数学建模简单13个例子
- 格式:ppt
- 大小:2.20 MB
- 文档页数:39
生活中的数学建模问题例子生活中的数学建模问题数学建模是将实际问题抽象为数学模型的过程,通过数学模型的建立和求解,可以对问题进行分析、预测和优化。
在生活中,我们会遇到许多需要用数学建模来解决的问题。
下面是一些常见的例子。
1. 交通拥堵问题问题描述在城市交通流量较大时,往往会出现交通拥堵的情况。
为了合理规划交通流量,我们需要建立一个能预测交通拥堵程度的数学模型。
建模过程•收集数据:首先,我们需要收集一段时间内的交通数据,包括车辆数量、行驶速度等信息。
•分析数据:根据收集到的数据,我们可以分析交通拥堵的原因和模式。
例如,可以通过分析车辆密度和速度的关系来确定交通流量的阈值。
•建立数学模型:基于分析结果,我们可以建立一个数学模型来描述交通拥堵程度。
例如,可以使用流体力学中的守恒方程,考虑车辆的流入、流出和流动等因素。
•模型求解:通过求解建立的数学模型,我们可以得到交通拥堵程度的预测结果。
•模型评估和优化:根据模型预测的结果,我们可以评估当前交通规划的效果,并提出优化建议。
2. 疫情传播问题问题描述在疫情爆发时,我们希望能够及早预测疫情的传播趋势和规模,以便采取相应的措施来控制疫情。
建模过程•收集数据:收集疫情传播的相关数据,包括感染人数、治愈人数、病毒传播速度等信息。
•分析数据:利用收集到的数据,我们可以分析疫情传播的特点和规律。
例如,可以通过分析感染人数的增长速度来预测疫情的传播趋势。
•建立数学模型:基于分析结果,我们可以建立一个数学模型来描述疫情传播的过程。
例如,可以使用传染病数学模型中的传染病传播动力学模型,考虑人群的感染、康复和死亡等因素。
•模型求解:通过求解建立的数学模型,我们可以得到疫情传播的预测结果。
•模型评估和优化:根据模型预测的结果,我们可以评估当前疫情防控的效果,并提出优化建议。
3. 资产投资问题问题描述在投资领域,我们希望能够通过建立数学模型来分析不同投资策略下的收益和风险,并进行优化选择。
数学建模13道题1.某投资者有40000美元用于投资,她所考虑的投资方式的收益为:储蓄利率7%,市政债券9%,股票的平均收益为14%,不同的投资方式的风险程度是不同的。
该投资者列出了她的投资组合目标为:1)年收益至少为5000美元; 2)股票投资至少为10000美元;3)股票投资额不能超过储蓄和市政债券投资额之和;4)储蓄额位于5000-15000美元之间; 5)总投资额不超过40000美元。
2.用长8米的角钢切割钢窗用料。
每副钢窗含长1.5米的料2根,1.45米的2根,1.3米的6根,0.35米的12根,若需钢窗100副,问至少需切割8米长的角钢多少根?3.某照相机厂生产12,A A 两种型号的相机,每台12,A A 型相机的利润分别为25元和40元,生产相机需要三道工序,生产两种不同型号的相机在不同的工序所需要的工作时间(单位:小时)如下表所示:工序相机类型机身制造零件装配检验包装1A 0.1 0.2 0.1 2A0.70.10.3此外三道工序每周可供使用的工作时间为机身制造有150小时,零件装配有250小时,检验包装有100小时,而市场需要12,A A 型相机每周至少为350台和200台,该工厂应如何安排生产,才能使得工厂获得最大利润?4.某饲料公司生产饲养雏鸡,蛋鸡和肉鸡的三种饲料,三种饲料都是由A,B,C 三种原料混合而成,具体要求,产品单价,日销售量表如下:原料A 原料B 原料C 日销量(t )售价(百元/t )雏鸡饲料不少于50% 不超过20%5 9 蛋鸡饲料不少于30%不超过30% 18 7 肉鸡饲料不少于50%10 8 原料价格(百元/t ) 505 4 5受资金和生产能力的限制,每天只能生产30t ,问如何安排生产计划才能获利最大?5.某公司用木头雕刻士兵模型出售。
公司的两大主要产品类型分别是“盟军”和“联军”士兵,每件利润分别为28美元和30美元。
制作一个“盟军”士兵需要使用2张木板,花费4小时的木工,再经过2小时的整修。
数学建模实例
数学建模是将实际问题转化为数学模型,通过对模型进行分析和求解来解决问题的一种方法。
以下是数学建模的一些实例:
1. 客流热力学模型:在城市轨道交通拥挤情况下,建立客流热力学模型,分析出客流分布的状况,有效提高轨道交通系统的运行性能。
2. 互联网广告投放模型:针对互联网广告投放的问题,建立数学模型,分析各种广告投放策略的影响,提出最佳的广告投放策略。
3. 股票价格预测模型:针对股票市场,建立数学模型,通过对历史数据的分析和预测,预测未来股票价格的走势,为投资决策提供科学依据。
4. 生态系统模型:建立生态系统稳定性数学模型,探究物种间相互作用的影响,预测生态系统发展趋势,为环境保护提供科学依据。
5. 智能交通路网模型:建立智能交通路网数学模型,分析路网拥堵状况,提出最优路径,实现交通系统的智能化管理。
6. 供应链管理模型:建立供应链管理数学模型,分析供应链各环节的影响,优化供应链各环节的质量和效率,提升企业综合效益。
7. 机器学习模型:应用机器学习算法,通过对大量历史数据的分析和学习,预测未来数据的走势,为商业决策提供科学依据。
初中数学建模的若干简要案例初中数学建模学习案例1 :----- 与自行车有关的问题(小组学习实践)课题:了解自行车中的数学问题,应用学过的数学知识,解决以下问题。
问题1 :用自己或同学的一辆自行车为观察对象,观察并解决下列问题:( 1 )我观察的这辆自行车是什么牌子的?( 2 )它的直径是_______cm ,轮子转动一周,在地面走过的距离是_______cm ,精确到1cm 。
( 3 )自行车中轴的大齿轮盘的齿数是_______齿,后轴的小齿轮(飞轮)的齿数是_______,中轴的大齿轮被踏动一周时,后轴的小齿轮在链条传动下,不计算惯性将转动_______周(保留2 位小数)。
问题2 :如果你有自行车,并骑车上学,你能借助于自行车,测量出从你的家到学校的路程吗?请你设计一个测量方案,并尽可能地通过实际操作测量出从你的家到学校的路程。
问题3 :如果你的(或你的朋友)自行车是可以变速的自行车(如山地车、多飞轮的自行车)、请你观察一下在这辆自行车上有几个(中轴上的)大轮盘,几个飞轮,它们都各有多少齿?记录这些数据。
如果你骑车时每一秒脚蹬一圈,请你根据上面测量的数据计算出这辆自行车运行时最大的速度和最小的速度各是每小时多少公里?:选做问题4 :你认为对问题 3 中的自行车的各个齿轮的齿数安排的合理吗?你能发现或提出什么样的问题?如果有可能请你做设计改进的话,你会做什么?求解工作的表格省略初中数学数学建模案例 2 :----- 线路设计问题(自学、探索、创新实践)课题:为所在小区设计一个最佳的邮政投递路线, 、一个合理的保安巡逻路线。
实施建议:1: 按居住地成立4-6 人的小组,对你们要研究的小区, 进行观察, 收集必要的数据和信息,( 如平面图, 楼的门洞的朝向, 道路情况, 小区的进出口位置等). 发挥各自的特长,分工合作完成测量方案的设计、实测、作图、计算、论证、比较、计算机文稿录入、结果介绍等。
中学数学建模经典例题中学数学建模经典例题包括:1.最大利润问题:某公司生产一种产品,每件成本为3元,售价为10元,年销售量为10万件。
为了扩大销售量,公司计划通过广告宣传来增加销售量。
经调查发现,广告费用与年销售量之间的关系可以近似地用函数y=−0.2x+10来表示,其中x为广告费用(单位:万元)。
问:广告费用为多少时,公司可获得最大年利润?2.最小费用问题:某公司需要将货物从甲地运往乙地,由于路途遥远,需要采用飞机、火车、汽车三种运输方式来完成。
运输方式的费用分别为x万元、y万元、z万元。
三种运输方式的单程运输能力分别为10万吨、15万吨、5万吨,而货物的总重量为35万吨。
为确保运输过程顺利进行,单程运输能力不能超过总重量。
请为该公司设计一个总费用最少的运输方案,并求出最少的总费用。
3.最小路径问题:某城市有若干个居民小区,每个小区有一定数量的居民。
为了方便居民出行,市政府计划修建地铁连接这些小区。
已知任意两个小区之间的距离可以近似地用欧几里得距离来表示,而修建地铁的费用与小区之间的距离成正比。
问:市政府应该如何规划地铁线路,使得总费用最低?4.人口预测问题:某城市的人口数量在过去几年里呈现出指数增长的趋势。
已知该城市的人口数量在过去的几年中每年以10%的速度增长,并且目前该城市的人口数量为50万。
我们要预测未来5年该城市的人口数量。
5.资源分配问题:某公司拥有一定的资源,需要将其分配给若干个项目以获得最大的收益。
每个项目的收益与分配到的资源数量成正比,而不同项目之间的收益增加率是不同的。
问:公司应该如何分配资源,使得总收益最大?这些例题涵盖了中学数学建模的多个方面,包括函数模型、最优化问题、线性规划等。
通过这些例题的解答,可以帮助学生提高数学建模的能力和解题技巧。
一 北京飞至底特律的航程计算北京0A (北纬40°,东经116°),底特律坐标11A (北纬43°,西经83°), 纬度以北为正,南为负;经度以东为正,西为负。
而且以下计算中,飞机航线途中站点经纬度用表一的数据。
表一站点 A 0 A 1 A 2 A 3 A 4 A 5 纬度B (°) 40 31 36 53 62 59 经度L (°)116 122 140 -165 -150 -140 站点 A 6 A 7 A 8 A 9 A 10 A 11 纬度B (°) 55 50 47 47 42 43 经度L (°)-135-130-125-122-87-83设椭球体上任意两点10,2,1,0),,(),,(111 =+++i L B A L B A i i i i i i ,⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-=-=+++++).sin(),cos (cos )(),sin (sin )(1311221121i i i i i i i i i i L L n tgB L tgB L a b n tgB L tgB L a b n 其中a =6388千米,b =6367千米,21032221,||n n arctgn n n n =+=ϕ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++=++=++=2022202022220222)(sin )sin(sin )(sin cos )(sin b L n a L abn z L b L n a ab y Lb L n a ab x ϕϕϕϕ曲面上两点的弧长公式用|)()()(|21222dL L z L y L x S L L ⋅'+'+'=⎰。
试求北京至底特律的航程,你能对上述公式进行简化处理吗?精度如何?二 抢渡长江选手的竞游路线图用⎪⎪⎩⎪⎪⎨⎧=+=θθsin )(cos u dt dy y v u dt dx,初始条件为:⎪⎪⎩⎪⎪⎨⎧====HT y L T x y x )()(0)0(0)0( 画出)(x y y =的图像 。
数学建模在实际生活中的应用
数学建模是将实际问题用数学语言进行描述,利用数学工具对其进行分析、求解和预测的过程。
它已经被广泛应用于各个领域,如环境科学、工程技术、金融经济、医学生物等。
在日常生活中,也有很多场景可以应用数学建模。
1.交通流量预测
在城市交通管理中,如何预测道路上的交通流量就成为了一个重要的问题。
通过对历史交通数据的分析和建模,可以得出未来某个时间段内的交通流量预测结果。
这样,交通管理部门就可以根据预测结果对交通流量进行合理的调度,从而避免交通拥堵和事故的发生。
2.气象预报
天气预报是数学建模的典型应用之一。
通过对历史天气数据的分析和建模,可以得出未来某个时间段内的天气预报结果。
这样,人们就可以提前做好防范措施,避免受到恶劣天气的影响。
3.金融风险评估
在金融领域中,风险评估是一个很重要的问题。
通过对历史数据的分析和建模,可以得出未来某个时间段内的风险评估结果。
这样,金融机构就可以根据风险评估结果来制定相应的风险管理策略,从而保障投资人的利益。
4.医学诊断
在医学领域中,数学建模也有着广泛的应用。
例如,通过对病人的历史数据进行分析和建模,可以得出病人未来的治疗方案和预后情
况。
这样,医生就可以根据治疗方案来制定相应的治疗方案,从而提高治疗效果。
总之,数学建模在实际生活中有着广泛的应用。
它可以帮助人们更好地了解和掌握事物的本质规律,从而更好地预测和应对各种问题。
数学建模经典问题
数学建模是一种将现实问题转化为数学问题,并通过数学方法求解的过程。
经典的数学建模问题有很多,以下列举几个典型的例子。
1. 集装箱装载问题:如何在给定的集装箱内,最大化货物的装
载量?这个问题可以转化为一个优化问题,通过线性规划等方法求解。
2. 旅行商问题:如何在给定的一组城市中,找到一条遍历所有
城市且总路程最短的路径?这个问题可以通过遗传算法等方法求解。
3. 贪心算法:贪心算法是一种基于贪心策略的算法,它通常用
于优化问题。
比如,假设有一组活动,每个活动都有一个开始时间和结束时间,如何在不发生冲突的情况下,安排尽可能多的活动?这个问题可以通过贪心算法求解。
4. 马踏棋盘问题:如何让一匹马在棋盘上走遍所有格子,且每
个格子只走一次?这个问题可以通过回溯算法求解。
5. 神经网络:神经网络是一种模仿人脑神经元结构和功能的计
算模型。
它可以用于分类、回归、聚类等问题。
这些经典的数学建模问题都有着广泛的应用价值,它们不仅给我们提供了解决实际问题的方法,也为我们深入理解数学方法的应用提供了宝贵的经验和启示。
- 1 -。
初中数学建模举例所谓数学建模,就是将某一领域或部门的某一实际问题,通过一定的假设,找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程。
笔者以一次函数的应用为例,探讨几种不同的数学建模过程。
一、直接给出模型例1.已知弹簧的长度y在一定的限度内是所挂物质重量x的一次函数。
现已测得所挂重物重量为4kg时,弹簧的长度是7.2cm;所挂重物重量为5kg时,弹簧的长度为7.5cm。
求所挂重物重量为6kg 时弹簧的长度。
既然题干中已经明确给出了y与x之间具备的是一次函数关系,那么实际上本题目中数学建模过程已经被省略掉了。
可以设数学模型为y=kx+b,将已知的两个条件分别代入这个模型关系式中,可得:7.2=4x+b,7.5=5x+b。
求解二元一次方程组,得出k=0.3,b=6。
从而得到模型y=0.3x+6,将x=6代入该模型中,得到y=7.8。
于是得到该问题的最终结果,即当所挂物体重量为6kg时,弹簧长度为7.8cm。
这种直接给出数学模型的方法,在初学一次函数理解其待定系数法时,不失为一种较为合适的数学题目设计。
但是从数学应用的角度来看,不利于锻炼学生从实际问题中抽象出数学问题的能力。
二、猜测建立模型例2.爸爸穿42码的鞋,长度为26cm;妈妈穿39码的鞋,长度为24.5cm。
小明穿41码的鞋子,长度为多少?可以设数学模型为y=kx+b,将已知的两个条件分别代入到这个模型关系式中,可得:26=42k+b,24.5=39k+b。
求解二元一次方程组,得解k=0.5,b=5。
得到模型y=0.5x+5,将x=41代入该模型中,得到y=25.5。
从而得到该问题的最终结果,即小明所穿的41码的鞋子,长度为25.5cm。
本例至此,似乎已经解决了问题。
但实际上,如果只知道两对已知的函数数值,还不能否定尺码和长度之间是否存在着其他函数关系,譬如二次函数关系。
因此,在该题目的题设中应该再给出一个条件,比如可以再给出“妹妹穿36码的鞋,长度为23cm”,以便获得一次函数模型后的验证。
数学建模13道题数学建模是数学中的一个分支,它是指将现实世界中的问题抽象成数学模型,并用数学方法来解决这些问题。
数学建模题一般包含数学模型的建立,问题的分析和求解等几个方面。
下面介绍13道数学建模题,希望读者可以从中得到启发。
题目一:如何预测股票价格?这是一个经典的数学建模题。
股票价格是由多种因素决定的,如市场供求关系、经济政策等。
数学建模者需要考虑这些因素,并根据历史数据建立合适的模型来预测未来的股票价格。
题目二:如何优化物流配送?对于物流配送问题,数学建模者需要考虑到多种因素,如配送距离、时间、运输工具等。
通过建立运输成本函数,制定合适的配送策略,可以实现物流配送的优化。
题目三:如何求解最优化问题?在最优化问题中,数学建模者需要考虑多种因素,如成本、效率、质量等。
通过建立目标函数、限制条件等方程,可以求得最优解。
题目四:如何优化网络布局?网络布局优化是一个复杂的问题。
数学建模者需要考虑到多种因素,如节点距离、带宽、延迟等。
通过建立合适的模型,可以制定出最优的网络布局方案。
题目五:如何预测自然灾害?自然灾害是不能预测的,但数学建模可以通过历史数据、气象预报等多种信息来建立模型,以预测未来可能发生的自然灾害,提前做好应对措施。
题目六:如何优化生产流程?生产流程优化需要考虑多种因素,如成本、效率、质量等。
数学建模者可以通过建立合适的模型,分析生产流程的瓶颈和优化空间,从而实现生产流程的优化。
题目七:如何优化城市规划?城市规划优化需要考虑多种因素,如人口密度、交通拥堵、环境保护等。
数学建模者可以通过建立合适的模型,预测城市未来的发展趋势,制定出最优的城市规划方案。
题目八:如何提高学生的学习成绩?学生的学习成绩受多种因素影响,如个人能力、学习环境、教学质量等。
数学建模者可以建立合适的模型,帮助学生发现自己的学习问题,并制定出最优的学习策略。
题目九:如何优化教学质量?教学质量优化需要考虑多种因素,如教师水平、教材质量等。
常用数学建模方法及实例数学建模是将实际问题转化为数学模型,通过数学方法进行求解和分析的过程。
常用的数学建模方法包括线性规划、整数规划、非线性规划、图论、动态规划等。
一、线性规划线性规划是一种用于求解线性约束下目标函数的最优值的方法。
它常用于资源分配、生产计划、供应链管理等领域。
例1:公司有两个工厂生产产品A和产品B,两种产品的生产过程需要使用原材料X和Y。
产品A和产品B的利润分别为10和8、工厂1每小时生产产品A需要1个单位的X和2个单位的Y,每小时生产产品B需要2个单位的X和1个单位的Y。
工厂2每小时生产产品A需要2个单位的X和1个单位的Y,每小时生产产品B需要1个单位的X和3个单位的Y。
公司给定了每种原材料的供应量,求使公司利润最大化的生产计划。
二、整数规划整数规划是线性规划的一种扩展,要求变量的取值为整数。
整数规划常用于离散决策问题。
例2:公司有5个项目需要投资,每个项目的投资金额和预期回报率如下表所示。
公司有100万元的投资资金,为了最大化总回报率,应该选择哪几个项目进行投资?项目投资金额(万元)预期回报率1207%2306%3409%4104%5508%三、非线性规划非线性规划是一种求解非线性目标函数下约束条件的最优值的方法。
它广泛应用于经济、金融和工程等领域。
例3:公司通过降低售价和增加广告费用来提高销售额。
已知当售价为p时,销量为q=5000-20p,广告费用为a时,销售额为s=p*q-2000a。
已知售价的范围为0≤p≤100,广告费用的范围为0≤a≤200,公司希望最大化销售额,求最优的售价和广告费用。
四、图论图论是一种用于研究图(由节点和边组成)之间关系和性质的数学方法,常用于网络分析、路径优化、社交网络等领域。
例4:求解最短路径问题。
已知一个有向图,图中每个节点表示一个城市,每条边表示两个城市之间的道路,边上的权重表示两个城市之间的距离。
求从起始城市到目标城市的最短路径。
五、动态规划动态规划是一种通过将问题划分为子问题进行求解的方法,常用于求解最优化问题。
数学建模典型例题(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、人体重变化某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。
每天的体育运动消耗热量大约是69焦/(千克•天)乘以他的体重(千克)。
假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。
试研究此人体重随时间变化的规律。
一、问题分析人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。
二、模型假设1、以脂肪形式贮存的热量100%有效2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存3、假设体重的变化是一个连续函数4、初始体重为W0三、模型建立假设在△t时间内:体重的变化量为W(t+△t)-W(t);身体一天内的热量的剩余为(*W(t))将其乘以△t即为一小段时间内剩下的热量;转换成微分方程为:d[W(t+△t)-W(t)]=(*W(t))dt;四、模型求解d(5429-69W)/(5429-69W)=-69dt/41686W(0)=W0解得:5429-69W=(5429-69W0)e(-69t/41686)即:W(t)=5429/69-(5429-69W)/5429e(-69t/41686)当t趋于无穷时,w=81;二、投资策略模型一、问题重述一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。
5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。
在策划下一个5年计划时,这家公司评估在年i的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)。
以千元计数a ij的由下面的表给出:请寻找什么时间买进和卖出汽车的最便宜的策略。
二、问题分析本问题是寻找成本最低的投资策略,可视为寻找最短路径问题。