3晶闸管的认识(2)解析
- 格式:ppt
- 大小:2.90 MB
- 文档页数:3
晶闸管三相交流桥式整流电路1. 引言说到整流电路,很多人可能会觉得这就像是天书一样,不知所云。
不过,别担心,今天我们来聊聊晶闸管三相交流桥式整流电路。
乍一听好像很复杂,但其实,简单明了的说,就是把交流电变成直流电的一种方式。
就像把原本波浪起伏的海面,变成一池平静的湖水,清澈见底,心里特别踏实。
今天,我们就来深入浅出地聊聊这玩意儿,保准让你听完之后,轻松应对各种电路问题。
2. 基本概念2.1 什么是晶闸管?首先,咱们得认识一下晶闸管。
想象一下,它就像是电路中的“开关小王子”,一旦被激活,就能控制电流的流动。
它不仅可以通电,还能断电,是不是觉得它简直太酷了!而且,它可不是一般的开关,它的工作方式让人赞不绝口,可以说是电力控制中的一颗璀璨明珠。
晶闸管的好处就是,它能承受高电压和大电流,非常适合在各种复杂的电路中使用。
2.2 三相交流电的魅力接下来,咱们聊聊三相交流电。
可能有小伙伴会想:“三相交流电是什么鬼?”其实,它就是把电分成三条相位,像三兄弟一起合作,保证电能传输的高效与稳定。
就像打麻将,三个人配合得当,总能赢得漂亮!三相电的优点就是可以减少电缆的用量,还能提高电动机的效率,简直是电力传输的“完美组合”。
3. 整流电路的工作原理3.1 桥式整流的玩法说到整流,大家可以把它想象成一个水坝,把湍急的水流变成平静的湖水。
桥式整流电路就是通过四个晶闸管,巧妙地把三相交流电转变成直流电。
这个过程就像是打麻将时的“碰”、“杠”,每个晶闸管都有自己负责的任务,一起合作,完美无瑕地完成整流工作。
3.2 控制与调节当然,整流电路最神奇的地方在于它的控制与调节功能。
通过调节晶闸管的导通角度,咱们可以轻松改变输出的直流电压,就像调音台上的旋钮,轻松把音量调到合适的程度。
想要电压高点?没问题,调调开关就行;想要电压低点?照样来!这种灵活性让整流电路在工业领域中大展拳脚,应用广泛,真是个“多面手”!4. 实际应用与前景4.1 工业中的大显身手在工业界,晶闸管三相交流桥式整流电路简直是不可或缺的。
晶闸管的结构以及工作原理晶闸管是一种异型双极结构的电子器件,由三层PNPN结构组成。
它的结构和工作原理可以分为几个方面进行介绍。
1.结构晶闸管由P型和N型半导体材料交叉组成的四层PNPN结构,形成了三个PN结的结构,即P1-N1-P2-N2、两个P型区域称为主极(anode,A)和触发极(gate,G),两个N型区域称为P型区域的发射层(emitter,E)和P型区域的集电层(collector,C)。
晶闸管的主极两端接有外部电源,而触发极一般连接到控制电路。
2.工作原理当晶闸管的控制电极施加一个低于临界电压的阳极电压时,即晶闸管处于关断状态,没有电流通过。
当控制电极施加一个高于临界电压的阳极电压时,即晶闸管处于导通状态,电流可以通过。
晶闸管的导通过程可以分为四个阶段:保持阶段、启动阶段、加强阶段和饱和阶段。
-保持阶段:当触发电压上升时,晶闸管开始导通,但此时并没有电流通过。
主极处于反向偏置,控制电压从触发极上扩展到集电极端,使得内部的PNPN结正向偏置。
-启动阶段:当控制电压达到晶闸管的启动电压时,发射极和集电极之间的电流开始增加。
这个过程是正反馈的,因为电流的增加会引起发射层电压的降低,从而增加集电层电压。
这种正反馈的作用会使晶闸管持续导通而不需要保持电流。
-加强阶段:在启动阶段之后,电流从发射层向集电层继续增加,响应时间非常快,仅为纳秒级别。
晶闸管的涉及电压变小,其间接穿晶闸管的电流开始逐渐加强。
-饱和阶段:在集电极电流和发射极电流足够大的情况下,晶闸管进入饱和状态,其电压降只有几个伏特,并且电流保持在一个稳定的值。
晶闸管的导通和关断是通过控制电极的电压来实现的。
当控制电压去除或降低,晶闸管将自动进入关断状态。
晶闸管的关断过程相对较长,需要通过外部电路才能完全关断。
总结:晶闸管是一种PNPN结构的电子器件,由四个区域(P1-N1-P2-N2)组成。
其工作原理是通过控制电压对其导通和关断进行控制。
晶闸管的工作原理
晶闸管是一种电子器件,它是一种具有双稳态开关特性的半导体器件。
晶闸管由四层结构的半导体材料(P-N-P-N)组成,
其中两个N型区域被P型区域隔开,形成了一个P-N-P-N结构。
在晶闸管的结构中,有三个电极,分别是控制电极(G),阳极(A)和阴极(K)。
当晶闸管处于关断状态时,阳极和阴极之间形成反向偏置,导致晶闸管整体处于高阻态。
此时,无论控制电极施加多少电压,晶闸管都不会导通。
当控制电极施加正向电压时,控制电流流入晶闸管。
当控制电流达到晶闸管的触发电流(也称为“保持电流”)时,晶闸管会
转入导通态。
在这种情况下,即使控制电流降至较低的水平,晶闸管也会保持导通状态。
一旦晶闸管转入导通态,就会导致阳极和阴极之间的电压降低,形成一个低阻态。
这使得晶闸管对于大电流和大功率的传导具有很好的特性。
只有在阳极和阴极电压减小到一个特定的水平,或者当控制电流降低到零时,晶闸管才能转入关断态。
晶闸管的主要特点是具有双稳态开关特性,即只需一次触发就可以保持导通态,直到有特定条件发生为止。
因此,晶闸管常被用作交流电路中的开关元件,比如用来控制电机、灯光和其他高功率设备的开关。
此外,晶闸管还可以用于变压器的控制、电压/电流调节以及信号放大等应用。
它在电力系统中的应用
非常广泛。
晶闸管的工作原理
晶闸管又称为双向可控硅,是一种电力电子器件,具有双向触发和单
向导电的特点。
它广泛应用于电力电子控制、调节、转换和变换等领域。
首先是关断状态,当晶闸管两个控制极(即阳极和门极)之间的电压
低于它的阻断电压时,晶闸管将处于关断状态。
此时通过门极的控制电流
较小,晶闸管内部的p-n结处于正向偏置状态。
关断状态下,晶闸管不导电,内部不存在主电流。
当通过门极的电流超过晶闸管的触发电流,电压上升到一定程度时,
晶闸管将进入触发和导通状态。
在这个状态下,晶闸管内部的p-n结开始
在阳极和门极之间形成通道,这个过程称为触发。
一旦触发完成,晶闸管
将开始导电,内部主电流开始流动。
接下来是持续导通状态,晶闸管在触发完成之后将一直导通,直到主
电流降到零或改变触发方式。
在持续导通状态下,晶闸管有较低的电压降,表现出较小的功耗。
最后是关断状态,当主电流降到或小于零时,晶闸管将进入关断状态。
此时,电压在晶闸管的结上再次达到阻断电压,因此电流无法继续流动,
晶闸管停止导电。
需要注意的是,即使通过门极的电流消失,晶闸管仍会
处于导通状态,只有当主电流从阳极流过p-n结到达门极时,晶闸管才能
进入关断状态。
综上所述,晶闸管的工作原理是通过门极的控制电流和电压的变化来
控制晶闸管的导通和关断状态。
通过调节门极电流和触发方式,可以实现
晶闸管的灵活控制和应用于各种电力电子系统。
晶闸管的工作原理晶闸管(Thyristor)是一种电子器件,可以将其视为一种受控的二极管。
它通常由包括控制极、阳极和阴极的三个区域组成,其中控制极相当于普通二极管的控制端,阳极相当于普通二极管的正极,阴极相当于普通二极管的负极。
下文将详细介绍晶闸管的工作原理。
晶闸管通常在其结构中添加掺杂少量的杂质,以形成P型和N型区域,如P型和N型硅材料。
在晶闸管中,阳极和阴极之间的结被用于控制晶闸管的通断状态。
而控制极被用于控制晶闸管的导通。
1.关态(堵塞态):晶闸管处于关断状态,类似于二极管的阻止反向电流的状态。
当控制极为触发状态时,晶闸管处于关断状态。
2.开态(导通态):当控制极从关断状态切换到触发状态时,晶闸管进入导通状态。
控制极提供一个足够的电流来激活晶闸管,并使其产生一个通路,允许阳极和阴极之间的电流流动。
一旦晶闸管进入导通状态,它将维持导通,即使控制极的电流被移除,直到通过阳极和阴极的电流降至零或接近零为止。
晶闸管的触发可以通过以下几种方式实现:1.正向电压触发:当阳极对控制极施加足够的正向电压时,晶闸管将处于导通状态。
这是晶闸管最常见的触发方式。
2.负向电压触发:当阴极对控制极施加足够的负向电压时,晶闸管将处于导通状态。
这种触发方式较少使用。
3.光触发:通过施加光照,提供足够的光电子供给给控制极,可以触发晶闸管。
4.辅助触发:通过外部线路提供触发脉冲,如触发电压或触发电流脉冲,也可以触发晶闸管。
晶闸管在电力系统中具有广泛的应用,主要用于控制交流电源的电压和电流。
它可以作为开关或控制元件,用于步进电机、稳压器、变频器等设备中。
由于晶闸管具有可靠、耐电压高、响应速度快等优点,所以在许多高功率电子设备中得到了广泛的应用。
总结来说,晶闸管是一种可控的电子开关,它允许电流在阳极和阴极之间流动或不流动。
通过控制极的触发信号,晶闸管可以从关断状态切换到导通状态。
晶闸管的工作原理相对简单,但其应用广泛,可以在电力系统和电子设备中提供精确的电流和电压控制功能。
晶闸管1.晶闸管概念 (2)2.晶闸管工作原理 (2)3.晶闸管特性 (3)4.晶闸管参数 (4)5.双向可控硅象限 (6)6.双向可控硅应用 (7)7.DIAC (9)8.SIDAC (10)1.晶闸管概念可控硅(Silicon Controlled Rectifier) 简称SCR,是一种大功率电器元件,也称晶闸管。
可实现用小功率控件控制大功率设备。
可控硅分单向可控硅和双向可控硅两种。
双向可控硅也叫三端双向可控硅,简称TRIAC。
双向可控硅在结构上相当于两个单向可控硅反向连接,这种可控硅具有双向导通功能。
其通断状态由控制极G决定。
在控制极G上加正脉冲(或负脉冲)可使其正向(或反向)导通。
晶闸管的开关时间较长,允许的电流上升率较小,因此工作频率受到限制。
当在较高频率工作时,因开关损耗随频率升高而增加,导致器件发热。
它是由四层半导体材料组成的,有三个PN结,对外有三个电极:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N 型半导体引出的电极叫阴极K。
单向可控硅(SCR):1)单向可控硅承受反向阳极电压时,不管门极承受何种电压,单向可控硅都处于反向阻断状态。
2)单向可控硅承受正向阳极电压时,仅在门极承受正向电压的情况下单向可控硅才导通。
这时单向可控硅处于正向导通状态。
3)单向可控硅在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,单向可控硅保持导通,即单向可控硅导通后,门极失去作用。
门极只起触发作用。
4)单向可控硅在导通情况下,当主回路电压(或电流)减小到接近于零(维持电流以下)时,单向可控硅自动关断。
双向可控硅(TRIAC):2.晶闸管工作原理通过等效电路分析:若T2管的基极电流为i B2,则集电极电流为β2i B2;进一步有i B1=i C2=β2i B2,从而i C1=β1i B1=β1β2i B2,又由于i B2=i C1,再一次进行上述放大过程,形成正反馈。
晶闸管的概念
晶闸管(Thyristor)是晶体闸流管的简称,又可称做可控硅整流器,以前被简称为可控硅.
晶闸管是PNPN四层半导体结构,它有三个极:阳极,阴极和门极;晶闸管工作条件为:加正向电压且门极有触发电流;其派生器件有:快速晶闸管,双向晶闸管,逆导晶闸管,光控晶闸管等。
它是一种大功率开关型半导体器件,在电路中用文字符号为“V”、“VT”表示(旧标准中用字母“SCR”表示)。
晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。
晶闸管的结构与工作原理在现代电子技术领域,晶闸管作为一种重要的半导体器件,发挥着不可或缺的作用。
它具有独特的结构和工作原理,使得其在电力控制、电子电路等方面得到了广泛的应用。
要理解晶闸管的工作原理,首先得从它的结构说起。
晶闸管通常由四层半导体材料组成,分别是 P 型半导体、N 型半导体、P 型半导体和N 型半导体,形成了三个 PN 结,分别为 J1、J2 和 J3。
从外部来看,它有三个电极,分别是阳极(A)、阴极(K)和门极(G)。
晶闸管的结构就像是一个具有特殊功能的“开关”。
阳极和阴极分别连接在电路的两端,而门极则像是这个开关的“控制按钮”。
接下来,咱们详细说说晶闸管的工作原理。
晶闸管的导通需要一定的条件。
在正常情况下,即没有门极电流注入时,晶闸管处于阻断状态。
这时候,J1 和 J3 是正向偏置,而 J2 是反向偏置,所以只有很小的漏电流通过,就好像开关处于断开状态。
但是,当给门极加上一个适当的正向触发电流时,情况就发生了巨大的变化。
这个触发电流就像一把钥匙,打开了晶闸管导通的大门。
它使得 J2 结的电位下降,从而打破了原来的平衡状态,导致晶闸管迅速导通,电流可以从阳极顺畅地流向阴极,就如同开关被闭合了一样。
一旦晶闸管导通,即使去掉门极触发电流,它也能依靠自身的正反馈机制保持导通状态。
这是因为导通后,阳极电流会在器件内部产生强烈的正反馈作用,使得晶闸管能够持续导通,直到阳极电流减小到维持电流以下,晶闸管才会重新回到阻断状态。
晶闸管的这种特性使得它在很多电路中都能大显身手。
比如说在交流调压电路中,通过控制晶闸管的导通角,可以调节输出电压的有效值。
在直流调速系统中,利用晶闸管可以实现对直流电机的调速控制。
在实际应用中,晶闸管的性能参数也非常重要。
例如,正向转折电压、反向转折电压、通态平均电流、维持电流等。
这些参数决定了晶闸管在不同电路中的适用范围和工作可靠性。
另外,晶闸管也有一些局限性。
它的开关速度相对较慢,不能像一些新型的半导体器件那样实现高频开关操作。
晶闸管原理图
晶闸管是一种电子器件,属于半导体器件的一种。
它具有控制电流的特性,因
此在电力控制领域有着广泛的应用。
晶闸管的原理图是指晶闸管的结构示意图,通过这个图可以清晰地了解晶闸管的内部结构和工作原理。
下面我们将详细介绍晶闸管原理图的相关内容。
首先,我们来看一下晶闸管的结构。
晶闸管通常由四层P-N结构组成,其中有
三个P-N结构串联,形成了一个P-N-P-N的结构。
这种结构使得晶闸管具有了双
向导通的特性,即可以在正向和反向电压下导通。
在晶闸管的结构示意图中,我们可以清晰地看到这种P-N-P-N的结构,以及各个结构之间的联系和布局。
其次,我们来了解一下晶闸管的工作原理。
晶闸管的工作原理可以简单描述为,当控制极施加一个正脉冲信号时,晶闸管就可以导通;而当控制极施加一个负脉冲信号时,晶闸管就可以关断。
这种控制特性使得晶闸管可以用来控制大功率的电流,因此在电力控制领域有着广泛的应用。
在晶闸管的原理图中,我们可以清晰地看到控制极、阳极和阴极之间的连接方式,以及控制信号的输入方式。
最后,我们来分析一下晶闸管原理图的应用。
晶闸管在电力控制领域有着广泛
的应用,比如交流调压、交流调速、交流开关等方面。
晶闸管的原理图可以帮助工程师们更好地理解晶闸管的工作原理和控制方式,从而更好地应用于实际工程中。
总之,晶闸管原理图是理解晶闸管工作原理和应用的重要工具,通过对晶闸管
原理图的学习和分析,可以更好地掌握晶闸管的工作原理和控制方式,为实际工程应用提供理论支持和指导。
希望本文的介绍对大家有所帮助,谢谢阅读!。