数学建模-概率模型案例
- 格式:ppt
- 大小:1.73 MB
- 文档页数:38
数学教学中的数学建模案例数学建模是指运用数学原理与方法解决实际问题的过程。
在数学教学中,数学建模可以帮助学生将抽象的数学概念与实际问题相结合,提高他们解决问题的能力和应用数学的能力。
本文将介绍几个数学建模在数学教学中的典型案例。
案例一:用数学建模解决实际问题我们以一个实例开始,假设一个园区的供电系统需要进行优化和改造,以降低能耗和成本。
为了解决这个问题,我们可以通过数学建模来分析和优化供电系统。
首先,我们可以收集园区的用电数据,包括用电量、峰谷电价等信息。
然后,我们可以建立数学模型,使用线性规划等方法来优化供电系统的运行。
通过调整供电系统的负荷分配和电源配置,我们可以找到一种最优方案,以达到降低能耗和成本的目标。
在数学教学中,我们可以通过这个案例引导学生运用数学知识和方法解决实际问题。
学生可以根据实际场景,收集数据,建立数学模型,并利用计算机软件进行模拟和优化。
这样,学生不仅可以巩固数学知识,还可以提高他们的问题解决能力和创新思维。
案例二:用数学建模解决交通流问题交通流问题是城市规划中的一个重要问题。
如何合理安排信号灯的时序,以及交通流的优化调度,都是需要运用数学建模来解决的。
我们可以以某个路口的交通流问题为例。
假设某个路口存在交通拥堵问题,我们需要通过数学建模来优化车辆的行驶路径和交通信号。
首先,我们可以通过收集交通流数据,包括车辆数量、车速等信息。
然后,我们可以建立数学模型,使用图论等方法来分析交通网络的拓扑结构,考虑车辆的速度、密度等因素,并结合交通信号的控制,来优化交通流的调度和路口的通行效率。
在数学教学中,我们可以通过这个案例让学生了解到数学在交通规划中的应用。
学生可以通过收集数据、建立数学模型,运用图论等数学知识,来解决交通流问题。
通过这种实践性的学习,学生可以更好地理解数学的应用和实际问题的解决方法。
案例三:用数学建模解决金融风险问题金融风险管理是银行和其他金融机构需要处理的一个重要问题。
§4 足球门的危险区域一、问题提出在足球比赛中,球员在对方球门前不同的位置起脚射门对对方球门的威胁是不一样的。
在球门的正前方的威胁要大于在球门两侧射门;近距离的射门对球门的威胁要大于远射。
已知标准球场长为104米,宽为69米;球门高为2.44米,宽为7.32米。
实际上,球员之间的基本素质可能有一定差异,但对于职业球员来讲一般可以认为这种差别不大。
另外,根据统计资料显示,射门时球的速度一般在10米/秒左右。
下面要建模研究下列问题:(1)针对球员在不同位置射门对球门的威胁度进行分析,得出危险区域;(2)在有一名守门员防守的情况下,对球员射门的威胁度和危险区域作进一步研究。
二、问题分析根据这个问题,要确定球门的危险区域,也就是要确定球员射门最容易进球的区域。
球员无论从哪个地方射门,都有进与不进两种可能,这本身就是一个随机事件,无非是哪些地方进球的可能性最大,即是最危险的区域。
影响球员射门命中率的因素很多,其中最重要的两点是球员的基本素质(技术水平)和射门时的位置。
对每一个球员来说,基本素质在短时间内是不可能改变的,因此,我们主要是在确定条件下,对射门位置进行分析研究。
也就是说,我们主要是针对同素质的球员在球场上任意一点射门时,研究其对球门的威胁程度。
某一球员在球门前某处向球门内某目标点射门时,该球员的素质和球员到目标点的距离决定了球到达目标点的概率,即命中球门的概率。
事实上,当上述两个因素确定时,球飞向球门所在平面上的落点将呈现一个固定的概率分布。
稍作分析容易断定,该分布应该是二维正态分布,这是我们解决问题的关键所在。
球员从球场上某点射门时,首先必定在球门平面上确定一个目标点,射门后球依据该概率分布落入球门所在平面。
将球门视为所在平面上的一个区域,在区域内对该分布进行积分,即可得到这次射门命中的概率。
然而,球员在选择射门的目标点时是任意的,而命中球门的概率对目标点的选择有很强的依赖性。
这样,我们遍历球门区域内的所有点,对命中概率作积分,将其定义为球场上某点对球门的威胁程度,根据威胁度的大小来确定球门的危险区域。
数学建模中的概率统计方法选讲案例一:常用分布及中心极限定理与“DVD 在线租赁”问题(2005B )“DVD 在线租赁”为2005年全国大学生建模竞赛的B 题,原题参见附件中的文件“2005B ”。
现考虑问题(1):网站正准备购买一些新的DVD ,通过问卷调查1000个会员,得到了愿意观看这些DVD 的人数(表1给出了其中5种DVD 的数据)。
此外,历史数据显示,60%的会员每月租赁DVD 两次,而另外的40%只租一次。
假设网站现有10万个会员,对表1中的每种DVD 来说,应该至少准备多少张,才能保证希望看到该DVD 的会员中至少50%在一个月内能够看到该DVD ?如果要求保证在三个月内至少95%的会员能够看到该DVD 呢?问题(1)的分析与求解:可以通过“点估计”的方法,得到抽样的1000名会员租赁上述5种DVD 的概率为● 通过1000个样本来推断10万个会员的“总体”: 假设随机变量,否则种个会员租第第⎩⎨⎧=,0,1DVDj i ij ξ 其中10000,...,2,1=i . 显然,ij ξ服从两点分布,即j ij p P ==)1(ξ,而上表就给出了这些概率的估计值。
进一步,设∑==Ni ij j 1ξη,10000=N ,即表示10000人中愿意租赁第j 张DVD 的人数,显然,随机变量),10000(~j j p B η。
● 由De Moivre —Laplace 中心极限定理,如果准备了)5.0(j E η张DVD ,则满足至少jη5.0人看到该DVD 的概率(可靠性)为5.0)0(}0)5.0()5.0(5.0{)}5.0(5.0{=Φ≈≤-=≤j j j j j D E P E P ηηηηη显然,为了增加右边的可靠性,比如,增加到0.99,则由等式99.0)33.2(})5.0()5.0()5.0()5.0(5.0{}5.0{=Φ≈-≤-=≤j j j j j j D E X D E P X P ηηηηηη,可知)1(100002133.25000)5.0(33.2)5.0(j j j j j p p p D E X -⨯⨯+=+=ηη如何考虑“60%的会员每个月会租赁DVD 两次,40%的会员每个月会租赁DVD 一次”的问题?方法一:10万人的60%为6万人,每个月租赁两次,即12万次;40%为4万人,每月租赁一次,即4万次,合计每月有16万人次的租赁,对于第j 张DVD ,能否类似地假设为∑==Mi ij j 1ξη,16000=M ,而且随机变量),16000(~j j p B η,然后再求?答案是否定的,因为),16000(~j j p B η不再成立。