流式细胞术(Flow Cytometry,FCM)检测血小板功能及其临床应用
- 格式:rtf
- 大小:77.66 KB
- 文档页数:5
流式细胞技术在血小板研究中的应用血小板在各种诱导剂作用下释放其颗粒内容物,产生生物学效应,在初期止血过程中发生粘附-变形-释放-聚集等反应,这些血小板的基本反应,统称为血小板活化反应。
血小板活化的检测对血小板相关疾病的诊断有重要价值。
然而,检测的方法常常是有争议的,通常是由于方法本身不完善或应用不当导致医源性血小板激活,影响临床诊断的价值。
这就要求建立一种灵敏、精确、快速、简便,最好可用于临床常规检测血小板活化的方法。
近几年来,随着流式细胞技术(Flow cytometry,FCM)的发展,FCM已广泛应用于基础与临床研究,并逐渐成为检测血小板活化的重要手段。
现就FCM检测血小板活化的方法及临床应用作一综述。
一、活化血小板标记物活化血小板与静息血小板相比,其质膜糖蛋白常发生显著的变化,这些变化的糖蛋白便成为活化血小板的检测标志物。
主要包括三类:1、第一类是血小板质膜表面糖蛋白(1)GPⅡb/Ⅲa(CD41-CD61)它仅在血小板活化时才因构象变化而显露出来,因此,使用其荧光单抗,就能更精确地在更早阶段检测到血小板的活化。
(2)GPIb-IX-V (CD42)则相反,与静息血小板相比,活化血小板上表达量显著降低。
可以作为活化血小板的分子标志。
(3)GPIV (CD36)虽然在静息血小板上也表达,但活化血小板上表达量更高,也可以作为血小板活化标志。
(4)另外还有GPⅠc/Ⅱa(CD49e-CD29)、GPⅠa/Ⅱa(CD49b-CD29)等与血小板活化有关。
2、第二类是血小板颗粒膜糖蛋白主要包括血小板α-颗粒膜蛋白(GMP-140,CD62)和溶酶体完整膜蛋白(LIMP,CD63)。
血小板被激活时,其颗粒膜与质膜发生融合,在质膜上表达,成为活化血小板的分子标志。
3、第三类是出现在活化血小板上能与血小板表面受体相结合的一些抗原包括纤维蛋白原,Xa因子等,这些抗原在血小板表面的出现和消失在临床检测上也是有意义的。
流式细胞仪在医学检验中的应用流式细胞术(flow cytometry,FCM)是一种能够对单个细胞或生物微颗行定量分析和分选的检测手段,具有快速、高精度、高准确性、多参数和高通量等优点,是目前先进的细胞定量分析技术之一。
近年来,FCM的发展日新月异,技术不断有新的突破,新型仪器不断涌现,同时,FCM 在医学及其他科学的应用更加广泛和深入,涵盖了从基础研究到临床诊断的多个方面,涉及免疫学、血液学、肿瘤学等。
图1. 流式细胞术工作原理图一、流式细胞术的研究进展1. 流式细胞仪的进展近年来,随着将多种不同波长的新型激光器与新型荧光染料的新型染色剂相结合,流式细胞仪性能不断提升,体现在分析速度的提高、灵敏度和精密度的提升,以及激光通道和参数的增多。
此外,流式细胞仪不断打破传统的界限,实现了多学科的交叉发展,诞生了一些新理念、新技术融合的仪器。
例如,微流控芯片流式细胞仪,是基于微机电技术的一种小型流式细胞仪,具有结构简单、操作方便、体积小、价格低廉等特点;声波聚焦流式细胞仪是采用超声波原理将细胞聚焦于流动室的中轴上,代替传统的流体动力,实现高通量、高精确度分析;质谱流式细胞仪将传统流式细胞仪与质谱分析技术相结合,采用同位素标记特异性抗体,利用质谱原理对单细胞进行多参数检测的流式技术,可以克服荧光素发光光谱相互干扰导致的波谱重叠、影响分辨的问题;将传统的流式细胞仪的荧光信号与荧光显微镜的形态学结合,形成了成像流式细胞仪,检测者可以目睹到每个细胞或颗粒的形态。
质谱流式细胞仪和成像流式细胞仪可以被称为二代流式细胞仪。
2. 流式细胞术的进展FCM主要用于分析荧光标记的细胞和颗粒,也是目前广泛的应用领域。
但是,新近研究打破了这一界限,实现了流式细胞仪由检测荧光标记的细胞,到可以检测无需荧光标记细胞的飞跃,这种技术对细胞无损坏、避免了荧光染料的干扰,将进一步提升FCM的应用范围和价值。
有学者研究出一种新的FCM,称为实时变形性流式细胞术(real-time deformability cytometry,RT-DC),利用肿瘤细胞等细胞的内在特性——变形能力,对无标记的目标细胞分析,这种无标记的分析方法为流式细胞分析增加了新的可能。
流式细胞术在临床检验中的应用流式细胞术(Flow Cytometry,FCM)是一种可对单细胞悬液进行快速定性、定量分析和分选的技术。
它不仅可以对细胞表面抗原进行检测,也能对细胞内部的生物大分子进行检测,能够在细胞水平上对相关疾病进行诊断和病程监测。
因此在临床医学及科学研究中发挥着非常重要的作用。
随着技术水平的不断提高及完善,FCM得到了更为广泛的应用。
目前,FCM在临床检验方面主要应用于血液学、免疫学、肿瘤、等临床医学和基础医学研究领域,具有检测样品快速、准确以及灵敏度性高等特点,为临床检验提供了一种强有力的手段和全新的医学视角,是临床检验工作中重要的一种研究工具。
FCM主要由液流系统、光学系统、电子系统组成。
其主要基本原理是将待测样本染色后制成单细胞悬液放入样品管中,通过气体的压力使样品进入鞘液,鞘液与样品之间会形成一定的压力,当压力达到一定程度后,在鞘液的带动下,单细胞悬浮样品会形成单细胞柱状经过激光聚焦区,样品柱与激光束垂直,由于样品经特异性染料处理,因此在激光激发下会产生特定波长的荧光。
流式细胞仪中的光学系统收集到荧光信号后进行信号处理,再经过计算机系统对这些数字信号收集、储存,以一维直方图或二维点阵图及数据表或三维图形显示出来,然后做出统计分析从而获得所需要的检测结果。
1.FCM在血液学中的应用FCM主要通过对外周血细胞和骨髓细胞表面抗原和DNA的检测分析对各种血液病如白血病、淋巴瘤等血液系统疾病的分型、诊断、治疗及预后判断均有重要作用。
血细胞在白细胞系、红细胞系、巨核细胞系、血小板及非造血细胞均有不同的分化抗原表达,分布在细胞质、细胞膜中。
血液肿瘤细胞的特征是丧失了正常细胞的系类专一性和分化阶段的规律性,运用FCM将具有系列特异性并涵盖不同分化阶段的单克隆体作为分子探针来检测血液肿瘤细胞的内外抗原,可以反映其本质上与正常造血细胞的差异。
由于不同的血细胞系统都有其特有的表面抗原,FCM通过采用各种血细胞表面分化抗原特异的单克隆抗体,借助于各种不同的荧光染料(FITC、PE)可同时检测一个单细胞的不同参数,根据所测的参数结果来判断出该血细胞的属性。
FCM技术的临床应⽤流式细胞技术的基本原理和临床应⽤浙江⼤学医学院附属第⼀医院传染病研究所徐陈槐流式细胞术(FlowCytometry,FCM)是利⽤流式细胞仪对细胞等⽣物粒⼦的理、化及⽣物学特性进⾏分析的⽅法。
它集中了单克隆抗体技术、激光技术、计算机技术、细胞化学和免疫化学技术。
利⽤流式细胞仪可以对细胞等⽣物粒⼦的理化及⽣物学特性(细胞⼤⼩、DNA 含量、细胞表⾯抗原表达等)进⾏定量、快速、客观、多参数相关的检测。
流式细胞仪的基本原理是采⽤流体动⼒学聚焦以保证细胞按同⼀⽅式逐⼀通过激光束(检测区)。
当样本流中的细胞经过流动室中的检测区时,椭圆形的激光束即可检测到细胞信号。
包括细胞的散射光以及细胞上标有的荧光染料发出的激光。
⼀、流式细胞仪的基本结构:流式细胞仪的流动室中有⼀长⽅形通道,加压的鞘液从通道底部进⼊流动室向上流动,检测区位于通道的中央。
当鞘液在通道中流动时,样本流被射⼊鞘液中,鞘液包裹着样本,但并不与其混合。
鞘液的压⼒将样本流聚焦,使其在流动室中逐⼀通过激光检测区。
根据激光束检查到的信号不同,将其分为前向散射光、侧向散射光及荧光。
激光束上的低⾓度散射光被称为前向散射光(FS),主要反映细胞的⼤⼩;与激光束成90度⾓收集的散射光信号称侧向散射光(SS),主要反映细胞的颗粒特性。
如SS可以区分淋巴细胞,单核细胞及粒细胞。
除FS和SS外,细胞亦可发出荧光(FL)。
根据所应⽤的试剂不同,这些荧光可以使仪器得到细胞的⼀些特征,如:FL可以⽤于确认分⼦,像表⾯抗原等。
⼆、光的收集:前向检测器⽤来收集前向散射光,当有散射光到达前向检测器,即会产⽣电压信号。
根据检测器收集到的光信号的不同,电压信号亦不相同。
侧向散射光波长488nm,较荧光强。
它是第⼀个从收集镜/空滤⽚装置中被分离出来的。
应⽤488nm 的⼆向⾊性长通滤⽚(488DL)在45度⾓时,使前向散射光偏转⾄SS检测器,同时⼜使波长较长的荧光通透过去。
流式细胞术(FCM)的工作原理及其在免疫学上的应用摘要:流式细胞术(flow cytometry,FCM)是一种可对单细胞进行快速定性、定量分析的新技术。
它借鉴了荧光标记技术、激光技术、单抗技术和计算机技术,具有极高的检测速度与统计精确性,而且从单一细胞可以同时测得多个参数。
随着其分析技术和方法的日臻完善,流式细胞术在临床免疫及科学研究上发挥了非常重要的作用。
本文对流式细胞术的工作原理进行了概括介绍,并对其在免疫学等方面的应用进行了综述,展示了FCM 在免疫学上应用的广阔前景。
关键词:流式细胞术;流式细胞仪;工作原理;免疫学;应用;应用前景流式细胞术(FCM)是70年代发展起来的一种快速对单细胞或微粒定量分析和分选的新技术。
其检测速度之快,统计学精度之高,是其他的方法无可比拟的,可同时从一个细胞中测得多种参数(如DNA、R N A、蛋白质、细胞体积等)进行多参数分析。
流式细胞仪是近代细胞生物学、分子生物学、分子免疫学和单克隆技术、激光技术、电子计算机术等学科高度发展的结晶,在血液学、肿瘤学等学科尤其是在免疫学方面得到广泛应用[1]。
近年来,随着流式细胞免疫学技术的迅速发展,流式细胞术与单克隆抗体技术结合,使细胞表面和细胞内抗原,癌基因蛋白及膜受体的定量检测取得了很大进展。
流式免疫技术克服了普通免疫学方法难以准确定量的不足,形成了流式免疫学独特的科学分支,成为研究细胞免疫学的先进技术之一。
随着科学技术的发展,多种新的荧光探针的不断出现,使FCM技术的应用范围不断扩大,特别是各种各样的荧光探针标记的单克隆抗体和其他蛋白质的出现,为FCM 研究各种组织细胞膜和细胞内抗原、肿瘤性蛋白等开辟了新途径[2]。
1 .流式细胞术与流式细胞仪1.1流式细胞技术:流式细胞技术是以高能量激光照射高速流动状态下被荧光色素染色的单细胞或微球,测量其产生的散射光和发射荧光的强度;经染色的细胞或微球在悬液中以单行流过高强度光源的焦点,当每个细胞或微球经过焦点时,发出一束散射光/或荧光;它们经过过滤及光镜系统收集到达一个光电检测器光电倍增管或一个固态装置),光检测器把散射光定量转化成电信号,经数字转换器进行数字化后而成整数,然后进行电子存储,以后数据可以调出显示和进行分析;并可能将感兴趣的细胞进行分选[3]。
流式细胞分析在临床血液学中的应用
1.白血病诊断和监测:
白血病是由于骨髓内的恶性细胞大量增殖导致的一种血液系统疾病。
流式细胞术可以根据细胞大小、颜色和表面标记物的表达水平快速分析并鉴别异常细胞。
这对于白血病的早期诊断、分类和监测来说非常重要。
2.免疫功能评估:
流式细胞术可以评估患者的免疫功能。
通过将标记有特定抗体的细胞与患者的血液混合,可以测量细胞表面抗原的表达水平。
这有助于确定患者是否有免疫缺陷,以及免疫功能是否正在正常运行。
3.血液病的异常细胞鉴定:
流式细胞术可以鉴别和计数血液中的异常细胞。
例如,对于淋巴瘤等恶性疾病,流式细胞术可以检测和分类恶性细胞,以便进行早期诊断和个体化治疗。
4.红细胞和血小板计数:
流式细胞术可以用于快速准确地计数红细胞和血小板。
在患者需要进行输血或者有出血倾向的情况下,流式细胞术可以提供非常重要的信息。
5.免疫治疗监测:
流式细胞术可以用于监测免疫治疗的效果。
例如,在进行造血干细胞移植后,流式细胞术可以帮助监测移植后的免疫细胞比例和功能。
这对于治疗干细胞移植相关并发症和个体化治疗来说非常重要。
总之,流式细胞分析是一种在临床血液学中非常有用的技术,可以用于白血病诊断和监测、免疫功能评估、血液病的异常细胞鉴定、红细胞和血小板计数以及免疫治疗监测。
随着技术的发展,流式细胞分析的应用将进一步扩大,为临床血液学的诊断和治疗提供更多的帮助。
流式细胞仪的原理及其临床应用流式细胞技术(FCM)是70 年代发展起来得一种快速对单细胞定量分析的新技术, 它借簦了荧光显微镜技术, 同时利用与荧光染料, 激光技术, 单抗技术以及计算机技术的发展, 将荧光显微镜的激发光源改为激光, 使之具有更好的单色性与激发效率, 因而大大提高了检测灵敏度, 同时将固定的标本台改为流动的单细胞悬液, 用计算机进行数据处理, 因而大大提高了检测速度与统计精确性, 而且从同一个细胞中可以同时测得多种参数, 为生物医学与临床检验学发展提供了一个全新的视角和强有力的手段. 目前, 该技术已经广泛用于基础研究与临床应用, 在免疫学, 遗传学, 血液学, 肿瘤学等领域内发挥前重要的作用. 本文着重介绍流式细胞仪基本原理及其在临床上的应用.一. 基本原理流式细胞仪的主要结构可以大致分为这样几个组成部分: 激光系统, 流式系统, 信号处理及放大, 计算机系统. 图一, 图二概括了流式细胞仪的基本原理, 当待测标本被制务成单细胞悬液, 经染色后进入流动室, 流动室内充满流动的鞘液, 鞘液压力与样品流压力是不同的, 当二者的压力差异达到一定程度时, 鞘液裹挟着的样品流中细胞排成单列逐个经过激光聚焦区. 如果我们将细胞中感兴趣的部分特异性地标上荧光染料, 那么这些染料将在细胞通过激光检测区时受激发出特定波长的荧光, 通过一些波长选择通逶性的滤色片, 我们可以将不同波长的散射光, 荧光信号区分开来, 并送到不同的光电配增管中, 经过一系列信号转换, 放大, 数字化处理, 我们就可以在计算机上直观地统计染上各种荧光染料的细胞各自的百分率. 选择不同的单克隆抗体及荧光染料, 我们可以利用流式细胞仪同时测定一个细胞上的多个不同的特征, 如果对具有某种特征的细胞有兴趣, 我们还可以利用流式的分选功能将其分选出来, 以便于进一步培养, 研究二. 流式细胞仪在免疫学中的应用1. 淋巴细胞亚群分析淋巴细胞是正常机体免疫系统功能最重要的一大细胞群, 在免疫应答过程中, 未梢血淋巴细胞发育成为功能不同的亚群. 各亚群的数量和功能了生异常时, 就能导致机体免疫紊乱并产生病理变化.FCM可以同时检测一种或几种淋巴细胞细胞表面抗原, 将不同的淋巴细胞亚群数量的测定来监控病人的免疫状态, 指导治疗.2. 感染及其治疗效果观察由于T 淋巴细胞在人体免疫系统中承担着重要的功能, 因此, 当感染发生时,T 淋巴细胞各亚群的变化往往能很敏感地反映感染的状态与程度. 例如, 细胞膜外CD4分子有HIV 识别部位, 因此CD4细胞是HIV 病毒受体,AIDS 病人CD4+T细胞明显减少, 该指标是诊断AIDS的重要标志. 当病毒感染发生时( 如乙型肝炎,EB 病毒和巨细胞包涵体病毒),CD8+T 细胞增多, 对CD8细胞的测定有助于对感染的诊断, 治疗效果的动态观察.利用流式细胞仪可对器官或骨髓移植后病人进行监控. 当病人CD3+,CD25持+续增加提示已经开始发生排异,CD4/CD8持续下降表明有感染发生, 当其比值小于0.2 时必须停用免疫抑制剂.由于流式细胞仪将静态的, 显微镜下肉眼观察改为动态的, 计算机信号处理, 因此, 在流式细胞仪上T 细胞亚群统计方式已从传统的荧光显微镜下计数200个细胞成为几秒钟内计数上万个, 因此结果更真实, 更具有统计意义.3. 其他免疫功能性疾病分析流式细胞仪便捷, 准确的特点可以用来对自身免疫性疾病进行检测与疗效观察. SLE病人的淋巴细胞变化可以反映该病的活动情况和器官侵犯程度. 活动或非活动性SLE伴有多系统疾病但无肾脏损害的病人可出现CD4/CD8比值升高, 伴有严重肾脏损害的SLE病人可出现低CD4+,高CD8+的现象.有证据表明外周血HLAB27的表达及其表达程度与强直性脊髓炎的发生有很大程度的相关性, 利用流式细胞仪可以进行HLA-B27./HLA-B7 双标记来检测HLA-B27 阳性细胞, 同时排除交叉反应. 另外,CD23 表达的增加与变态反应性疾病, 自身免疫性疾病, 肾病综合症有关, 而且阳性率与病情严重程度呈正相关, 治疗有效后CD23+细胞减少.利用流式细胞仪检测PNH血细胞的细胞膜所缺乏的糖化肌醇磷脂(GPI) 锚连接的蛋白如DAF(CD55.)与MIRI(CD59..) 来确诊阵发性睡眠性血红蛋白尿传统的血清溶血试验具有更高的特异性与灵敏度.一. 流式细胞仪在血小板功能评价方面的应用血小板膜糖蛋白(GP)是参与止血, 血栓形成的重要分子基础, 这些膜糖蛋白是一类重要得黏附分子. 用搞GP.. 的单克隆抗体对血小板进行免疫荧光标记, 用FCM 分析单个血小板或血小板亚群GP是血小板膜糖蛋白检测分析方法的重大发展,方法简便, 快速, 标本用量少, 灵敏度高, 结果准确.与血小板有关的抗原的临床意义有:1. 诊断遗传性血小板功能缺陷疾病巨血小板综合症(BSS)患者血小板CD42 A\CD42B复合物先天缺陷,FCM中表现CD42A与CD42B不仅严重缺乏, 而且其平均荧光强度显著低于阴性对照,CD61代偿性增加.血小板无力症(GT) 患者FCM表现血小板GPIIB,IIIA(CD41,CD61) 明显缺乏,CD42A 和CD42B基本正常或稍高, 并可出现异常血小板亚群.3. 血栓性疾病和血栓前状态由于活化血小板是血栓的主要成分之一, 也是引起血栓形成的主要原因, 所以血小板活化程度增高与疾病发生发展有关.CD62P.. 和CD63是活化血小板最特异和灵敏的分子标志物, 正常人血小板只有低水平活化, 外周血CD62P只有3-5%.有文献报导糖尿病伴有微血管病变, 冠心病, 高血压病. 高血脂病, 脑血栓形成, 脑动脉硬化患者活化血小板百分率和绝对数显著高于正常人, 而糖尿病无微血管病变, 周围血管病以及深静脉血栓形成患者活化血小板水平与正常人无显著差异.PTCA后24 小时发展成急性血管闭塞或高度再狭窄的患者CD62P..和CD63增多,FCM可用于测PTCA后急性缺血再发作的危险性.四, 流式细胞仪在白血病中的应用血液病多种为肿瘤性免疫性和遗传性疾病, 但恶性血液病约占一半以上.FCM在血液病的发病机制, 诊断, 分类, 治疗和预后判断方面都有广阔的应用前景.1. 白血病的分类研究2. 微小残病变检出(MRD)M R D是白血病复发的主要根源,..FCM 其高特异性与敏感性可以在患者缓解期检避免复发.测是否有残存病变细胞, 早期探测MRD以,五FCM在肿瘤学上的应用1. DNA含量测定及细胞周期分析FMC在肿瘤学上的应用主要是利用DNA含量测定进行包括癌前病变及早期癌变的检出, 化疗指导以及预后评估等工作.大量工作表明, 癌前病变的癌变率与病变的增生程度一致, 而增生程度与DNA含量的异常改变又呈平行关系.FCM通过精确定量DNA含量, 能对癌前病变的性质和了展趋势作出判断, 有助于癌变的早期诊断.DNA非整倍体的出现可能是恶变细胞的重要标志, 目前病理学尚无法从癌前病变中发现癌变和即将癌变的细胞, 而FCM检测中DNA非整倍体细胞的出现可作为一个有价值的参数.DNA倍体分析有助于临界性肿瘤的诊断, 如卵巢的交界性肿瘤, 异倍体的出现与病变的恶性发展有关.细胞异常增殖和分化障碍是肿瘤细胞的特性,DNA含量不仅能非常敏感地反映细胞代谢的异常, 而且能通过DNA倍体分析, 细胞周期各时相的细胞比例分析并结合细胞抗原的表达多参数分析, 全面了解细胞的生物学行为, 从而帮助肿瘤的诊断, 选择治疗方案和预后判断.DNA异倍体, 高S_PHASE细胞比值和高增殖细胞核抗原(PCNA)表达与细胞增殖能力, 恶性程度和不良预后呈正相关.2. 为治疗方案和药理学研究提供依据不同类型的肿瘤对化疗药物的敏感程度是不同的. 可以利用FCM进行细胞期分析, 适当选用周期特异性药物或非周期特异性药物.MDR是由多药耐药基因编的P糖蛋白(PGP)是亲脂化合物, 包括多种抗癌药物和荧光染料的跨膜性排出泵. 从人淋巴细胞排出荧光染料与细胞内P-GP的含量直接相关. 当淋巴细胞出现M D R阳性细胞时, 病人对化疗药物开始出现耐药性, 需要考虑其他治疗方式.六, 活细胞内活性酶的检测法( 如FLUOROMETR及ICCOLORIMDTRIC_ASSAY都S是), 测定总体细胞的总酶活性而非测定单一细胞的酶活性. 若要测定单一细胞的酶活性, 通常都是涉及固定后的死细胞. 近来COULTE公R司推出最新的技术及试剂CELLPROBE_REAGE由N于T,每一个特定的酶都有其专一的受质, 而受质本身是由特别的化学品与荧光染料FLOURENSCE或IN RHODAMINEN共O价结合的, 能迅速进入活细胞, 当其遇到特异性酶时, 会被酶破坏其共价结构而释放其荧光染料, 从而能够被FCM检测到, 因此, 活细胞酶探针能够用来测量单一活体细胞内酶的活性.七. 凋亡细胞检测凋亡最初是作为形态学概念被提出来的. 细胞有两种不同的死亡方式. 即坏死(MECROSIS和) 凋亡(APOPTOISI). 凋亡典型的形态特征是核染色质固缩并分离, 细胞质浓缩, 细胞膜和核膜皱曲, 核断裂形成片断, 最后形成数量不等的凋亡小体. 利用FCM可以进行DNA断裂点标记检测.DNA片断可以从细胞内漏出, 导致DNA含量减少, 利用F C M进行DNA含量分析, 通过二倍体细胞G0/G1期峰前的亚二倍体峰来确定.在凋亡早期, 一些与膜通透性改变及凋亡有关的蛋白在细胞膜表面有特定表达, 例如FAS基因蛋白(CD95), 线粒体膜蛋白(AP027), 磷脂酰丝氨酸(ANNEXIN_V),FCM结合单克隆抗体可以检测表达这些蛋白的细胞, 从而确定细胞的凋亡情况.自70 年代流式细胞仪成型以来, 历经20 多年的发展, 流式细胞仪应用意义越来越得以体现, 尤其是1982 年以后, 随着白细胞分化抗原意义的确认以及单克隆抗体技术的发展, 给流式细胞仪的应用发展提供了强大的推动力. 在我国, 不仅许多科研单位早在80 年代已经开始使用流式细胞仪作为其科研工具, 进入90 年代后, 以库尔特原理及其相关血细胞分析产品闻名的美国库尔特公司以其在流式领域研究, 应用近二十年的积累, 在其五代流式细胞仪的基础上推出了以单激光同时激发四色荧光的新一代临床型流式细胞仪, 并为其配套了临床标本制备仪, 使临床标本制备标准化, 简单化, 开创了流式应用的新领域. 从而, 不少大中型医院也逐步引进流式细胞仪作为临床诊断的辅助工具, 随着单抗技术, 计算机技术及其它相关技术的不断发展, 流式细胞仪将会在应用领域得到不断的开拓, 成为科研与临床不可或缺的重要手段.。
流式细胞术(Flow Cytometry,FCM)检测血小板功能及其临床应用血小板功能的检测包括测定血小板粘附、聚集和活化的能力。
然而,在血小板相关疾病的诊断中,检测血小板功能的方法常常是有争议的。
这通常是由于方法本身的原因造成的[1],譬如,静脉阻滞、抗凝剂选择、离心,甚至标本处理不当等因素,都可导致医源性血小板激活,影响临床诊断的价值。
这就要求建立一种灵敏、精确、快速、简便,最好可用于临床常规检测血小板功能测定方法。
关键词:血小板临床应用流式细胞术血小板功能的检测包括测定血小板粘附、聚集和活化的能力。
然而,在血小板相关疾病的诊断中,检测血小板功能的方法常常是有争议的。
这通常是由于方法本身的原因造成的[1],譬如,静脉阻滞、抗凝剂选择、离心,甚至标本处理不当等因素,都可导致医源性血小板激活,影响临床诊断的价值。
这就要求建立一种灵敏、精确、快速、简便,最好可用于临床常规检测血小板功能测定方法。
由于血小板的活化程度可由血小板膜糖蛋白表达水平的高低来判断,近年来,文献报道利用流式细胞术,特别是全血法流式细胞术,检测血小板膜糖蛋白的表达[2]。
该技术能灵敏、特异地检测血液中活化血小板,并评价其功能。
现就全血法流式细胞术检测血小板功能的方法及临床应用现状和潜力进行综述。
一、全血法流式细胞术1.方法学:流式细胞仪能快速测定大量个体细胞的特性。
样品中欲分析的细胞预先进行荧光标记,然后由压缩氮经硅管送达标本室,再以5 000~10 000个细胞/秒的速率逐个射入光敏感区。
在适当波长的激发光作用下,被特殊染色的细胞发射出一定量的荧光脉冲讯号。
探测器收集每个细胞的荧光讯号和光散射,然后传入计算机进行分析。
传统的流式细胞术检测血小板膜糖蛋白的表达,常用的样本是经洗涤的血小板或富含血小板的血浆。
由于血小板极易活化激惹,样本经离心、洗涤等步骤,容易人为地导致体外血小板激活,影响临床诊断价值。
为此,Shatti等[2]引入了全血法流式细胞术。
该技术能使用全血样本测定循环中血小板的活化状态以及血小板对激活剂的功能应答。
全血流式细胞术样本制备步骤为:抽血抗凝→稀释→生物素化的检测用单克隆抗体(单抗)→激动剂或缓冲液→固定(1%多聚甲醛)→FITC标记的鉴别用单抗→PE-卵白素→稀释。
稀释样本是为了防止血小板聚集,否则单个血小板上的抗原量就测不出来了,因为流式细胞仪测定的是单个粒子的荧光,而不管这单个粒子是一个血小板还是几个血小板的聚集体。
当用凝血酶作外源激动剂时,为防止血小板聚集并形成纤维蛋白凝块,可在全血标本中加入四肽化合物Gly-Pro-Arg-Pro (GPRP)[3]。
固定这一步若不干扰单抗的结合,生物素化的检测用单抗也可以在固定后加入。
血小板鉴别用单抗可在针对血小板特异性膜糖蛋白GPⅠb,GPⅡb,GP Ⅲa的单抗中任选一种。
标记这单抗的荧光试剂可在FITC、PE、PE-CY53种荧光染料中任选。
样本随后用流式细胞仪检测。
通过荧光极性和特异性光散射鉴别出血小板后,检测5 000~10 000个血小板表面的特异性荧光讯号。
检测结果可用两种方法表示。
一种是平均颗粒荧光强度,另一种是特异性荧光抗体结合阳性血小板的百分率。
阳性血小板百分率法与荧光信号的放大倍数无关,且可以检测受损伤部位血小板亚群的变化。
如果检测的是血小板表面某抗原的总量,则荧光强度法更为适合。
譬如,在活化状态下,血小板表面GPIb-IX-V复合物含量比静息时低,但降低的幅度小,通常还不足以报告阴性结果[4],这时用荧光强度法就比阳性血小板百分率法更合适。
目前传统的流式细胞术还不能定量分析结合位点的绝对数目,但Shatti等[2]利用125I 和生物素双标记的单抗进行研究,以PE-卵白素作为荧光结合试剂,发现碘标测定的结合位点数与荧光强度间有线性关系。
因此,对于一个特定的单抗,一旦弄清这一线性关系,并知道荧光单抗上荧光素与抗体的摩尔比,就能利用流式细胞仪定量分析该抗体结合位点的绝对数目。
目前有一些商品试剂盒能定量测定结合到单个细胞上的抗体数目,但乏见用于血小板的报道。
2.优缺点:与常规血小板功能测定法比,全血法流式细胞术有许多优点。
首先,标本处理的简化能避免血小板体外医源性激活,并防止血小板亚群丢失;循环中的红细胞、白细胞对血小板的活化有影响,因此本法能在最接近受检者体内环境的条件下测定血小板功能。
同时,由于使用了血小板鉴别用单抗,检测的仅是血小板,而不会受其它种类细胞或碎片的干扰,保证了检测的特异性。
其次,在血栓性疾病中,通常只有小部分的血小板被活化;凝血酶体外活化血小板,也常表现为亚群激活;活化血小板表达CD62等膜糖蛋白也有明显的异质性[5]。
本法能灵敏地检测出少到1%的活化血小板亚群[6],尤其是能分析单个或亚群血小板膜上活化标志物的变化,使检测结果更接近真实。
若同时使用FITC、PE、PE-CY5 3种荧光染料,本法通过三色标志一次能同时检测两个抗原标志物的变化。
此外,做一次检测仅需2 μl血液,这一点,尤其适合于新生儿和血小板减少性疾病患者。
本法不使用同位素,没有放射性污染。
全血法流式细胞术也存在不足之处。
譬如,流式细胞仪价格高昂,检测费用高,仪器操作复杂。
为了避免体外活化,血样需在45分钟内处理,不能久置。
另外,流式细胞仪仅检测循环中的血小板功能,而β-TG、PF4和TXA2的检测还能反映血管壁上血小板的活化和新近被清除的血小板。
虽然存在着这些不足,但本法仍是血小板功能检测的突破性进展。
二、全血中活化血小板的检测1.血小板特异性膜糖蛋白:本法检测血小板功能,首先要对全血中的血小板进行特异性荧光标记,将血小板与血样中其他血细胞区分开来。
针对血小板表面特异性膜糖蛋白制备的单抗,使血小板特异性标记成为可能。
血小板膜糖蛋白已被深入研究[7],表1显示了血小板膜上主要的糖蛋白及其功能。
在这些膜糖蛋白中,仅在血小板膜表面表达主要有GPⅠb,GPⅡb,GPⅢa等有限的几种[8]。
根据这些特异性糖蛋白制备的荧光单抗,能在全血中特异性地识别血小板,仅给血小板做上荧光标记。
表1血小板膜上主要的糖蛋白及其功能膜糖蛋白基因家族配基功能GPⅠa/Ⅱa 整合素(B1) 胶原粘附GPⅠc/Ⅱa 整合素(B1) Fn 粘附GPⅠc/Ⅱa 整合素(B1) Laminin 粘附GPⅡb/Ⅲa 整合素(B3) Fb,vWF,Vn,Fn 聚集Vn受体整合素(B3) Vn,?vWF,?Fn 粘附GPⅠb/ⅨLRG vWF,凝血酶粘附GPV LRG ? 凝血酶底物GPIV Thrombospodin 粘附GP53 血小板-粒细胞GMP140 选择素相互作用注:vWF血管性假血友病因子;Fb纤维蛋白原;Fn纤维粘连蛋白;Vn体外粘连蛋;LRG富含亮氨酸家族 2.活化血小板的标志物:活化血小板与静息血小板相比,其质膜糖蛋白常发生显著的变化,这些变化的糖蛋白便成为活化血小板的检测标志物。
全血法流式细胞术也是一种免疫学方法,活化血小板表面能通过免疫方法检测的标志物可分为三类[9]:第一类是血小板颗粒膜上的糖蛋白。
血小板被激活时,其颗粒膜与质膜发生融合,颗粒膜蛋白,如CD62、CD63,在质膜上表达,成为活化血小板的分子标志。
第二类是血小板质膜表面变化的糖蛋白表位。
如GPⅡb/Ⅲa(CD41/61)的PAC1表位[10],它仅在血小板活化时才因构象变化而显露出来。
因此,使用这个表位的荧光单抗,我们能更精确地在更早阶段检测到血小板的活化。
另外,GPIV (CD36)虽然在静息血小板上也表达,但活化血小板上表达量更高[9];GPIb-IX-V复合物(CD42)则相反,与静息血小板相比,活化血小板上表达量显著降低[7]。
它们都是活化血小板的分子标志。
第三类是出现在活化血小板上能与血小板表面受体相结合的一些抗原,包括纤维蛋白原,Xa因子和thrombospondin等。
这些抗原在血小板表面的出现和消失在临床检测上也是有意义的。
除检测免疫性的分子标志物外,流式细胞术还能检测一些反映活化血小板功能的非免疫性指标。
如用Ca2+浓度敏感的荧光染料检测胞内Ca2+流[10],用能进入血小板致密颗粒的荧光染料阿的平来检测活化血小板的释放功能[11]等。
3.单抗的选择:与血小板有关的CD单抗有CD9,CD31,CD36,CD41a-b,CD42a-d,CD61,CD62,CD63 ,CD107a-b等。
活化血小板的检测需选择针对活化血小板标志物的CD 单抗。
表2列举了活化血小板检测的一些代表性单抗。
表2活化血小板CD单抗简介CD单抗代表性单抗识别的膜糖蛋白CD36 5F1,CIMeg1,ESIVC7 GPIVCD41 PAC1,7E3,PBM6.4 GPⅡb/Ⅲa和GPⅡbCD42a FMC25,BL-H6,GR-P GPⅠCD42b PHN89,AN51,GN287 GPⅠCD61 Y215,CLB-thromb/1 GPⅢaCD62 CLB-thromb/6,RUU-SP1.18.1 P-selectin或GMP140CD63 RUU-SP2.28,CLB-gran/12 GP53三、诊断学意义及临床应用利用全血法流式细胞术检测上述血小板标志物,在许多血小板相关疾病的诊断上有重要的临床应用价值。
1.血栓性疾病:动脉粥样硬化前期血小板沉积,导致心肌梗塞和中风。
抗血小板药能降低心肌缺血的发生率,证明心肌缺血与血小板活化有关。
全血法流式细胞术检测表明心绞痛和心肌梗塞患者循环中有活化的血小板,血小板活力也增强。
冠状窦血液的检测表明,冠状血管成形术会导致血小板活化。
如果血流恢复后有高水平的活化血小板,血管可能因为内皮细胞严重损伤或血小板栓塞而发生再狭窄[12]。
因此,活化血小板的检测能预测冠状血管成形术后发生急性缺血事件的危险性。
另外,非风湿性心房纤颤患者栓塞和栓塞前期均有血小板活化[13],胰岛素依赖性糖尿病,子痫前期,外周血管疾病等均可测出血小板活力增加和(或)循环中存在活化血小板,而早产儿的血小板对凝血酶、二磷酸腺苷(ADP)、TXA2的体外激活能力降低。
2.血小板缺陷性疾病:全血法流式细胞术提供了一个简单、迅速的方法来诊断血小板膜糖蛋白缺陷性疾病,如巨大血小板综合征,血小板无力症等。
前者是由于GPIb-IX复合物先天缺陷所致的血小板形态巨大,功能异常的出血性疾病[14]。
巨大血小板从全血中分离很困难。
本法能特异性地识别血小板,省去了分离巨大血小板的步骤,使检测更简便、精确。
后者由于GPⅡb/Ⅲa复合物先天缺陷,导致血小板聚集功能障碍[15]。
用全血法流式细胞术分析这些分子标志物有助于血小板缺陷性疾病,尤其是不典型病例的诊断。
3.贮存池疾病:原发性贮存池疾病(δ-SPD)常规用血小板聚集法检测,但特异性和灵敏度均不理想。