稳定的水溶性Fe3O4纳米粒子的制备及其表征
- 格式:docx
- 大小:23.54 KB
- 文档页数:14
稳定的水溶性Fe3O4纳米粒子的制备及其表征(作者:___________单位: ___________邮编: ___________)作者:吴利清,张熙之,方芳,王怡红,张宇,顾宁【摘要】目的:制备稳定的水溶性Fe3O4纳米粒子(PMAT Fe3O4)磁共振成像(MRI)造影剂,并对合成的粒子进行表征。
方法:利用高分子聚1十四碳烯马来酸酐(PMAT)修饰油溶性Fe3O4纳米粒子表面,使粒子表面富含亲水性羧基基团,使粒子能够稳定存在于水相中,并用透射电镜(TEM)、动态光散射(DLS)、振动样品磁强计(VSM)、傅立叶红外吸收光谱(FT IR)和MRI等方法进行表征。
结果:(1) TEM 分析显示,PMAT Fe3O4粒子直径约为10 nm,DLS测定其水动力学平均直径约为80 nm;(2) PMAT Fe3O4粒子能稳定分散于去离子水、PBS、Tris、MES等缓冲液中,不发生团聚;(3) VSM、MRI等分析手段显示,PMAT Fe3O4的饱和磁化强度Ms≈14.0 emu·g-1,弛豫率r2=367.79 mM-1s-1。
结论:PMAT Fe3O4具有良好的水溶性、磁学性能和较高的r2值,有望发展成为一种性能优异的MRI造影剂。
【关键词】 Fe3O4纳米粒子; 表面修饰; 聚合物; 弛豫率[Abstract] Objective: To synthesize stable andwater soluble PMAT Fe3O4 nanoparticles(NPs) as MRI contrast agent and characterize it. Methods: Poly maleic anhydride alt1tetradecene(PMAT) was utilized to modify the surface of oil soluble NPs, and the obtained PMAT Fe3O4 NPs were characterized by TEM, DLS, FT IR, VSM and MRI. Results: (1) TEM and DLS studies showed that the PMAT Fe3O4 NPs have a magnetic core size of about 10 nm and a hydrodynamic diameter of about 80 nm.(2) PMAT Fe3O4 could keep stable in water and familiar buffers, such as MES, PBS and Tris without aggregation.(3) VSM measurements showed that the saturation magnetization(Ms) was about 14.0 emu·g-1, the relaxivity value(r2) of PMAT Fe3O4 was 367.79 mM-1s-1. Conclusion: The obtained PMAT Fe3O4 NPs possess outstanding water solubility, good magnetic properties, and high r2 value, which are therefore expected to become an excellent MRI contrast agent.[Key words] Fe3O4 nanoparticles; surface modification; polymer; relaxivity磁性纳米粒子(NPs)在生物技术和生物制药等领域已显示出良好的应用前景[1]。
磁性Fe3O4纳米粒子的合成及表征郑举功;陈泉水;杨婷【期刊名称】《磁性材料及器件》【年(卷),期】2008(39)6【摘要】纳米Fe3O4是一种多功能磁性材料.用水解法制备Fe3O4纳米颗粒,产物特性的主要影响因素有熟化温度﹑Fe2+与Fe3+的摩尔比和滴定终点的pH值.用正交实验确定适宜的工艺条件,Fe2+与Fe3+的摩尔比为1:1.75,恒温熟化温度为80℃,滴定终点的pH值=11,在此条件下可合成粒径分布在0.1μm以下占95.53%磁性Fe3O4纳米粉体.采用X射线衍射仪(XRD) 、透射电镜(TEM)及振动样品磁强计(VSM)对优化实验产物的分析表明,所制备的纳米粒子属单相立方晶型,平均粒径为56nm,纯度高,具有超顺磁性.【总页数】4页(P36-39)【作者】郑举功;陈泉水;杨婷【作者单位】东华理工大学,材料科学与工程系,江西抚州,344000;东华理工大学,核资源与环境教育部重点实验室,江西南昌,330013;东华理工大学,材料科学与工程系,江西抚州,344000;东华理工大学,核资源与环境教育部重点实验室,江西南昌,330013;东华理工大学,材料科学与工程系,江西抚州,344000【正文语种】中文【中图分类】TB383;TM27【相关文献】1.KH-570改性后磁性Fe3O4纳米粒子的性能表征 [J], 谷峪;白娣斯;石小阁;邓晓臣2.超顺磁性Fe3O4纳米粒子化学合成及生物医学应用进展 [J], 宋新峰;孙汉文;吴静;刘晓迪;马真杰;庄婷婷3.表面氨基化磁性Fe3O4纳米粒子合成与表征 [J], 贺全国;吴伟;林琳4.超顺磁性Fe3O4纳米粒子的制备和表征 [J], 文德;刘妙丽;李强林5.P(AA-co-MPC)修饰超顺磁性Fe3O4纳米粒子的制备与表征 [J], 桑冀蒙;李学平;赵瑾;侯信;原续波因版权原因,仅展示原文概要,查看原文内容请购买。
中国组织工程研究与临床康复 第15卷 第34期 2011–08–20出版Journal of Clinical Rehabilitative Tissue Engineering Research August 20, 2011 Vol.15, No.34ISSN 1673-8225 CN 21-1539/R CODEN: ZLKHAH63851Chengdu VocationalCollege ofAgricultural Science and Technology, Chengdu 611130, Sichuan Province, China; 2College of Bioengineering, XiHua University, Chengdu 610039, Sichuan Province, ChinaLi Li ★, Studying for master’s degree, Chengdu Vocational College ofAgricultural Science and Technology, Chengdu 611130, Sichuan Province, Chinalily112400@Received: 2011-05-24 Accepted: 2011-07-081成都农业科技职业学院,四川省成都市 611130; 2西华大学生物工程学院,四川省成都市 610039李黎★,女,1982 年生,四川省成都市人,硕士研究生,主要从事食品生物技术研究。
lily112400@ 中图分类号:R318 文献标识码:B文章编号:1673-8225 (2011)34-06385-03收稿日期:2011-05-24修回日期:2011-07-08 (20110524008/M •W)Fe 3O 4磁性微粒的制备及表征★李 黎1,马 力2Preparation and characterization of Fe 3O 4 magnetic particlesLi Li 1, Ma Li 2AbstractBACKGROUND: As a kind of magnetic carrier, magnetic nanometer particles have been used in enzyme immobilization, immunoassay, target drug delivery and cell sorting and so on.OBJECTIVE: To prepare nanometer Fe 3O 4 crystal particles with good dispersion stability and relatively strong magnetic. METHODS: Fe 3O 4 magnetic particles was synthesized by the chemical co-precipitation, using FeCl 2, FeCl 3 and NaOH. RESULTS AND CONCLUSION: The synthetic conditions of Fe 3O 4 magnetic particles were determined through orthogonaldesign and the optimum experimental conditions as follows: nFe 2+/nFe 3+ was 2:1, pH was 11, curing temperature was 90 ℃ and the amount of PEG was 40 mL. Under this condition, the average diameter of Fe 3O 4 particles was 78 nm, the dispersion stability was the best and the relative size of magnetic was the strongest. It could be seen from scanning electron microscope that Fe 3O 4 crystal particles were nanometer.Li L, Ma L. Preparation and characterization of Fe 3O 4 magnetic particles. Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu. 2011;15(34): 6385-6387. [ ]摘要背景:磁性微粒作为一种磁性载体在固定化酶、免疫检测、靶向载药治疗及细胞分离等生物医学领域得到了广泛的应用。
Fe3O4纳米粒子的可控制备及其表面改性刘利娜;秦瑞飞;张永胜;孙瑞瑞;肖宏宇【摘要】四氧化三铁(Fe3O4)因在细胞分离、靶向药物、磁共振成像等生物医学领域具有广阔的应用前景而成为研究热点.本文采用溶剂热法合成了Fe3O4纳米粒子,并详细研究了反应温度、反应时间和反应前驱体组成对Fe3O4结构和形貌的影响.实验结果表明,反应时间对球形纳米颗粒的尺寸影响不大,反应时间为12 h时,球的直径达到了最大,继续延长反应时间,球的尺寸保持不变;200℃容易生成大尺寸的Fe3O4纳米粒子;反应物的组成对Fe3O4纳米粒子的形貌也有一定的影响,当用水合肼代替乙二胺时,得到的是立方体形状的Fe3O4.为了增加Fe3O4纳米粒子的化学稳定性、生物相容性和作为药物载体的可能性,我们用St?ber方法在Fe3O4纳米粒子的表面包覆了一层SiO2介孔分子筛,并探索了超声和机械搅拌对核壳结构形貌的影响,还研究了包覆前后样品的磁学性质.【期刊名称】《发光学报》【年(卷),期】2019(040)004【总页数】7页(P425-431)【关键词】溶剂热法;Fe3O4;SiO2;核壳结构【作者】刘利娜;秦瑞飞;张永胜;孙瑞瑞;肖宏宇【作者单位】洛阳理工学院数学与物理教学部,河南洛阳 471023;洛阳理工学院数学与物理教学部,河南洛阳 471023;洛阳理工学院数学与物理教学部,河南洛阳471023;洛阳理工学院数学与物理教学部,河南洛阳 471023;洛阳理工学院数学与物理教学部,河南洛阳 471023【正文语种】中文【中图分类】O482.311 引言四氧化三铁(Fe3O4)作为一种重要的铁氧体材料,具有较高的电阻率和较低的居里温度,在低温下会发生Verwey转变[1],即在该温度点附近,Fe3O4的许多物理性质,如电阻率、磁电阻、比热容及磁化强度等会突然发生转变,具有极高的应用价值,已广泛地应用于磁记录、磁流体、微波吸收、特种涂料、催化剂、磁性高分子微球和电子材料等各个领域[2-3]。
2019年3月西部皮革化工与材料1㊀Fe3O4磁性纳米材料的制备㊁粒径调控及表征王宝玲ꎬ胡忠苇ꎬ田晴晴ꎬ陈余盛基金项目:国家级大学生创新创业训练计划项目(201710452011)作者简介:王宝玲(1997.11-)ꎬ女ꎬ汉族ꎬ山东省潍坊人ꎬ本科学生ꎬ临沂大学化学化工学院应用化学专业ꎬ研究方向:磁性纳米材料ꎮ(临沂大学ꎬ山东临沂276000)摘㊀要:本文以三氯化铁为铁源㊁醋酸钠为沉淀剂㊁柠檬酸钠为稳定剂㊁乙二醇为反应溶剂ꎬ通过溶剂热法制备磁性四氧化三铁纳米材料ꎮ透射电子显微镜(TEM)㊁X射线衍射仪(XRD)用于表征纳米材料的尺寸㊁结构及形貌ꎮ通过改变反应中柠檬酸钠㊁醋酸钠的用量ꎬ制备得到一系列粒径可控的四氧化三铁纳米材料ꎮ关键词:四氧化三铁ꎻ磁性ꎻ溶剂热法ꎻ表征中图分类号:TQ139.2㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀文章编号:1671-1602(2019)06-0001-011㊀前言四氧化三铁(Fe3O4)纳米材料具有优良的磁学性能ꎬ在磁共振成像㊁磁热疗㊁靶向载药等领域具有广泛的应用前景ꎮ[1]磁共振成像(MRI)可以对内脏器官和软组织无损伤快速检测ꎬ是目前恶性肿瘤最为有效的临床诊断方法之一ꎮ[2]Fe3O4在MRI检测中表现出负增强效果而广泛地用作磁共振成像造影剂ꎮ[2]Fe3O4磁共振成像检测效果与纳米材料的尺寸㊁分散性等密切相关ꎮ合成具有良好分散性㊁尺寸可控的四氧化三铁纳米材料对其应用具有重要的研究意义ꎮ目前ꎬ人们开发了大量的合成方法包括共沉淀法㊁微乳液发㊁溶剂热法等制备Fe3O4磁性纳米材料ꎮ[3-5]李亚栋课题组最早报道了通过溶剂热法制备磁性纳米材料的方法ꎬ他们以FeCl3为铁源㊁乙二醇为溶剂㊁聚乙二醇㊁醋酸钠为稳定剂合成出磁性纳米材料ꎮ[4]本文以改进的溶剂热法制备磁性Fe3O4纳米材料ꎬTEM㊁XRD用于表征纳米材料的尺寸㊁结构及形貌ꎮ通过改变反应中柠檬酸钠㊁醋酸钠的用量ꎬ制备得到一系列粒径可控的四氧化三铁纳米材料ꎮ2㊀实验部分2.1㊀药品试剂六水三氯化铁(分析纯)㊁无水醋酸钠(分析纯)㊁柠檬酸钠(分析纯)㊁乙二醇(分析纯)㊁乙醇(分析纯)购于国药集团化学试剂有限公司ꎮ2.2㊀测试仪器透射电子显微镜(JEM2100ꎬJEOL)ꎬX射线衍射仪(BrukerD8XRD).2.3㊀实验步骤称取0.65g六水三氯化铁加入锥形瓶ꎬ加入20ml乙二醇ꎬ超声溶解ꎬ依次加入1.2g无水乙酸钠㊁0.1g柠檬酸钠ꎬ搅拌30分钟ꎮ将混合液转移到反应釜中ꎬ200ħ下反应10小时ꎮ反应结束后ꎬ产物纯化干燥备用ꎮ3㊀结果与讨论我们通过TEM对制备的Fe3O4进行表征ꎮ从TEM照片可以看出制备的Fe3O4为球形结构的ꎬ平均粒径为255nmꎮ制备得到Fe3O4的纳米材料XRD图ꎬ出现的衍射峰位与JCPDS中Fe3O4衍射峰位相一致ꎬ说明制备得到磁性纳米粒子是反尖晶石型的Fe3O4ꎮ[4]在实验中ꎬ其于条件不变改变柠檬酸钠的量制备Fe3O4ꎮ当柠檬酸钠的量为0.3g时ꎬ纳米材料平均尺寸为188nmꎬ当柠檬酸钠的量为0.5g时ꎬ纳米材料平均尺寸为145nmꎮ柠檬酸钠为零时ꎬFe3O4粒径为310nmꎮ柠檬酸钠对控制粒径尺寸起到重要的作用ꎬ增加柠檬酸钠可以有效降低Fe3O4的粒径尺寸ꎮ醋酸钠对制备Fe3O4起到决定的作用ꎮ在没有醋酸钠存在的条件下ꎬ无法形成Fe3O4纳米粒子ꎬ在加入醋酸钠的条件下可以形成磁性四氧化三铁纳米粒子ꎮ醋酸钠的加入量对粒径有一定影响ꎬ0.6g醋酸钠条件下制备的Fe3O4平均粒径320nmꎬ2.4g醋酸钠条件下制备的Fe3O4平均粒径290nm.4㊀结论本文以三氯化铁为铁源㊁醋酸钠为沉淀剂㊁柠檬酸钠为稳定剂㊁乙二醇为反应溶剂ꎬ通过溶剂热法制备磁性Fe3O4纳米材料ꎬ通过改变反应中柠檬酸钠㊁醋酸钠的用量ꎬ制备得到一系列粒径可控的Fe3O4纳米材料ꎮTEM㊁XRD用于表征纳米材料的结构及形貌ꎮ本文为磁性纳米材料的制备与应用提供良好的实验参考ꎮ参考文献:[1]㊀LuA.-H.SalabasE.L.SchüthF.MagneticNanoparticles:SynthesisꎬProtectionꎬFunctionalizationꎬandApplication[J].Angew.Chem.Int.Ed.2007ꎬ46ꎬ1222.[2]㊀QiaoR.YangC.GaoM.SuperparamagneticIronOxideNanop ̄articles:fromPreparationstoinVivoMRIApplications[J].J.Mater.Chem.2009ꎬ19ꎬ6274.[3]㊀JeongU.TengX.WangY.YangH.XiaY.Superparamag ̄neticColloids:ControlledSynthesisandNicheApplications[J].Adv.Mater.2007ꎬ19ꎬ33.[4]㊀DengH.LiX.PengQ.WangX.ChenJ.LiY.Monodisper ̄semagneticsingle-crystalferritemicrospheres[J].Angew.Chem.Int.Ed.2005ꎬ44ꎬ2782.。
Fe3O4纳米材料的制备与性能测定化学合成Fe3O4纳米材料的方法很多,如水解法、滴定法、共沉淀法等,其中化学共沉淀法因具有产率高、粉体均匀等特点,制备中应用较多。
但是,无论采取何种方法都要在气体保护下进行,制备过程繁杂。
制备后的纳米Fe3O4粉体粒子由于直径小、表面活大,Fe2+离子在空气中逐步氧化成Fe3+,使磁性能下降,尤其是作为能量吸收剂,直接影响使用效。
因此,Fe2+的氧化问题是需要解决的关键问题。
为获得性能良好的Fe3O4能量吸收剂,用化学还原-共沉淀法制备Fe3O4,实验中不使用保护性气体,材料置于空气前,在水溶液中用表面活性剂进行包覆,使外表面形成保护层,较好地解决了Fe2+的氧化问题。
实验制备的纳米Fe3O4材料粒径均匀,新制备的呈墨黑色,未经表面包覆的Fe3O4不稳定,干燥后在研磨过程中颜色开始发生变化,由黑色逐渐变成黑褐色,随时间的延长,颜色的变化越趋明显。
表面包覆的Fe3O4纳米粉干燥研磨后,在空气中长期放置仍然呈现刚制备时的墨黑色。
从Fe3O4的SEM 图我们可以看出Fe3O4呈规则的球形,圆度较好;纳米Fe3O4粉末材料的EDX图,除Fe3O4外,其他为包覆物的峰。
X衍射与SEM测定Fe3O4的晶粒尺寸分布在27~122 nm,平均粒径66 nm。
(1)用部分化学还原-共沉淀法,在无气体保护的室温下可制备平均粒径为66 nm的Fe3O4。
(2)表面包覆的Fe3O4纳米粉末材料比未包覆制备的Fe3O4的磁饱和强度高14%;在同等条件下内包覆比外包覆制备的Fe3O4纳米粉末材料具有更高的磁饱和强度。
(3)Fe3O4纳米涂层在微波X波段具有较强的宽频吸收,随着涂层厚度增加,吸收增强,频带增宽,面密度≤2·1 kg/m2。
(4)纳米晶粒的Fe3O4比微米晶粒的Fe3O4有更好的微波吸收特性。
我们是用N2作保护,但经过这段时间的实验并未得到我们所要的纳米材料,我觉得我们可以视着不用气体保护做一次,通过对比看看是否有所不同。
fe_3o_4纳米粒子的合成与表征Fe3O4纳米粒子是一种具有良好磁性性能的纳米材料,其制备方法和表征研究在纳米材料领域具有重要意义。
下面将从合成方法和表征方法两个方面来介绍Fe3O4纳米粒子的制备和表征。
一、合成方法1.化学共沉淀法化学共沉淀法是制备Fe3O4纳米粒子的常用方法之一。
该方法的原理是将Fe2+和Fe3+离子的混合溶液加入碱性溶液中,在控制好反应条件的情况下进行共沉淀。
该方法具有简便、快速、低成本等优点。
具体的制备过程可以分为以下几个步骤:(1)准备溶液:按照一定的比例将Fe2+和Fe3+溶解在去离子水中制备混合溶液;(2)沉淀:缓慢加入碱性溶液(如氨水)到混合溶液中,混合溶液中的Fe2+和Fe3+会与碱性溶液中的OH-结合,形成Fe(OH)2和Fe(OH)3沉淀;(3)还原:通过加热或添加还原剂(如NaBH4)等方法来将Fe(OH)2和Fe(OH)3还原成Fe3O4纳米粒子;(4)洗涤:用去离子水将沉淀洗涤干净,避免杂质的存在。
2.热分解法热分解法是制备Fe3O4纳米粒子的另一种方法,其原理是通过对一定实验条件下的化学反应进行控制,来控制物质的热分解过程,从而制备出具有一定形貌和分布的纳米颗粒。
该方法具有高得率、纳米颗粒形貌可控等优点。
具体的制备过程可以分为以下几个步骤:(1)准备前驱体:使用一定的有机溶剂将Fe3+离子的前驱体溶解;(2)加热反应:在高温条件下,通过控制反应时间和反应条件等参数,使前驱体分解为Fe3O4纳米粒子;(3)洗涤:用去离子水将制备的Fe3O4纳米粒子进行洗涤干净,避免杂质的存在。
二、表征方法1.X射线粉末衍射仪(XRD)X射线粉末衍射仪是一种常用的物质结构表征方法。
对于Fe3O4纳米粒子来说,XRD可以在非破坏性的情况下,通过测量其晶体间距和衍射峰的位置,来确定其晶体结构和晶格参数。
该方法具有精度高、准确性好等优点。
2.透射电子显微镜(TEM)透射电子显微镜是一种可以直接观察材料纳米结构的方法,对于Fe3O4纳米粒子来说,通过TEM可以观察到其粒径和形态等特征。
fe3o4纳米微粒的制备及特性
结构分析表明,Fe3O4纳米微粒的制备的过程一般有以下几个步骤:
1.重金属介质的制备:以合适的重金属(Fe3+)和六价金属(Fe2+)混合,经热处理后形成重金属介质。
2.制备Fe3O4纳米悬浮液:将重金属介质放入溶剂中,经过研磨、超
声处理和萃取等步骤获得Fe3O4纳米悬浮液。
3.热处理过程:将Fe3O4纳米悬浮液一起放入特殊设备或容器中,再
经过高温热处理处理,形成Fe3O4纳米微粒。
热处理后,Fe3O4纳米微粒具有较高的磁化率、尺寸均匀性、抗腐蚀
性和抗腐蚀性等特性。
它们对于化学反应有抑制作用,可用于抗菌和抗病
毒等抗生物活性应用。
此外,由于Fe3O4纳米微粒具有超磁性特性,可用
于磁性材料、高磁性储存介质和磁性传感器等方面的研究和应用。
理工大学现代科技学院毕业设计(论文)任务书Fe3O4纳米粒子的水热合成及结构表征摘要以二茂铁(0.20g)和过氧化氢为原料,以乙醇,丙酮为混合溶剂(共30mL),采用水热合成方法在200℃反应条件下于聚四氟乙烯衬底反应釜中合成Fe3O4纳米粒子。
实验过程中,研究了溶剂极性,加热时间,氧化剂的用量等实验条件对形成纳米粒子的影响。
关键词:磁性,纳米材料,水热合成Hydrothermal Synthesis and Characterization of Fe3O4NanoparticlesAbstractMagnetite nanoparticles have been prepared via hydrothermal synthesis process at200°C in the stainless autoclave using ferrocene and hydrogen peroxide as reactantand ethanol, acetone, distilled water as solvent. In the experiment, we study theinfluence of solvent polarity ,heating time, the amount of hydrogen peroxide on theformation of nanoparticles.Key words: magnetic, nanomaterials, hydrothermal synthesis目录摘要 (6)Abstract (6)第一章. 绪论 (9)1.1磁性纳米材料概述 (9)1.2磁性纳米材料磁性质及应用 (10)1.2.1磁性纳米材料磁性质 (10)1.2.2磁性纳米材料应用 (11)1.3四氧化三铁纳米粒子的制备方法 (14)1.3.1水热法 (15)1.3.2沉淀法 (16)1.3.3微乳液法 (17)1.3.4溶胶-凝胶法 (17)1.3.5热分解法 (18)参考文献 (18)第二章. 水热法制备四氧化三铁纳米粒子及结构表征 (21)2.1引言 (21)2.2实验部分 (21)2.2.1实验试剂 (22)2.2.2氧化铁纳米粒子的合成 (22)2.2.3表征仪器 (22)2.3结果与讨论 (23)2.3.1样品的结构表征和成分分析 (23)2.3.2样品的形貌表征 (24)2.3.3实验条件对纳米粒子的影响 (25)2.3.4纳米粒子的形成机理 (27)2.4小结 (28)总结与展望 (29)致 (30)附录 (31)第一章绪论近十几年来,纳米科技得到了迅猛发展,并且广泛渗透于各个学科领域,形成了一系列既相对独立又互相联系的分支学科。
Fe3O4磁性纳米材料的制备及水处理应用进展Fe3O4磁性纳米材料的制备及水处理应用进展摘要:近年来,水资源的紧缺和水污染问题已引起了全球范围内的关注。
磁性纳米材料由于其独特的特性,在水处理领域展示出了巨大的潜力。
本文主要综述了Fe3O4磁性纳米材料的制备方法及其在水处理中的应用进展。
首先介绍了Fe3O4磁性纳米材料的物理特性和应用优势,然后分别介绍了溶胶-凝胶法、共沉淀法、水热法、微乳法等常用的制备方法,并对它们的优缺点进行了比较。
接着重点介绍了Fe3O4磁性纳米材料在水中重金属离子去除、有机物吸附、废水处理等方面的应用情况。
最后对Fe3O4磁性纳米材料在水处理领域的发展趋势进行了展望。
关键词:Fe3O4;磁性纳米材料;制备方法;水处理;应用进展1. 引言水是生命之源,但由于人类活动和工业生产的加剧,水资源日益紧缺,水污染成为全球面临的严重问题之一。
因此,寻求高效、经济、环保的水处理技术具有重要意义。
磁性纳米材料因其特殊的物理和化学性质,在水处理领域得到了广泛的关注和应用。
其中,Fe3O4磁性纳米材料因其独特的磁性和化学活性,成为研究热点之一。
2. Fe3O4磁性纳米材料的制备方法2.1 溶胶-凝胶法溶胶-凝胶法是一种常用的制备Fe3O4磁性纳米材料的方法。
该方法通过溶胶的形成和凝胶的生成实现纳米颗粒的合成。
其制备步骤主要包括溶胶的制备、凝胶的生成和纳米颗粒的热处理等。
2.2 共沉淀法共沉淀法是一种简单、易操作的制备方法,常用于大规模合成Fe3O4磁性纳米材料。
该方法通过调节反应条件和配比比例,使Fe2+和Fe3+在溶液中共沉淀形成Fe3O4纳米颗粒。
2.3 水热法水热法是一种绿色合成方法,通过在高温和高压的水环境下进行反应,可制备出高纯度、均匀分散的Fe3O4磁性纳米材料。
该方法操作简便,适用于大规模合成。
2.4 微乳法微乳法是一种将水和溶剂包裹在表面活性剂的胶束中,形成类似乳液的体系,通过控制温度、时间和配比等条件,可制备出具有独特结构和优异性能的Fe3O4磁性纳米材料。
稳定的水溶性Fe3O4纳米粒子的制备及其表征(作者:_________ 单位:___________ 邮编:___________ )作者:吴利清,张熙之,方芳,王怡红,张宇,顾宁【摘要】目的:制备稳定的水溶性Fe3O4纳米粒子(PMAT Fe3O4)磁共振成像(MRI)造影剂,并对合成的粒子进行表征。
方法:利用高分子聚;1 '十四碳烯马来酸酐(PMAT修饰油溶性Fe3O4纳米粒子表面,使粒子表面富含亲水性羧基基团,使粒子能够稳定存在于水相中,并用透射电镜(TEM)、动态光散射(DLS)、振动样品磁强计(VSM)傅立叶红外吸收光谱(FT IR)和MRI等方法进行表征。
结果:(1) TEM 分析显示,PMAT Fe3O4粒子直径约为10 nm, DLS测定其水动力学平均直径约为80 nm;(2) PMAT Fe3O4粒子能稳定分散于去离子水、PBS Tris、MES等缓冲液中,不发生团聚;(3) VSM MRI等分析手段显示,PMAT Fe3O4的饱和磁化强度M A 14.0 emu • g-1,弛豫率r2=367.79 mM-1s-1。
结论:PMAT Fe3O4具有良好的水溶性、磁学性能和较高的r2值,有望发展成为一种性能优异的MRI造影剂。
【关键词】Fe3O4纳米粒子;表面修饰;聚合物;弛豫率[Abstract] Objective: To syn thesize stable and waterfl:[soluble PMAT Fe3O4nanoparticles(NPs) as MRIcontrastage nt and characterize it. Methods: Poly maleic an hydride alt :砥 1 g tetradecene(PMAT) was utilized to modify the surface ofoil soluble NPs, and the obtai ned PMAT 霧Fe3O4 NPs werecharacterized by TEM, DLS, FT IR, VSM and MRI. Results: (1)TEM and DLS studies showed that the PMAT Fe3O4 NPs have amagn etic core size of about 10 nm and a hydrod yn amicdiameter of about 80 nm.(2) PMAT %;Fe3O4 could keepstable in water and familiar buffers, such as MES, PBS and Triswithout aggregatio n.(3) VSM measureme nts showed that thesaturatio n mag netizatio n(Ms) was about 14.0 emu • g-1 , therelaxivity value(r2) of PMAT :援Fe3O4 was 367.79 mM-1s-1.Conclusion: The obtained PMAT Fe3O4 NPs possessoutstanding water :^solubility, good magnetic properties, andhigh r2 value, which are therefore expected to become anexcellent MRI con trast age nt.[Key words] Fe3O4 nano particles; surface modificati on; polymer; relaxivity磁性纳米粒子(NPs)在生物技术和生物制药等领域已显示出良好的应用前景[1]。
氧化铁纳米粒子由于具有独特的磁学性质和良好的生物相容性,研究其作为造影剂在磁共振成像(MRI)技术方面的应用, 已成为发展最为迅速和最为重要的课题之一。
其中,化学制备具有稳定水溶性和高弛豫率(r)的磁性氧化铁纳米粒子是一个重要的研究方向。
r 的大小是考察氧化铁纳米粒子是否具有良好造影能力的重要参数,它分为r1和r2两种,分别代表了单位浓度粒子缩短体系内质子弛豫时间T1和T2的效率[2-4]。
本实验利用高分子聚1十四碳烯马来酸酐(poly maleic an hydride alt 1 tetradece ne, PMAT),对油溶性的油酸包覆的Fe3O4纳米粒子(oleic Fe3O4进行表面修饰,使其能够稳定分散于水相中,获得水溶性Fe3O4纳米粒子(PMAT Fe3O4),研究表明,该种纳米粒子具有较高弛豫率r2值,能够作为良好的MRI造影剂。
1材料与方法1.1材料PMAT(Sigma Aldrich)、透析袋(50 KDa)、oleic | Fe3O4(参照文献[5]报道,本实验室制备)。
1.2主要试剂氯仿(上海市四赫化工有限公司),碳酸盐缓冲液(pH 10.8)、MES缓冲液(pH 6.0)、PBS缓冲液(pH 7.4)、Tris缓冲液(pH 8.0)(缓冲液均为本实验室配制),正己烷(上海市实德化学有限公司),去离子水。
1.3实验方法1.3.1 PMAT Fe3O4纳米粒子制备称取0.05 g oleic Fe3O4固体粉末和0.2 g PMAT,分别溶于10 ml氯仿中,超声5 min后,室温下于50 ml烧瓶中混合搅拌反应4h。
旋转蒸发除去溶剂氯仿,得到黑色固体。
在氮气保护下,将黑色固体加入30 ml碳酸盐缓冲液,50 C下在100 ml三颈瓶中剧烈搅拌反应3 h,得到稳定的黑色水溶性PMAT Fe3O4纳米粒子。
132提纯将以上PMAT Fe3O4纳米粒子用220 nm滤膜过滤后,置于磁场下磁分离,待分层明显后,取下部磁性物质重新分散于10 ml去离子水中,用去离子水透析24 h,透析过程中换去离子水3次,得到纯净的分散于水中的PMAT Fe3O4纳米粒子。
1.3.3表征运用多种分析手段对所制备的粒子进行表征,研究其作为造影剂的性能。
1.331 Fe浓度测定使用邻二氮菲分光光度法[6]对样品的Fe 浓度进行测定。
制备了3个浓度梯度的样品待测,其中Fe含量比为 2 :1 :0,测得Fe 浓度为1.7 mg • ml-1。
1.3.3.2 透射电镜(TEM分析将样品用去离子水稀释后,滴1滴于TEM专用铜网上,40 C下真空烘干8 h,待测。
仪器型号为JEM 200CX1.3.3.3 动态光散射(DLS)分析将样品用去离子水稀释至Fe浓度为0.5 mg • ml-1后,室温下测定其水动力学粒度分布。
仪器型号为Malvern Zeta • Size 3000HS。
1.3.3.4 傅立叶红外吸收光谱(F「IR)分析取1 ml制备的PMAT Fe3O4溶液,以6 mol • L-1盐酸调至等电点,析出的黑色固体用去离子水洗涤3次,40 C真空干燥,得到黑色固体粉末,待测。
仪器型号AVATAR 360FTIR133.5 振动样品磁强计(VSM)分析制样同FT IR。
仪器型号为Lakeshore 7400 。
1.3.3.6 MRI 准确配制Fe浓度为5、2.5、1.25、0.625、0.312 5、0.156 25 卩g • ml-1 PMAT Fe3O4溶液,各取1.4 ml 液体于1.5 ml离心管中,待测。
室温下,MRI实验磁场强度为7.0 T ,自旋回波序列,脉冲重复间隔时间TR为2 500 ms回波时间TE分别为11.0、22.0、33.0、44.0、55.0、66.0、77.0、88.0、99.0、110.0、121.0、132.0、143.0、154.0、165.0 和176.0 ms 仪器型号为Bruker Pharma Scan, 7.0 T,孔径为16 cm,最大梯度强度为300 mT- m-1。
2结果2.1粒度分析使用PMAT修饰后,PMAT Fe3O4可以稳定存在于水环境中,包括MES PBS Tris等缓冲液体系中。
在4 C条件下,粒子可以长时间保存不发生沉积。
TEM分析显示,PMAT Fe3O4分散性良好(图1), 这主要是由于粒子间的静电排斥作用和空间位阻作用的结果,但是小的聚集体仍然存在。
PMAT Fe3O4纳米粒子的直径约为10 nm,与油溶性oleic Fe3O4相比,粒度并无明显改变。
DLS分析显示,在水环境中,PMAT Fe3O4的水动力学平均直径约为80 nm(图2),明显高于TEM 测得的尺寸,这可能有两个原因:(1) DLS统计的是纳米粒子在水环境中的整体尺寸,包括表面有机物壳层和水化层对粒径大小的贡献,而修饰在粒子表面的有机物分子包裹层并不能在TEM图中显示出来;(2)有几个Fe3O4纳米粒子被PMAT包裹成一个整体,形成一个相对较大的PMAT Fe3O4粒子,影响了粒子的整体尺寸分布。
a. oleic Fe3O4; b. PMAT| Fe3O42.2 FT IR 分析通过对粒子红外图谱的分析,可以获得粒子的化学结构信息,见图3。
a和b曲线中,2 850 cm-1和2 930 cm-1的吸收峰表明粒子中存在大量的甲基与亚甲基基团,同时,由于大量有机聚合物PMAT 的存在,PMAT Fe3O4中Fe O伸缩振动吸收峰(593 cm-1)的强度[7]并不如oleic拟Fe3O4高;b曲线中,1 707 cm-1的吸收峰表明体系中大量羰基(C=O)的存在,这是由于大量酸酐水解产生羧基所导致,同时a曲线的羰基吸收峰很不明显。
PMAT Fe3O4纳米粒子表面羧基所带负电荷是其能够稳定分散于水环境中的原因之一。
a. oleic Fe3O4; b. PMATFe3O42.3磁性分析磁滞回线显示,oleic Fe3O4的饱和磁化强度Ms为57.0 emu- g-1 , PMAT Fe3O4的饱和磁化强度Ms值约为14.0 emu • g-1 , 见图4。
a. oleic ; Fe3O4; b. PMAT Fe3O4由图 4 可见,修饰后Ms 值下降了很多,这可能是由于受到粒子表面较厚的有机修饰物的影响,尽管如此,还是能够满足常用的生物应用要求,很多报道证明了这一点[8-9]。
修饰前oleic Fe3O4的矫顽力为0.183 Oe ,修饰后只有微小改变,为0.141 Oe,很接近于0,说明Fe3O4磁核具有良好的超顺磁性[10-11],适合作MRI造影剂。
超顺磁性是指磁性粒子尺寸小于某一临界尺寸时,表现出矫顽力为零,室温热即能够克服磁各向异性使磁矩能够任意翻转的状态。