简单数学建模实例
- 格式:ppt
- 大小:227.00 KB
- 文档页数:10
数学建模的实例与分析在现代社会中,数学建模作为一种重要的科学方法,被广泛应用于各个领域。
通过数学模型的构建和分析,我们能够深入了解问题的本质,预测未来的趋势,并为决策提供科学依据。
本文将为大家介绍两个关于数学建模的实例,并对其进行详细分析。
实例一:股票价格预测股票市场一直以来都备受人们的关注,因为其价格的波动会对投资者的财富造成重大影响。
为了帮助投资者更好地预测股票价格,数学建模成为了一种重要的工具。
在股票价格预测的建模过程中,一般使用时间序列分析方法。
首先,我们需要获取一段时间内的历史股票数据,包括每日的股票价格和交易量。
然后,通过统计学方法对这些数据进行分析,例如平均值、标准差等。
接下来,我们可以利用时间序列模型,如ARIMA模型,来对未来的股票价格进行预测。
除了时间序列分析,机器学习算法也可以应用于股票价格的预测。
例如,可以使用支持向量机(SVM)或人工神经网络(ANN)等算法,通过训练模型来捕捉股票价格的变化规律,并进行预测。
这些算法能够根据历史数据中的模式和趋势,预测未来股票价格的走势。
通过数学建模,我们能够更好地理解股票市场的运行规律,并及时预测股票价格的变化,为投资者提供决策参考。
实例二:交通拥堵模拟随着城市化的发展,交通拥堵成为了一个普遍存在的问题。
为了有效地缓解交通拥堵,数学建模可以帮助我们研究交通流的特性,并设计出更好的交通管理策略。
在交通拥堵模拟中,常常使用微观模型和宏观模型相结合的方法。
微观模型关注个体车辆的行为,例如车辆的加速度、减速度以及车头间距等。
而宏观模型则关注整体交通流的特性,例如道路容量、流量以及速度等。
通过对交通流的建模和仿真,我们可以模拟城市道路网络中交通流的变化,以及拥堵的产生和扩散过程。
借助于数学建模,我们可以预测在不同交通管理策略下,拥堵情况的变化以及交通状况的优化效果。
此外,数学建模还可以结合其他领域的知识,如人工智能和大数据分析,来进一步提高交通拥堵模拟的准确性和可靠性。
数学建模案例MATLAB实用程序百例实例1:三角函数曲线(1)functionhili01h0=figure('toolbar','none',...'poition',[198********],...'name','实例01');h1=a某e('parent',h0,...'viible','off');某=-pi:0.05:pi;y=in(某);plot(某,y);某label('自变量某');ylabel('函数值Y');title('SIN()函数曲线');gridon实例2:三角函数曲线(2)functionhili02h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例02');某=-pi:0.05:pi;y=in(某)+co(某);plot(某,y,'-某r','linewidth',1);gridon某label('自变量某');ylabel('函数值Y');title('三角函数');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]实例3:图形的叠加functionhili03h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例03');某=-pi:0.05:pi;y1=in(某);y2=co(某);plot(某,y1,...'-某r',...某,y2,...'--og');gridon某label('自变量某');ylabel('函数值Y');title('三角函数');实例4:双y轴图形的绘制functionhili04h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例04');某=0:900;a=1000;b=0.005;y1=2某某;y2=co(b某某);[ha某e,hline1,hline2]=plotyy(某,y1,某,y2,'emilogy','plot');a某e(ha某e(1))ylabel('emilogplot');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]a某e(ha某e(2))ylabel('linearplot');实例5:单个轴窗口显示多个图形functionhili05h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例05');t=0:pi/10:2某pi;[某,y]=mehgrid(t);ubplot(2,2,1)plot(in(t),co(t))a某iequalubplot(2,2,2)z=in(某)-co(y);plot(t,z)a某i([02某pi-22])ubplot(2,2,3)h=in(某)+co(y);plot(t,h)a某i([02某pi-22])ubplot(2,2,4)g=(in(某).^2)-(co(y).^2);plot(t,g)a某i([02某pi-11])实例6:图形标注functionhili06h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]'poition',[200150450400],...'name','实例06');t=0:pi/10:2某pi;h=plot(t,in(t));某label('t=0到2\\pi','fontize',16);ylabel('in(t)','fontize',16);title('\\it{从0to2\\pi的正弦曲线}','fontize',16)某=get(h,'某data');y=get(h,'ydata');imin=find(min(y)==y);ima某=find(ma某(y)==y);te某t(某(imin),y(imin),...['\\leftarrow最小值=',num2tr(y(imin))],...'fontize',16)te某t(某(ima某),y(ima某),...['\\leftarrow最大值=',num2tr(y(ima某))],...'fontize',16)实例7:条形图形functionhili07h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例07');tiao1=[56254822454541445745512];tiao2=[4748575854526548];t=0 :7;bar(t,tiao1)某label('某轴');ylabel('TIAO1值');/1.t某t[2022/5/141:14:29]h1=gca;h2=a某e('poition',get(h1,'poition'));plot(t,tiao2,'linewidth',3) et(h2,'ya某ilocation','right','color','none','某ticklabel',[])实例8:区域图形functionhili08h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例08');某=91:95;profit1=[8875849377];profit2=[5164545668];profit3=[425434252 4];profit4=[263818154];area(某,profit1,'facecolor',[0.50.90.6],...'edgecolor','b',. ..'linewidth',3)holdonarea(某,profit2,'facecolor',[0.90.850.7],...'edgecolor','y', ...'linewidth',3)holdonarea(某,profit3,'facecolor',[0.30.60.7],...'edgecolor','r',. ..'linewidth',3)holdonarea(某,profit4,'facecolor',[0.60.50.9],...'edgecolor','m',. ../1.t某t[2022/5/141:14:29]'linewidth',3)holdoffet(gca,'某tick',[91:95])et(gca,'layer','top')gte某t('\\leftarrow第一季度销量')gte 某t('\\leftarrow第二季度销量')gte某t('\\leftarrow第三季度销量')gte某t('\\leftarrow第四季度销量')某label('年','fontize',16);ylabel('销售量','fontize',16);实例9:饼图的绘制functionhili09h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例09');t=[542135;685435;452512;486845;685469];某=um(t);h=pie(某);te某tobj=findobj(h,'type','te某t');tr1=get(te某tobj,{'tring'});val1=get(te某tobj,{'e某tent'});olde某t=cat(1,val1{:});name={'商品一:';'商品二:';'商品三:'};tr2=trcat(name,tr1);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]et(te某tobj,{'tring'},tr2)val2=get(te某tobj,{'e某tent'});newe某t=cat(1,val2{:});offet=ign(olde某t(:,1)).某(newe某t(:,3)-olde某t(:,3))/2;po=get(te某tobj,{'poition'});te某tpo=cat(1,po{:});te某tpo(:,1)=te某tpo(:,1)+offet;et(te某tobj,{'poition'},num2cell(te某tpo,[3,2]))实例10:阶梯图functionhili10h0=figure('toolbar','none',...'poition',[200150450400],...'name','实例10');a=0.01;b=0.5;t=0:10;f=e某p(-a某t).某in(b某t);tair(t,f)holdonplot(t,f,':某')holdoffglabel='函数e^{-(\\alpha某t)}in\\beta某t的阶梯图';gte某t(glabel,'fontize',16)某label('t=0:10','fontize',16)a某i([010-1.21.2])file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]实例11:枝干图functionhili11h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例11');某=0:pi/20:2某pi;y1=in(某);y2=co(某);h1=tem(某,y1+y2);holdonh2=plot(某,y1,'^r',某,y2,'某g');holdoffh3=[h1(1);h2];legend(h3,'y1+y2','y1=in(某)','y2=co(某)')某label('自变量某');ylabel('函数值Y');title('正弦函数与余弦函数的线性组合');实例12:罗盘图functionhili12h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例12');winddirection=[54246584256122356212532434254];windpower=[255368127614108];file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例13:轮廓图functionhili13h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例13');[th,r]=mehgrid((0:10:360)某pi/180,0:0.05:1);[某,y]=pol2cart(th,r);z=某+i某y;f=(z.^4-1).^(0.25);contour(某,y,ab(f),20)a某iequal某label('实部','fontize',16);ylabel('虚部','fontize',16);h=polar([02某pi],[01]);delete(h)holdoncontour(某,y,ab(f),20)file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例14:交互式图形functionhili14h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例14');a某i([010010]);holdon某=[];y=[];n=0;dip('单击鼠标左键点取需要的点');dip('单击鼠标右键点取最后一个点');but=1;whilebut==1[某i,yi,but]=ginput(1);plot(某i,yi,'bo')n=n+1;dip('单击鼠标左键点取下一个点');某(n,1)=某i;y(n,1)=yi;endt=1:n;t=1:0.1:n;某=pline(t,某,t);y=pline(t,y,t);plot(某,y,'r-');holdoff实例14:交互式图形file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]functionhili14h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例14');a某i([010010]);holdon某=[];y=[];n=0;dip('单击鼠标左键点取需要的点');dip('单击鼠标右键点取最后一个点');but=1;whilebut==1[某i,yi,but]=ginput(1);plot(某i,yi,'bo')n=n+1;dip('单击鼠标左键点取下一个点');某(n,1)=某i;y(n,1)=yi;endt=1:n;t=1:0.1:n;某=pline(t,某,t);y=pline(t,y,t);plot(某,y,'r-');holdoff实例15:变换的傅立叶函数曲线functionhili15file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例15');a某iequalm=moviein(20,gcf);et(gca,'ne某tplot','replacechildren')h=uicontrol('tyle','lider','poition',...[1001050020],'min',1,'ma某',20)forj=1:20plot(fft(eye(j+16)))et(h,'value',j)m(:,j)=getframe(gcf);endc lf;a某e('poition',[0011]);movie(m,30)实例16:劳伦兹非线形方程的无序活动functionhili15h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例15');a某iequalm=moviein(20,gcf);et(gca,'ne某tplot','replacechildren')h=uicontrol('tyle','lider','poition',...[1001050020],'min',1,'ma某',20)forj=1:20plot(fft(eye(j+16)))file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]et(h,'value',j)m(:,j)=getframe(gcf);endclf;a某e('poition',[0011]);movie(m,30)实例17:填充图functionhili17h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例17');t=(1:2:15)某pi/8;某=in(t);y=co(t);fill(某,y,'r')a某iquareoffte某t(0,0,'STOP',...'color',[111],...'fontize',50,...'horizontalalignment','cent er')实例18:条形图和阶梯形图functionhili18h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例18');ubplot(2,2,1)某=-3:0.2:3;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]y=e某p(-某.某某);bar(某,y)title('2-DBarChart')ubplot(2,2,2)某=-3:0.2:3;y=e某p(-某.某某);bar3(某,y,'r')title('3-DBarChart')ubplot(2,2,3)某=-3:0.2:3;y=e某p(-某.某某);tair(某,y)title('StairChart')ubplot(2,2,4)某=-3:0.2:3;y=e某p(-某.某某);barh(某,y)title('HorizontalBarChart')实例19:三维曲线图functionhili19h0=figure('toolbar','none',...'poition',[200150450400],...'name','实例19');ubplot(2,1,1)某=linpace(0,2某pi);y1=in(某);y2=co(某);y3=in(某)+co(某);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]z1=zero(ize(某));z2=0.5某z1;z3=z1;plot3(某,y1,z1,某,y2,z2,某,y3,z3)gridon某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:3-DPlot')ubplot(2,1,2)某=linpace(0,2某pi);y1=in(某);y2=co(某);y3=in(某)+co(某);z1=zero(ize(某));z2=0.5某z1;z3=z1;plot3(某,z1,y1,某,z2,y2,某,z3,y3)gridon某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:3-DPlot') file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例20:图形的隐藏属性functionhili20h0=figure('toolbar','none',...'poition',[200150450300],...'name','实例20');ubplot(1,2,1)[某,y,z]=phere(10);meh(某,y,z)a某iofftitle('Figure1:Opaque')hiddenonubplot(1,2,2)[某,y,z]=phere(1 0);meh(某,y,z)a某iofftitle('Figure2:Tranparent')hiddenoff实例21PEAKS函数曲线functionhili21h0=figure('toolbar','none',...'poition',[200100450450],...'name','实例21');[某,y,z]=peak(30);ubplot(2,1,1)某=某(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(某>-0.6&某<0.5);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]z(i,j)=nan某z(i,j);urfc(某,y,z)某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:urfc函数形成的曲面')ubplot(2,1,2)某=某(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(某>-0.6&某<0.5);z(i,j)=nan某z(i,j);urfl(某,y,z)某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:urfl函数形成的曲面')实例22:片状图functionhili22h0=figure('toolbar','none',...'poition',[200150550350],...'name','实例22');ubplot(1,2,1)某=rand(1,20);y=rand(1,20);z=peak(某,y某pi);t=delaunay(某,y);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]trimeh(t,某,y,z)hiddenofftitle('Figure1:TriangularSurfacePlot');ubplot(1,2,2)某=rand(1,20);y=rand(1,20);z=peak(某,y某pi);t=delaunay(某,y);triurf(t,某,y,z)title('Figure1:TriangularSurfacePlot');实例23:视角的调整functionhili23h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例23');某=-5:0.5:5;[某,y]=mehgrid(某);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;ubplot(2, 2,1)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a 某i')title('Figure1')view(-37.5,30)ubplot(2,2,2)urf(某,y,z) file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure2')view(-37.5+90,30)ubplot(2,2,3)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure3')view(-37.5,60)ubplot(2,2,4)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure4')view(180,0)实例24:向量场的绘制functionhili24h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例24');ubplot(2,2,1)z=peak;ribbon(z)title('Figure1')file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]ubplot(2,2,2)[某,y,z]=peak(15);[d某,dy]=gradient(z,0.5,0.5);contour(某,y,z,10)holdonquiver(某,y,d 某,dy)holdofftitle('Figure2')ubplot(2,2,3)[某,y,z]=peak(15);[n某,ny,nz]=urfnorm(某,y,z);urf(某,y,z)holdonquiver3(某,y,z,n某,ny,nz)holdofftitle('Figure3')ubplot(2,2,4)某=rand(3,5);y=rand(3,5);z=rand(3,5);c=rand(3,5);fill3(某,y,z,c)gr idontitle('Figure4')实例25:灯光定位functionhili25h0=figure('toolbar','none',...'poition',[200150450250],...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]'name','实例25');vert=[111;121;221;211;112;122;222;212];fac=[1234;2673;4378;1584;1265;5678];gridoffphere(36)h=findobj('type','urface');et(h,'facelighting','phong',...'facecolor',...'interp',...'edgecolor',[0.40.40.4],...'backfacelighting',...'lit')holdo npatch('face',fac,'vertice',vert,...'facecolor','y');light('p oition',[132]);light('poition',[-3-13]);materialhinya某ivi3doffholdoff实例26:柱状图functionhili26h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]'poition',[20050450450],...'name','实例26');ubplot(2,1,1)某=[521873986555432];bar(某)某label('某轴');ylabel('Y轴');title('第一子图');ubplot(2,1,2)y=[521873986555432];barh(y)某label('某轴');ylabel('Y轴');title('第二子图');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]实例27:设置照明方式functionhili27h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例27');ubplot(2,2,1)pherehadingflatcamlightleftcamlightrightlighti ngflatcolorbara某iofftitle('Figure1')ubplot(2,2,2)pherehadingflatcamlightleftcaml ightrightlightinggouraudcolorbara某iofftitle('Figure2')ubplot(2,2,3)pherehadinginterpcamlightrightc amlightleftlightingphongfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]colorbara某iofftitle('Figure3')ubplot(2,2,4)pherehadingflatcamlightleftcaml ightrightlightingnonecolorbara某iofftitle('Figure4')实例28:羽状图functionhili28h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例28');ubplot(2,1,1)alpha=90:-10:0;r=one(ize(alpha));m=alpha某pi/180;n=r某10;[u,v]=pol2cart(m,n);feather(u,v)title('羽状图')a 某i([020010])ubplot(2,1,2)t=0:0.5:10;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]某=0.05+i;y=e某p(-某某t);feather(y)title('复数矩阵的羽状图')实例29:立体透视(1)functionhili29h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例29');[某,y,z]=mehgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=某.某e某p(-某.^2-y.^2-z.^2);gridonfori=-2:0.5:2;h1=urf(linpace(-2,2,20),...linpace(-2,2,20),...zero(20)+i);rotate(h1,[1-11],30)d某=get(h1,'某data');dy=get(h1,'ydata');dz=get(h1,'zdata');delete(h1) lice(某,y,z,v,[-22],2,-2)holdonlice(某,y,z,v,d某,dy,dz)holdoffa某itightfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]view(-5,10)drawnowend实例30:立体透视(2)functionhili30h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例30');[某,y,z]=mehgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=某.某e某p(-某.^2-y.^2-z.^2);[d某,dy,dz]=cylinder;lice(某,y,z,v,[-22],2,-2)fori=-2:0.2:2 h=urface(d某+i,dy,dz);rotate(h,[100],90)某p=get(h,'某data');yp=get(h,'ydata');zp=get(h,'zdata');delete(h)holdonh=lice (某,y,z,v,某p,yp,zp);a某itight某lim([-33])view(-10,35)drawnowdelete(h)file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]holdoffend实例31:表面图形functionhili31h0=figure('toolbar','none',...'poition',[200150550250],...'name','实例31');ubplot(1,2,1)某=rand(100,1)某16-8;y=rand(100,1)某16-8;r=qrt(某.^2+y.^2)+ep;z=in(r)./r;某lin=linpace(min(某),ma某(某),33);ylin=linpace(min(y),ma 某(y),33);[某,Y]=mehgrid(某lin,ylin);Z=griddata(某,y,z,某,Y,'cubic');meh(某,Y,Z)a某itightholdonplot3(某,y,z,'.','Markerize',20)ubplot(1,2,2)k=5;n=2^k-1;theta=pi某(-n:2:n)/n;phi=(pi/2)某(-n:2:n)'/n;某=co(phi)某co(theta);Y=co(phi)某in(theta);Z=in(phi)某one(ize(theta));file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]colormap([000;111])C=hadamard(2^k);urf(某,Y,Z,C)a某iquare 实例32:沿曲线移动的小球h0=figure('toolbar','none',...'poition',[198********],...'name','实例32');h1=a某e('parent',h0,...'poition',[0.150.450.70.5],...'viible','on');t= 0:pi/24:4某pi;y=in(t);plot(t,y,'b')n=length(t);h=line('color',[00.50.5],...'linetyle','.',...'markerize',25,...'eraemode','某or');k1=uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[801005030],...'tring','开始',...'callback',[...'i=1;',...'k=1;,',...'m=0;,',...'while1,',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'ifk==0,',...'break,',...'end,',...'ifk~=0,',...'et(h,''某data'',t(i),''ydata'',y(i)),',...'drawnow;,',...'i=i+1;,', (i)i>n,',...'m=m+1;,',...'i=1;,',...'end,',...'end,',...'end']);k2= uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[1801005030],...'tring','停止',...'callback',[...'k=0;,',...'et(e1,''tring'',m),',...'p=get(h,''某data'');,',...'q=get(h,''ydata'');,',...'et(e2,''tring'',p);,',. ..'et(e3,''tring'',q)']);k3=uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[2801005030],...'tring','关闭',...'callback','cloe');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]e1=uicontrol('parent',h0,...'tyle','edit',...'poition',[60306020]);t1=uicontrol('parent',h0,...'tyle','te某t',...'tring','循环次数',...'poition',[60506020]);e2=uicontrol('parent',h0,...'tyle','edit',...'poition',[180305020]);t2=uicontrol('parent ',h0,...'tyle','te某t',...'tring','终点的某坐标值',...'poition',[1555010020]);e3=uicontrol('parent',h0,...'tyle', 'edit',...'poition',[300305020]);t3=uicontrol('parent',h0,...'ty le','te某t',...'tring','终点的Y坐标值',...'poition',[2755010020]);实例33:曲线转换按钮h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例33');某=0:0.5:2某pi;y=in(某);h=plot(某,y);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]gridonhuidiao=[...'ifi==1,',...'i=0;,',...'y=co(某);,',...'delete(h),',...'et(hm,''tring'',''正弦函数''),',...'h=plot(某,y);,',...'gridon,',...'eleifi==0,',...'i=1;, ',...'y=in(某);,',...'et(hm,''tring'',''余弦函数''),',...'delete(h),',...'h=plot(某,y);,',...'gridon,',...'end,' ,...'end'];hm=uicontrol(gcf,'tyle','puhbutton',...'tring','余弦函数',...'callback',huidiao);i=1;et(hm,'poition',[250206020]);et(gca,'poition',[0.20.20.60.6] )title('按钮的使用')holdon实例34:栅格控制按钮h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'poition',[200150450250],...'name','实例34');某=0:0.5:2某pi;y=in(某);plot(某,y)huidiao1=[...'et(h_toggle2,''value'',0),',...'gridon,',...];huidiao2=[...'et(h_toggle1,''value'',0),',...'gridoff,',...];h_toggle1=uicontrol(gcf,'tyle','togglebutton',...'tring','gr idon',...'value',0,...'poition',[20455020],...'callback',huidiao1);h_toggle2=uicontrol(gcf,'tyle','togglebutton',...'tring','gr idoff',...'value',0,...'poition',[20205020],...'callback',huidiao2);et(gca,'poition',[0.20.20.60.6])title('开关按钮的使用')实例35:编辑框的使用h0=figure('toolbar','none',...'poition',[200150350250],...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'name','实例35');f='Pleaeinputtheletter';huidiao1=[...'g=upper(f);,',...'et(h2_edit,''tring'',g),',...];huidiao2=[ ...'g=lower(f);,',...'et(h2_edit,''tring'',g),',...];h1_edit=uicontrol(gcf,'tyle','edit',...'poition',[1002001005 0],...'HorizontalAlignment','left',...'tring','Pleaeinputtheletter',...'callback','f=get(h1_edit,''tring'');',...'background','w ',...'ma某',5,...'min',1);h2_edit=uicontrol(gcf,'tyle','edit',...'HorizontalAlignment','left',...'poition',[10010010050],...' background','w',...'ma某',5,...'min',1);h1_button=uicontrol(gcf,'tyle','puhbutton',...'tring','小写变大写',...'poition',[1004510020],...'callback',huidiao1);h2_button=ui control(gcf,'tyle','puhbutton',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'tring','大写变小写',...'poition',[1002010020],...'callback',huidiao2);实例36:弹出式菜单h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例36');某=0:0.5:2某pi;y=in(某);h=plot(某,y);gridonhm=uicontrol(gcf,'tyle','popupmenu',...'tring',...'in(某)|co(某)|in(某)+co(某)|e某p(-in(某))',...'poition',[250205020]);et(hm,'value',1)huidiao=[...'v=get(hm,''value'');,',...'witchv,',...'cae1,',...'delete(h ),',...'y=in(某);,',...'h=plot(某,y);,',...'gridon,',...'cae2,', ...'delete(h),',...'y=co(某);,',...'h=plot(某,y);,',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'gridon,',...'cae3,',...'delete(h),',...'y=in(某)+co(某);,', ...'h=plot(某,y);,',...'gridon,',...'cae4,',...'delete(h),',...' y=e某p(-in(某));,',...'h=plot(某,y);,',...'gridon,',...'end'];et(hm,'callback',huidiao)et(gca,'poition',[0.20.20.60.6])tit le('弹出式菜单的使用')holdonfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]实例37:滑标的使用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例37');[某,y]=mehgrid(-8:0.5:8);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;h0=meh(某,y,z);h1=a某e('poition',...[0.20.20.50.5],...'viible','off');hte某t=uicontrol(gcf,...'unit','point',...'poition',[20304515],...'tring','brightne' ,...'tyle','te某t');hlider=uicontrol(gcf,...'unit','point',...'poition',[101030015],...'min',-1,...'ma某',1,...'tyle','lider',...'callback',...'brighten(get(hlider,''value''))');实例38:多选菜单h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例38');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31][某,y]=mehgrid(-8:0.5:8);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;h0=meh(某,y,z);hlit=uic ontrol(gcf,'tyle','litbo某',...'tring','default|pring|ummer|autumn|winter',...'ma某',5,...'min',1,...'poition',[202080100],...'callback',[...'k=get(hlit,''value' ');,',...'witchk,',...'cae1,',...'colormapdefault,',...'cae2,',...'colormappring,',...'cae3,',...'colormapummer,',...'cae4,',...'colormapautumn,',...'cae5,',...'colormapwinter,',...'end']);实例39:菜单控制的使用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例39');某=0:0.5:2某pi;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31]y=co(某);h=plot(某,y);gridonet(gcf,'toolbar','none')hm=uimenu('label','e某ample');huidiao1=[...'et(hm_gridon,''checked'',''on''),',...'et(hm_gridoff,''chec ked'',''off''),',...'gridon'];huidiao2=[...'et(hm_gridoff,''checked'',''on''),',...'et(hm_gridon,''chec ked'',''off''),',...'gridoff'];hm_gridon=uimenu(hm,'label','gridon',...'checked','on',...'c allback',huidiao1);hm_gridoff=uimenu(hm,'label','gridoff',...'checked','off',.. .'callback',huidiao2);实例40:UIMENU菜单的应用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例40');h1=uimenu(gcf,'label','函数');h11=uimenu(h1,'label','轮廓图',...'callback',[...'et(h31,''checked'',''on''),',...'et(h32,''checked'',''off'' ),',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31]'[某,y,z]=peak;,',...'contour3(某,y,z,30)']);。
数学建模实例
数学建模是将实际问题转化为数学模型,通过对模型进行分析和求解来解决问题的一种方法。
以下是数学建模的一些实例:
1. 客流热力学模型:在城市轨道交通拥挤情况下,建立客流热力学模型,分析出客流分布的状况,有效提高轨道交通系统的运行性能。
2. 互联网广告投放模型:针对互联网广告投放的问题,建立数学模型,分析各种广告投放策略的影响,提出最佳的广告投放策略。
3. 股票价格预测模型:针对股票市场,建立数学模型,通过对历史数据的分析和预测,预测未来股票价格的走势,为投资决策提供科学依据。
4. 生态系统模型:建立生态系统稳定性数学模型,探究物种间相互作用的影响,预测生态系统发展趋势,为环境保护提供科学依据。
5. 智能交通路网模型:建立智能交通路网数学模型,分析路网拥堵状况,提出最优路径,实现交通系统的智能化管理。
6. 供应链管理模型:建立供应链管理数学模型,分析供应链各环节的影响,优化供应链各环节的质量和效率,提升企业综合效益。
7. 机器学习模型:应用机器学习算法,通过对大量历史数据的分析和学习,预测未来数据的走势,为商业决策提供科学依据。
1、司乘人员配备问题某昼夜效劳的公交路线每天各时间区段需司机和乘务人员如下:设司机和乘务人员分别在各时间区段一开场上班,并连续工作八小时,问该公交线路至少配备多少名司机和乘务人员?解: 设i x为第i班应报到的人员i,建立线性模型如下:,2,1)6,(∑==61min i i x Z⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥+≥+≥+≥+≥+≥+0,...,,302050607060..621655443322161x x x x x x x x x x x x x x x t s LINGO 程序如下:MODEL:min=x1+x2+x3+x4+x5+x6; x1+x6>=60; x1+x2>=70; x2+x3>=60; x3+x4>=50; x4+x5>=20; x5+x6>=30; END得到的解为:x1=60,x2=10,x3=50,x4=0,x5=30,x6=0;配备的司机和乘务人员最少为150人。
2、铺瓷砖问题要用40块方形瓷砖铺下列图所示形状的地面,但当时市场上只有长方形瓷砖,每块大小等于方形的两块。
一人买了20块长方形瓷砖,试着铺地面,结果无法铺好。
试问是这人的功夫不到家还是这个问题根本无解呢?解答:3、 棋子颜色问题在任意拿出黑白两种颜色的棋子共n 个,随机排成一个圆圈。
然后在两颗颜色一样的棋子中间放一颗黑色棋子,在两颗颜色不同的棋子中间放一颗白色棋子,放完后撤掉原来所放的棋子,再重复以上的过程,这样放下一圈后就拿走前次的一圈棋子,问这样重复进展下去各棋子的颜色会怎样变化呢?分析与求解:由于在两颗同色棋子中放一颗黑色棋子,两颗不同色的棋子中间放一颗白色棋子,故可将黑色棋子用1表示,白色棋子用-1表示。
这是因为-1×(-1)=1,1×1=1,这代表两颗同色棋子中放一颗黑色棋子;1×(-1)= -1,这代表两颗不同色的棋子中间放一颗白色棋子。
“学”以致用-----简单数学建模应用问题100例数学教学过程中学习了一个数学公式后,需要做大量的应用题,通过训练来加深理解所学公式。
但是在生活中又有多少实际问题是可以直接套用公式的呢?理想状态下的公式直接运用,在生产及生活中的实例是少之又少。
为此学生总感到学了数学没有什么实际用处,所以对学习数学少有兴趣。
数学建模的引入对培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径,让中职学生从中体会到数学是来源于生活并应用于生活的.数学建模是一种思维方式,它是一个动态的过程,通过此过程可以将一个实际的问题,经过模型准备、模型假设、模型构成、模型解析、模型检验与应用等五个具体步骤,转变为可以用数学方法(公式)来解决的,在理想状态下的数学问题,上述的整个流程统称为数学建模如果想解决某个实际问题(也许它和数学没有直接的关系),可以按下面流程对问题进行数学建模。
一.模型准备先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪一类学科的问题,可能需要用到哪些知识,然后学习或复习有关的知识,为接下来的数学建模做准备.由于人们所掌握的专业知识是有限的,而实际问题往往是多样和复杂的,模型准备对做好数学建模问题是非常重要的.二.模型假设有了模型准备的基础,要想把实际问题变为数学问题还要对其进行必要合理的简化和假设.明确了建模目的又掌握了相关资料,再去除一些次要因素.以主要矛盾为主来对该实际问题进行适当的简化并提出一些合理的假设。
模型假设不太可能一蹴而就,可以在模型的不断修改中得到逐步完善.三.模型构成在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜集的信息来描述变量之间的关系或其他数学结构(如数学公式、定理、算法等).做模型构成时可以使用各种各样的数学理论和方法,但要注意的是在保证精度的条件下尽量用简单的数学方法是建模时要遵循的一个原则.四.模型解析在模型构成中建立的数学模型可以采用解方程、推理、图解、计算机模拟、定理证明等各种传统的和现代的数学方法对其进行求解,其中有些可以借助于计算机软件来做这些工作。
建模案例:最优截断切割问题一、 问 题从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r 倍。
且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用e.试设计一种安排各面加工次序(称“切割方式”)的方法,使加工费用最少。
二、 假 设1、假设水平切割单位面积的费用为r,垂直切割单位面积费用为1;2、当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,调整刀具需额外费用e;3、第一次切割前,刀具已经调整完毕,即第一次垂直切割不加入刀具调整费用; 4 、每个待加工长方体都必须经过6次截断切割.三、 模型的建立与求解设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b 0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M 4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有P 66720= 种切割方式。
当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工.由此准则,只需考虑 P 6622290!!!⨯⨯=种切割方式.即在求最少加工费用时,只需在90个满足准则的切割序列中考虑.不失一般性,设u 1≥u2,u3≥u 4,u5≥u6,故只考虑M1在M2前、M 3在M 4前、M5在M6前的切割方式。
1、 e=0 的情况为简单起见,先考虑e=0 的情况.构造如图9—13的一个有向赋权网络图G(V,E)。
为了表示切割过程的有向性,在网络图上加上坐标轴x,y,z.图9—13 G(V,E)图G(V,E)的含义为:(1)空间网络图中每个结点Vi(xi,yi,zi)表示被切割石材所处的一个状态.顶点坐标xi、yi、zi分别代表石材在左右、前后、上下方向上已被切割的刀数.例如:V24(2,1,2) 表示石材在左右方向上已被切割两刀,前后方向上已被切一刀,上下方向上已被切两刀,即面M1、M2、M3、M5、M6均已被切割.顶点V1(0,0,0)表示石材的最初待加工状态,顶点V27(2,2,2)表示石材加工完成后的状态.(2)G的弧(Vi,Vj)表示石材被切割的一个过程,若长方体能从状态Vi经一次切割变为状态Vj,即当且仅当xi+yi+zi+1=xj+yj+zj时,Vi(xi,yi,zi)到Vj(xj,yj,zj)有弧(Vi,Vj),相应弧上的权W(Vi,Vj)即为这一切割过程的费用。
简单数学建模实例随着社会和科技的发展,数学建模已经越来越成为各个领域的重要手段。
而简单数学建模实例的模拟与实验,也成为了学生学习数学和拓展实际应用的重要方式。
在此,我们将为大家介绍一些简单的数学建模实例。
(一)瓶子里的气体假设一个恒定体积的瓶子装满的气体,其中含有 x % 的氮气,y % 的氧气和 z % 的二氧化碳。
现在在瓶子中加入一定量的氧气,使得瓶子中氮气的百分比降至 v %。
问原瓶子中氧气的百分比是多少?这个问题只需要列出守恒方程即可:氧气的质量与氮气和二氧化碳的质量之和等于瓶子中气体的总质量。
再加上一个初始状态的方程,就可以得到两个关于 y 和 z 的一元二次方程,解它们即可。
(二)小球的弹性碰撞两个小球,一个重量为 m1,在速度为 v1 的情况下运动;另一个球的重量为 m2,在速度为 v2 的情况下静止。
两个小球弹性碰撞后,速度分别为 u1 和 u2。
问 u1 和 u2 在什么情况下相等?这个问题需要利用动能守恒和动量守恒的规律,分别列出两个守恒方程,然后解方程即可。
其中,动能守恒方程是指碰撞前后的总动能是守恒的;动量守恒方程是指碰撞前后的总动量也是守恒的。
(三)植物生长的模拟植物的生长是与光、水、温度等因素有关的,而光照强度、水分充足和温度适宜是保证植物生长的基本条件。
因此,我们可以利用数学方法,建立植物生长与光照强度、水分和温度之间的关系模型。
具体地说,我们可以将光照强度、水分和温度三个因素定量化,例如化学计量法,然后建立该物种的生长速度与光照强度、水分和温度之间的函数关系。
最后,可以通过改变各个因素来预测植物的生长速度。
(四)自然灾害预测自然灾害如洪水、地震、气象灾害等都是由物理或化学规律导致的,因此可以利用数学方法,预测或模拟这些自然灾害。
例如,可以通过建立地震发生的概率模型,分析地震的分布规律和发生的时间等信息,从而预警或预测地震。
在预测洪水方面,我们可以通过搜集洪水历史数据、雨量和地下水位等信息,建立预警模型。
数学教学中的数学建模案例数学建模是指运用数学原理与方法解决实际问题的过程。
在数学教学中,数学建模可以帮助学生将抽象的数学概念与实际问题相结合,提高他们解决问题的能力和应用数学的能力。
本文将介绍几个数学建模在数学教学中的典型案例。
案例一:用数学建模解决实际问题我们以一个实例开始,假设一个园区的供电系统需要进行优化和改造,以降低能耗和成本。
为了解决这个问题,我们可以通过数学建模来分析和优化供电系统。
首先,我们可以收集园区的用电数据,包括用电量、峰谷电价等信息。
然后,我们可以建立数学模型,使用线性规划等方法来优化供电系统的运行。
通过调整供电系统的负荷分配和电源配置,我们可以找到一种最优方案,以达到降低能耗和成本的目标。
在数学教学中,我们可以通过这个案例引导学生运用数学知识和方法解决实际问题。
学生可以根据实际场景,收集数据,建立数学模型,并利用计算机软件进行模拟和优化。
这样,学生不仅可以巩固数学知识,还可以提高他们的问题解决能力和创新思维。
案例二:用数学建模解决交通流问题交通流问题是城市规划中的一个重要问题。
如何合理安排信号灯的时序,以及交通流的优化调度,都是需要运用数学建模来解决的。
我们可以以某个路口的交通流问题为例。
假设某个路口存在交通拥堵问题,我们需要通过数学建模来优化车辆的行驶路径和交通信号。
首先,我们可以通过收集交通流数据,包括车辆数量、车速等信息。
然后,我们可以建立数学模型,使用图论等方法来分析交通网络的拓扑结构,考虑车辆的速度、密度等因素,并结合交通信号的控制,来优化交通流的调度和路口的通行效率。
在数学教学中,我们可以通过这个案例让学生了解到数学在交通规划中的应用。
学生可以通过收集数据、建立数学模型,运用图论等数学知识,来解决交通流问题。
通过这种实践性的学习,学生可以更好地理解数学的应用和实际问题的解决方法。
案例三:用数学建模解决金融风险问题金融风险管理是银行和其他金融机构需要处理的一个重要问题。
购买汽车的选择摘要“我没有车我没有房”攒了几年钱终于有钱买车了,但我又担心买不到最称心的车子,于是我们团队就试图用数学建模的方法解决这个问题。
对于这种关键因素难以量化的问题,我们决定用最适合的层次分析法。
首先,考虑到课题目标除了“做出购买决定”之外还要评出配置最高、最舒适、最漂亮的车子,所以我们将这个决策问题分成四层:首层是目标层,即本课题最重要的目标—购买汽车的决策,第二层是准则层,分成“舒适”“配置”“美观”“价格”四个准则,这样做的好处是便于达到课题的二级目标。
第三层是次准则层,将准则层的四大准则细分为八个准则,需要指出的是“价格”因为无法细分我们将它设定为同时属于二三层。
第四层,即最后一层是方案层,有三套方案供选择。
当思维过程转化为层次结构之后,从层次结构的第二层开始,对于从属于或影响上一层每个因素的同一层诸因素,用层次比较法和1-9比较尺度构造成对比较阵,直到最下层。
对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验,若检验通过,特征向量即为权向量;若不通过则需重新构造【1】。
最后组合权向量并做一致性检验。
都通过之后就便得到了一个决策。
此刻我们做的是重新审视模型讨论模型的局限以及不完整之处,力求改进,直到做出满意的模型。
Ⅰ问题重述工作五年后,你决定要购买一辆汽车,预算十万左右。
在汽车网上浏览了很久,初步确定将从三种价格相当的车型中选购一种。
一般在购买汽车时考虑的标准可能包括:品牌、配置、动力、耗油量大小、舒适程度和外观美观情况等等。
(以上提到的标准仅供参考,因人而异(1 )不同的标准在你心目中的比重也许是不同的,请用定量的方法将其按比重的高低进行排序。
(2 )请用定量的方法说明哪种车配置最好、哪种车最舒适、哪种车最漂亮?(3 )建立数学模型,用确定的量化方法作出购买决定。
Ⅱ问题分析本题要求用定量的方法研究购买汽车的决策。
而购买汽车,人们多半是凭经验或者主观判断的提出决策方案。
常用数学建模方法及实例数学建模是将实际问题转化为数学模型,通过数学方法进行求解和分析的过程。
常用的数学建模方法包括线性规划、整数规划、非线性规划、图论、动态规划等。
一、线性规划线性规划是一种用于求解线性约束下目标函数的最优值的方法。
它常用于资源分配、生产计划、供应链管理等领域。
例1:公司有两个工厂生产产品A和产品B,两种产品的生产过程需要使用原材料X和Y。
产品A和产品B的利润分别为10和8、工厂1每小时生产产品A需要1个单位的X和2个单位的Y,每小时生产产品B需要2个单位的X和1个单位的Y。
工厂2每小时生产产品A需要2个单位的X和1个单位的Y,每小时生产产品B需要1个单位的X和3个单位的Y。
公司给定了每种原材料的供应量,求使公司利润最大化的生产计划。
二、整数规划整数规划是线性规划的一种扩展,要求变量的取值为整数。
整数规划常用于离散决策问题。
例2:公司有5个项目需要投资,每个项目的投资金额和预期回报率如下表所示。
公司有100万元的投资资金,为了最大化总回报率,应该选择哪几个项目进行投资?项目投资金额(万元)预期回报率1207%2306%3409%4104%5508%三、非线性规划非线性规划是一种求解非线性目标函数下约束条件的最优值的方法。
它广泛应用于经济、金融和工程等领域。
例3:公司通过降低售价和增加广告费用来提高销售额。
已知当售价为p时,销量为q=5000-20p,广告费用为a时,销售额为s=p*q-2000a。
已知售价的范围为0≤p≤100,广告费用的范围为0≤a≤200,公司希望最大化销售额,求最优的售价和广告费用。
四、图论图论是一种用于研究图(由节点和边组成)之间关系和性质的数学方法,常用于网络分析、路径优化、社交网络等领域。
例4:求解最短路径问题。
已知一个有向图,图中每个节点表示一个城市,每条边表示两个城市之间的道路,边上的权重表示两个城市之间的距离。
求从起始城市到目标城市的最短路径。
五、动态规划动态规划是一种通过将问题划分为子问题进行求解的方法,常用于求解最优化问题。