浙江大学-线性电势扫描伏安法
- 格式:pdf
- 大小:966.19 KB
- 文档页数:16
实验线性伏安法研究硫酸体系极化行为一.实验目的1. 掌握线性伏安法的基本原理;2.了解上述方法的实验操作和极化曲线的含义。
3.评估析氧和析氢极化的特性。
二、实验内容线性伏安法是以一线性变化电位施加于电解池上,以所得的电流---电极电位曲线为基础的分析和研究方法。
所施加扫描电位与时间的关系为:E=Ei-vt,电流与被测物质浓度c、扫描速度v等因素有关。
本实验是在电解池中注入0.05MH2SO4溶液,插入两个电极(工作电极与辅助电极),阴极将发生还原反应:2H++2e=H2,阳极将发生氧化反应:H2O=1/2O2+2H++2e。
为了测量工作电极的电极电势,需在电解池中加入一个参比电极(通常用甘汞电极),工作电极和参比电极连上电位计可测出电极电势,由于参比电极的电极电势是已知的,故可得到工作电极的电极电势。
实验中以较慢速率连续改变电位(扫描),记录相应的电流值,绘制成图即得极化曲线图,由图可求得极化电极电势。
I0 E电流-电势图三、实验主要仪器设备和材料1.仪器: ZHDY智能恒电位仪,铂、石墨为工作电极(研究电极),可根据不同需要选用不同工作电极,铂电极为对电极(辅助电极),饱和甘汞电极为参比电极。
2.试剂:硫酸水溶液,试剂为分析纯,使用二次重蒸水。
四、实验方法、步骤1. 在电解池中放入适量硫酸水溶液,插入工作电极、辅助电极和饱和甘汞电极。
然后将恒电位仪的接线分别与相应的电极连接,打开恒电位仪。
2. 测阴极极化曲线:打开电脑“ZHDY智能恒电位仪”程序,点击“设置”菜单中“实验设置”,选择“线性伏安法”,设定初始电位0V,终止电位-0.50V,静止时间为1秒,扫描速度0.002 V∙s-1,采样间隔为1mv,灵敏度为1mA/v,点击“确定”。
再点击“联机”,点“确定”,再点击“开始”菜单,即开始记录线性扫描伏安图,结束后,点“停止”。
保存图形。
然后在“实验设置”中改变扫描速度为0.005 V∙s-1,重复测定一次。
lsv线性扫描伏安曲线
什么是线性扫描伏安曲线?
线性扫描伏安曲线(Linear Scanning Voltammetry)是一种采用恒定电压扫描幅度来测量起始电压下物质的电位活性的实验方法。
它可以准确检测到反应型材料的电化学变化,以获得丰富的信息,例如还原机理以及电子转移速率等。
线性扫描伏安曲线的优点:
1.非常灵敏:线性扫描伏安曲线具有非常灵敏的检测和测量能力,可以检测出含有低浓度的电化学反应产物;
2.快速:线性扫描伏安曲线可以在几秒钟至几分钟的时间内完成测量,比其他类似电化学技术更快;
3.易操作:线性扫描伏安曲线操作简单,在获取有效信息的同时可以大大减少所需的技术复杂度;
4.宽广的应用范围:线性扫描伏安曲线能够同时测量相对稳定的电化学反应,以及单次活化能较高或较小的电化学反应,因而应用范围较为宽广。
线性扫描伏安曲线的应用:
1.测量福克斯正极反应:线性扫描伏安曲线本身能检测到福克斯正极反应,但也可以将其与其他电化学技术相结合以获得更精确的测量结果;
2.用于药物研究:线性扫描伏安曲线可以用于药物有效性研究,以及药物输出和药物代谢过程的定量研究;
3.测量生物化学反应:线性扫描伏安曲线可以用于生物样品中的酶反应,DNA、RNA和蛋白质的电化学检测,实现快速、灵敏的检测分析;
4.用于电池组研究:线性扫描伏安曲线可以用于电池组的测试和性能分析,从而提高全球能源使用的效率。
总结:
线性扫描伏安曲线是一种恒定电压扫描测量电位活性的实验方法,具有非常灵敏的检测和测量能力,且它操作简单,快速,宽广的应用范围,可以应用于福克斯正极反应、药物研究、生物样品的酶反应、DNA、RNA和蛋白质的电化学检测、电池组研究等领域。
线性扫描溶出伏安法
线性扫描溶出伏安法(LinearScanVoltammetry,简称LSV)是一种非常重要的化学分析技术,可以用来测量含有活性物质的溶液中离子或分子的浓度,从而可以准确地分析出各种有机和无机化合物。
线性扫描溶出伏安法是一种改进的电化学技术,它可以涵盖范围广泛的多种化学物质。
线性扫描溶出伏安法的工作原理是运用一个沉积电极,并在溶液中横向扫描一系列不同的电势,以及在沉积电极上强制电迁移。
每次扫描都会在沉积电极上形成一层新的电解质,此外,溶液中的活性物质将会参与电迁移过程,并在沉积电极的表面形成新的电解质分子。
最后,再将扫描的电势作图,从而得出电势应力和浓度之间的关系,从而可以准确地测出溶液中离子或分子含量的变化。
线性扫描溶出伏安法有很多优点,首先,它可以迅速准确地测量溶液中离子或分子的含量,从而使得科学家可以更好地分析化合物的结构和特性。
其次,它使用了简单的电化学装置,灵活而又方便,可以在实验室或室内简单条件下进行实验,可以在很短的时间内获得准确的测定结果,也可以在不同的实验条件下重复进行实验。
此外,线性扫描溶出伏安法还有许多实用性功能,其中包括调节实验条件、改变电势、获得准确的参数设定、确定电解质聚集程度、搜寻特异性离子等。
它还可以通过在测量过程中适当地控制扫描速率来提高测量的准确性和灵敏度,因此,它在很多科学研究和分析中都得到了极大的发展。
综上所述,线性扫描溶出伏安法是一种具有重要意义的分析技术,可以准确地识别各种有机物质和无机物质,而且操作也非常简单,属于具有广泛应用前景的电化学技术。
线性扫描伏安法测定废水中的镉含量1111*11111学院广州510275摘要Cd是我国水质监测实施排放总量控制的指标之一。
本实验采用线性扫描伏安法(LSV)方法对废水中的镉离子进行了定量分析。
扫描曲线经过了半微分方法处理处理后的工作曲线在0-80 mg/L范围内的线性相差系数R2为0.9984,结果表明水样中Cd2+的含量为56.7 mg/L,此含量远超过相差规定,必须加以处理方可排放。
方法设备简单、操作简便、分析速度快,有较好的应用前景。
关键词线性扫描伏安法废水镉引言镉(Cd)不是人体的必需元素,Cd的毒性很大在人体主要积蓄在肾脏,引起泌尿系统的功能变化,引发多种疾病。
1955年在日本富山县发生的头痛病,即为Cd污染所致,我国也有受Cd污染稻米的报道。
当水中Cd质量浓度为0.1 mg/L时可轻度抑制地表水的自净作用。
用Cd质量浓度为0.04 mg/L的污水进行农灌时,土壤和稻米明显受到污染。
农灌水中Cd的质量浓度达到0.007 mg/L 时,即可造成污染。
因此Cd是我国水质监测实施排放总量控制的指标之一[1]。
Cd的主要污染源有电镀、采矿、冶炼、染料、电池及其它工业等排放的废水,这些废水排放到水体中引起水质污染。
因此,对水体中有害重金属元素进行检测,保护生态环境就显得很重要[2]。
水和废水中镉的测定,有比色法、原子吸收分光光度法及阳极溶出伏安法、离子选择性电极法、极谱法等[3]。
线性扫描伏安法是指在汞电极上施加一个线性变化的电压,即电极电位是随外加电压线性变化记录工作电极上的电解电流的伏安分析方法,它具有灵敏度高、分辨率高、抗先还原能力强等优点,因此被广泛地应用到了包括有机、无机离子和生物医药物质的分析测定之中。
线性扫描伏安法的工作电极是可极化的微电极,如滴汞电极、静汞电极或其他固体电极;而辅助电极和参比电极则具有相对大的表面积,是不可极化的。
根据电流-电位曲线测得的峰电流与被测物的浓度呈线性关系,可作定量分析[4]。
循环伏安法原理:循环伏安法(CV )是最重要的电分析化学研究方法之一。
该方法使用的仪器简单,操作方便,图谱解析直观,在电化学、无机化学、有机化学、生物化学等许多 研究领域被广泛应用。
循环伏安法通常采用三电极系统,一支工作电极(被研究物质起反应的电极),一支参比电极(监测工作电极的电势),一支辅助(对)电极。
外加电压加在工作电极与辅助电极之间,反应电流通过工作电极与辅助电极。
对可逆电极过程(电荷交换速度很快),如一定条件下的Fe(CN)63-/4-氧化还原体系,当电压负向扫描时,Fe(CN)63- 在电极上还原,反应为:Fe(CN)63-+e - → Fe(CN)64-得到一个还原电流峰。
当电压正向扫描时,Fe(CN)64-在电极上氧化,反应为: Fe(CN)64- - e - → Fe(CN)63-得到一个氧化电流峰。
所以,电压完成一次循环扫描后,将记录出一个如图2所示的氧化还原曲线。
扫描电压呈等腰三角形。
如果前半部扫描(电压上升部分)为去极化剂在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物重新被氧化的阳极过程。
因此.一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。
应用领域:循环伏安法能迅速提供电活性物质电极反应的可逆性,化学反应历程,电活性物质的吸附等许多信息。
循环伏安法可用于研究化合物电极过程的机理、双电层、吸附现象和电极反应动力学.成为最有用的电化学方法之一。
如通过对未知研究体系的CV 研究,可以获研究对象的反应电位或和平衡电位, 估算反应物种的量,以及判断反应的可逆性。
电化学反应中物种反应的量可以依据Faraday 定律估算,, 其中m 为反应的摩尔量, n 为电极反应中的得失电子数,F 为 图2 氧化还原cv 曲线图图1 cv 图中电势~时间关系图3 Ag在Pt电极上电结晶过程的CV图0.01mol/LagNO3+0.1mol/LKNO3Faraday常数(96485 C.molmnFidtQt==∫0-1)。
循环伏安法原理:循环伏安法(CV )是最重要的电分析化学研究方法之一。
该方法使用的仪器简单,操作方便,图谱解析直观,在电化学、无机化学、有机化学、生物化学等许多 研究领域被广泛应用。
循环伏安法通常采用三电极系统,一支工作电极(被研究物质起反应的电极),一支参比电极(监测工作电极的电势),一支辅助(对)电极。
外加电压加在工作电极与辅助电极之间,反应电流通过工作电极与辅助电极。
对可逆电极过程(电荷交换速度很快),如一定条件下的Fe(CN)63-/4-氧化还原体系,当电压负向扫描时,Fe(CN)63- 在电极上还原,反应为:Fe(CN)63-+e - → Fe(CN)64-得到一个还原电流峰。
当电压正向扫描时,Fe(CN)64-在电极上氧化,反应为: Fe(CN)64- - e - → Fe(CN)63-得到一个氧化电流峰。
所以,电压完成一次循环扫描后,将记录出一个如图2所示的氧化还原曲线。
扫描电压呈等腰三角形。
如果前半部扫描(电压上升部分)为去极化剂在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物重新被氧化的阳极过程。
因此.一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。
应用领域:循环伏安法能迅速提供电活性物质电极反应的可逆性,化学反应历程,电活性物质的吸附等许多信息。
循环伏安法可用于研究化合物电极过程的机理、双电层、吸附现象和电极反应动力学.成为最有用的电化学方法之一。
如通过对未知研究体系的CV 研究,可以获研究对象的反应电位或和平衡电位, 估算反应物种的量,以及判断反应的可逆性。
电化学反应中物种反应的量可以依据Faraday 定律估算,, 其中m 为反应的摩尔量, n 为电极反应中的得失电子数,F 为 图2 氧化还原cv 曲线图图1 cv 图中电势~时间关系图3 Ag在Pt电极上电结晶过程的CV图0.01mol/LagNO3+0.1mol/LKNO3Faraday常数(96485 C.molmnFidtQt==∫0-1)。