第四章控制系统根轨迹法
- 格式:ppt
- 大小:2.11 MB
- 文档页数:13
第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。
本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。
4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。
例如某控制系统的结构图如图4.1所示。
图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。
于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。
箭头表示随K 值增加根轨迹的变化趋势。
这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。
画出根轨迹的目的是利用根轨迹分析系统的各种性能。
通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。
又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。
可以看出,根轨迹与系统性能之间有着比较密切的联系。
图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。
而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。
下面给出图解法绘制根轨迹的根轨迹方程。
第四章 根轨迹法反馈系统的稳定性由系统的闭环极点确定。
研究系统参数变化对闭环系统特性的影响,是分析系统和设计控制器的重要内容。
参数变化的作用,体现在对闭环极点的影响上。
对于高阶系统,用解析方法说明这种影响,很困难,且不易理解。
图解法是一种方便的近似方法。
l 、基本内容和要点 (l )根轨迹的基本概念根轨迹的定义。
以二阶系统为例说明什么是根轨迹,怎样从根轨迹分析闭环零、极点与系统的性能。
(2)绘制根轨迹的基本规则根轨迹的特点和性质。
绘制以系统开环增益K 为变量的根轨迹的规则与方法。
常见的几种典型系统的根轨迹图。
(3)参数根轨迹参数根轨迹的定义。
多参变量根轨迹。
多环系统的根轨迹。
(4)非最小相位系统的根轨迹最小相位和非最小相位系统的定义和特点。
非最小相位系统根轨迹的特点和绘制规则。
(5)含有延迟环节的系统的根轨迹有延迟环节的系统的极轨迹特点及绘制规则。
延迟环节的近似表达式及使用条件。
(6)基于根轨迹分析系统的响应根轨迹的形状,零极点的位置与系统时域响应性能指标间的关系。
几种常见的典型系统的零、极点分布与其暂态响应性能指标。
2、重点(l )最小相位系统的以开环增益K 为变量的根轨迹的特点及其绘制的规则和方法。
(2)系统根轨迹的形状,零、极点的分布与其时域响应性能指标的关系。
3、难点对“根轨迹上所有的点只是可能的闭环极点”的理解以及非最小相位系统中含最高次冥项系数为负的因子时根轨迹的绘制。
4-1 根轨迹法的基本概念1. 根轨迹概念根轨迹法:根据参数变化∞→0,研究系统闭环极点变化轨迹的一种图解方法。
即在参数变化时图解特征方程。
近似作图;重要区域,如与虚轴的交点与实轴的交点等,根轨迹要准确;依据根轨迹图,可以确定合适的系统参数,为设计控制器提供依据。
例图4-1,研究系统的开环增益K 的变化∞→0, 对闭环极点的影响。
开环传递函数)15.0()(+=s s Ks G ,闭环传递函数Ks s K s 222)(2++=Φ,特征方程0222=++K s s ,根轨迹方程1)2(-=+s s k ,∞→=0,2K k 。