方向稳定性。
附着系数的数值主要取决于道路的材料、路面的状况、轮胎的结构、胎面花纹、材料以及车速等因素。
因此对于不同的路面来说,附着系数与滑移率的关系是不同的。
图2是不同路面的附着系数与滑移率的关系。
图2 不同路面的附着系数与滑移率的关系利用车轮滑移率的门限值及参考滑移率设计控制逻辑,使得车轮的滑移率保持在峰值附着系数附近,从而获得最大的地面制动力和最小的制动距离。
同时获得较大的侧向力,保证制动时的侧向稳定性。
ABS 工作原理图3. 模型由于汽车动力学模型建立是个复杂的过程,采用单轮模型建立汽车动力学模型。
简化的单轮模型如图3。
第七章侧向动力学2—非线性因素研究内容•轮胎转向特性•转向系统特性•驾驶员特性•非线性模型¾稳态分析¾瞬态分析"地面作用于车轮的侧向反作用力。
⑴侧偏力F Y轮胎转向特性轮胎侧偏特性u uFyYF Y车轮滚动yFαXYF Y侧偏力为正时,产生负侧偏角。
u-+侧偏现象:"当车轮有侧向弹性时,即使F Y 没有达到侧向附着极限,车轮行驶方向也将偏离车轮平面的方向。
α侧偏角α"轮胎接地印迹中心的位移方向与X 轴的夹角。
uαk F Y =k —侧偏刚度。
F Y 一定时希望侧偏角越小越好,所以|k | 越大越好。
⑵F Y -α曲线大尺寸轮胎小尺寸轮胎BH扁平率=(H/B)×100%5 3kαF Y =,即k 大。
垂直载荷过大时,轮胎与地面接触区的压力分布不均匀,使k 反而有所减小。
¾轮胎气压高,k大F Y1F X2FY2¾FX越大,FY越小FX1¾路面干湿状态¾路面有薄水层时,由于滑水现象,会出现完全丧失侧偏力的情况。
轮胎胎面、路面粗糙程度、水层厚度与滑水现象的关系①车轮静止时车轮运动时受到侧向力(侧向力较小)车轮运动时受到侧向力eF Ye—轮胎拖距。
e轮胎拖距变大F Ye轮胎拖距反而变小车轮运动时受到侧向力(侧向力很大)主销后倾附加产生的回正力矩:¾主销后倾角使主销延长线与地面的交点a向前偏移了一段距离l,转向后地面作用在车轮上的侧向力F对主销形成一个转矩。
Y¾ab是主销前指。
主销内倾附加产生的回正力矩:¾主销内倾角使得主销轴线与路面交点到车轮中心平面与地面交线的距离减小,从而减小转向时驾驶员加在方向盘上的力,使转向操纵轻便,同时也可减少从转向轮传到方向盘上的冲击力。
¾但主销内倾角也不宜过大,否则加速了轮胎的磨损。
z主销内倾与主销偏移距:调整主销(即转向轴线)与地面的交点到轮胎接地中心的距离,即调整主销偏距。