导数在研究函数中的应用
- 格式:ppt
- 大小:446.51 KB
- 文档页数:11
导数在研究函数中的应用导数作为微积分的重要概念,在研究函数中应用广泛。
导数的概念最早由牛顿和莱布尼茨独立提出,它描述了函数变化的速率。
导数的定义是函数在其中一点的变化率,表示函数在这一点附近的斜率。
在函数研究中,导数的应用主要体现在以下几个方面:1.切线和法线:导数可以用来求解函数曲线上其中一点的切线和法线。
切线是函数曲线在其中一点上切过该点的直线,而法线是与切线相垂直的直线。
利用导数的定义,我们可以确定函数曲线上其中一点的斜率,进而得到其切线和法线的方程。
2.极值与拐点:导数可以帮助我们找到函数的极值点和拐点。
在函数的极值点上,导数等于零。
根据这个性质,我们可以利用导数来确定函数的极大值和极小值点。
此外,导数还可以帮助我们确定函数上的拐点,即函数曲线由凸向上转为凹向上或由凹向上转为凸向上的点。
3.函数的单调性:导数还可以帮助我们研究函数的单调性。
如果函数在一些区间上的导数恒大于零(或恒小于零),那么函数在该区间上是递增的(或递减的)。
通过分析函数的导数,我们可以确定函数在一些区间上是递增还是递减。
4.函数的凹凸性:导数还可以用来确定函数的凹凸性。
如果函数在一些区间上的导数恒大于零,那么函数在该区间上是凸的;如果函数在一些区间上的导数恒小于零,那么函数在该区间上是凹的。
通过分析函数的导数的变化情况,我们可以确定函数的凹凸区间。
5.近似计算:导数还可以用于近似计算。
在很多实际问题中,函数的导数可以用来近似表示函数在其中一点的变化率。
通过导数近似表示函数的变化率,我们可以很方便地进行问题求解和计算。
总之,导数在研究函数中的应用非常广泛,涵盖了函数的局部性质、全局性质以及近似计算等方面。
通过对导数的研究,我们可以全面了解函数的变化规律和特性,为解决实际问题提供了有力的工具。
导数在研究函数中的应用学习目标:1.会从几何直观了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件(导数在极值点两端异号)和充分条件();会用导数求函数的极大值、极小值(多项式函数一般不超过三次).3.会求闭区间上函数的最大值、最小值(多项式函数一般不超过三次)重难点:利用导数判断函数的单调性;会求一些函数的极值与最值。
函数极值与最值的区别与联系.利用导数在解决函数问题时有关字母讨论的问题.知识点一:函数的单调性(一)导数的符号与函数的单调性:一般地,设函数在某个区间内有导数,则在这个区间上,①若,则在这个区间上为增函数;②若,则在这个区间上为减函数;③若恒有,则在这一区间上为常函数.反之,若在某区间上单调递增,则在该区间上有恒成立(但不恒等于0);若在某区间上单调递减,则在该区间上有恒成立(但不恒等于0).注意:1.因为导数的几何意义是曲线切线的斜率,故当在某区间上,即切线斜率为正时,函数在这个区间上为增函数;当在某区间上,即切线斜率为负时,函数在这个区间上为减函数;即导函数的正负决定了原函数的增减。
2.若在某区间上有有限个点使,在其余点恒有,则仍为增函数(减函数的情形完全类似)。
即在某区间上,在这个区间上为增函数;在这个区间上为减函数,但反之不成立。
在某区间上为增函数在该区间;在某区间上为减函数在该区间。
在区间(a,b)内,(或)是在区间(a,b)内单调递增(或减)的充分不必要条件!例如:而f(x)在R上递增.3.只有在某区间内恒有,这个函数在这个区间上才为常数函数.4.注意导函数图象与原函数图象间关系.(二)利用导数求函数单调性的基本步骤:1. 确定函数的定义域;2. 求导数;3. 在定义域内解不等式,解出相应的x的范围;当时,在相应区间上为增函数;当时在相应区间上为减函数.或者令,求出它在定义域内的一切实数根。
导数在研究函数中的应用——单调性教学目标:①能探索并应用函数的单调性与导数的关系;②求一些简单的非初等函数的单调区间;③能由函数的单调性绘制函数图象.教学重点:利用导数研究函数的单调性,会求一些简单的非初等函数的单调区间.教学难点:导数与单调性之间的联系,利用导数绘制函数的大致图象.教学设计:一、问题情境问题一 求函数342+-=x x y 的单调区间.问题二 判断或证明函数的单调性常用方法有那些?问题三 你能确定函数762)(23+-=x x x f 的单调区间吗?问题四 除了单调性是对函数变化趋势(上升或下降的陡峭程度)的刻画,还有什么知识也刻画了函数变化的趋势?设计意图:以问题形式复习相关的旧知识,同时引出新问题:三次函数或非初等函数判断单调性,在用定义法、图象法很不方便时,如何思考、化未知为已知,让学生积极主动地参与到学习中来.二、数学建构问题五 能不能利用导数研究函数的单调性呢?问题六 导数与单调性有何联系?如何寻找?导数与函数的单调性的关系一般地, 对于函数y =f (x ),如果在某区间上f ′(x )>0,那么f (x )为该区间上的增函数;如果在某区间上f ′(x )<0,那么f (x )为该区间上的减函数.设计意图:通过观察、猜想到归纳、总结,让学生体验知识的发现、发生过程,变灌注知识为学生主动获取知识,从而使之成为课堂教学活动的主体.三、数学应用例1.确定下列函数的单调区间:(1)x x y ln -= (2)xx y ln =(3)x xe y =总结利用导数讨论函数单调性的步骤:①求函数的定义域;②求函数f (x )的导数f ′(x );③令f ′(x )>0解不等式,得x 的范围就是递增区间.令f ′(x )<0解不等式,得x 的范围,就是递减区间.④书写答案注意连接词.问题六 确定函数762)(23+-=x x x f 的单调区间,并作出草图.问题七 画出下列函数的草图①71862)(23++-=x x x x f ②7662)(23++-=x x x x f设计意图:通过具有开放性问题的设计,可以拓展学生思维,有利于学生对函数单调性与导数关系的更深层次的理解,进一步培养学生作函数图象与使用数形结合解决问题的意识.课后思考题 ①求函数xa x y +=)(R a ∈的单调区间. ②画出3x y =的图象,试问导函数0)(>'x f 是函数)(x f y =单调递增的 的条件.设计意图:这个问题是个难点,课上如果讲是讲不透的,课后让学生思考,可以有足够的时间去理解.另外,在给定函数下思考,可以使得问题的针对性更强,否则学生不知如何入手.对由已知单调增(减)的导数应该大于(小于)或等于零这个结论,只要让学生通过实例感受到为什么,在以后的使用中不漏解即可,而不必要做理论上的论证.四、课堂小结;通过本节课的学习,你学到了哪些新知识?能解决哪些问题?本节课我们用到了哪些数学思想方法?设计意图:通过小结,培养学生学习——总结——反思的良好习惯,使学习更上一个台阶.五、课堂练习1.确定下列函数的单调区间(1)2x x y -= (2)3x y -=2.讨论函数的单调性(1)b kx y += (2)xk y =(3))0(2≠++=a c bx ax y 3.用导数证明:(1)x e x f =)(在区间()+∞∞-,上是增函数; (2)x e x f x-=)(在区间()0,∞-上是减函数.。
(五)利用导数研究函数的性质【知识精讲】导数在研究函数中的应用:1、利用导数求函数()y f x =单调区间的步骤:① 确定()f x 的定义域; ② 求导数'()f x ;③ 令'()0f x >,解不等式从而在定义域内确定()f x 的递增区间, 令'()0f x <,解不等式从而在定义域内确定()f x 的递减区间.2、对于含参数的函数()y f x =,若已知此函数在某区间单调递增(或单调递减),则此函数的导函数'()0f x ≥(或'()0f x ≤)在此区间上恒成立.处理恒成立问题,常用图象法或分离参数法,从而可求得参数的取值范围.3、求可导函数 )(x f y =极值的步骤:① 确定函数的定义域;② 求导数;③ 求方程'0y =的根,这些根也称为可能极值点;④ 检查在方程的根的左右两侧的符号,确定极值点.如果左正右负,那么)(x f y =在这个根处取得极大值;如果左负右正,那么)(x f y =在这个根处取得极大值.4、在区间 []b a ,上求函数 )(x f y =的最大值与最小值 的步骤:① 函数 )(x f y =在),(b a 内有导数... ;.② 求函数 )(x f y =在),(b a 内的极值③ 将.函数)(x f y =在),(b a 内的极值与)(),(b f a f 比较,其中最大的一个为最大值 ,最小的一个为最小值.【例题选讲】例1.【2014·全国大纲卷(理22)】已知函数3()ln(1)3x f x x x =+-+.讨论()f x 的单调性;例2.【2014·山东卷(文20)】(本小题满分13分)设函数1()ln 1x f x a x x -=++ ,其中a 为常数. (I)若0a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(II )讨论14a =-时函数()f x 的单调性.例3.【2014·福建卷(理20)】已知函数()ax e x f x -=(a 为常数)的图像与y 轴交于点A ,曲线()x f y =在点A 处的切线斜率为-1.求a 的值及函数()x f 的极值;例4.【2014·四川卷(文21)】已知函数3()12x f x e x =--,求函数()f x 在区间[0,1]上的最值;【练习巩固】1.求函数ln ()x f x x=的单调区间.2.设函数22()(ln )x e f x x x x=++求函数()f x 的单调区间3..【2014·湖南卷(理22)】已知常数20,()ln(1).2x a f x ax x >=+-+函数讨论()f x 在区间(0,)+∞上的单调性;4.【2014·安徽卷(理19,文20)】(本小题满分13分)设函数238()13f x x x x =+--,其中0a >. (Ⅰ)讨论()f x 在其定义域上的单调性;(Ⅱ)当[]0,1x ∈时,求()f x 取得最大值和最小值时的x 的值5.【2014·江西卷(理18)】已知函数. (1)当时,求的极值;(2)若在区间上单调递增,求b 的取值范围.。
导数在研究函数中的应用导数是微积分中的重要概念,它在研究函数中有着广泛的应用。
导数可以描述函数在某一点上的变化率,帮助我们理解函数的性质以及解决实际问题。
本文将从几个方面介绍导数在函数研究中的应用。
一、函数的极值问题导数在研究函数的极值问题中起着重要的作用。
通过求函数的导数,我们可以得到函数的驻点和拐点,从而确定函数的极值。
具体来说,当函数的导数为零或不存在时,该点可能是函数的极值点。
通过求导数并求解方程,我们可以求得这些驻点,然后用二阶导数的符号判断它们是极大值还是极小值。
这个过程在求解最优化问题、优化生产过程中都有着广泛的应用。
二、函数的图像与性质导数可以帮助我们研究函数的图像和性质。
通过求导数,我们可以得到函数的增减性和凹凸性。
具体来说,当导数大于零时,函数是增函数;当导数小于零时,函数是减函数。
而二阶导数的正负可以判断函数的凹凸性,当二阶导数大于零时,函数是凹函数;当二阶导数小于零时,函数是凸函数。
通过分析导数和二阶导数的变化,我们可以画出函数的图像,并对函数的性质进行准确的描述。
三、函数的近似计算导数在函数的近似计算中有着重要的应用。
当函数的表达式很复杂或很难求解时,我们可以通过导数来近似计算函数的值。
具体来说,我们可以利用导数的定义公式f'(x) = lim(h->0) (f(x+h)-f(x))/h 来计算函数在某一点的导数,然后通过导数的值和函数在该点的值来估计函数在附近点的值。
这种方法在数值计算、机器学习等领域中被广泛应用。
四、函数的最优化问题导数在函数的最优化问题中也有着重要的应用。
通过求函数的导数,我们可以找到函数的驻点,从而求解函数的最值。
具体来说,当函数在某一点的导数为零或不存在时,该点可能是函数的最值点。
通过求导数并求解方程,我们可以求得这些驻点,然后通过二阶导数的符号判断它们是极大值还是极小值。
这个方法在经济学、工程学等领域中常常用来解决最优化问题。
导数在函数的研究中有着广泛的应用。
《导数在研究函数中的应用—函数的单调性与导数》说课稿一、教材分析1教材的地位和作用“函数的单调性和导数”这节新知在教材是选修2—1,本节计划两个课时完成。
作为高三总复习课首先明确考纲的要求了解函数的单调性和导数的关系;能利用导数研究函数的单调性;会求函数的单调区间(其中多项式函数一般不超过三次)。
在高考中常利用导数研究函数的单调性,并求单调区间、极值、最值、以及利用导数解决生活中的优化问题。
其中利用导数判断单调性起着基础性的作用,形成初步的知识体系,培养学生掌握一定的分析问题和解决问题的能力。
激发学生独立思考和创新的意识,让学生有创新的机会,充分体验成功的喜悦,开发了学生的自我潜能。
2教学内容本节课的主要教学内容是导数在研究函数中的应用(1)—函数的单调性与导数。
在练习解二次不等式、含参数二次不等式的问题后,结合导数的几何意义回忆函数的单调性与函数的关系。
例题精讲强化函数单调性的判断方法,例题的选择有梯度,由无参数的一般问题转化为解关于导函数的不等式,再解关于含参数的问题,最后提出函数单调性与导数关系逆推成立。
培养学生数形结合思想、转化思想、分类讨论的数学思想。
3教学目标(一)知识与技能目标:1、能探索并应用函数的单调性与导数的关系求单调区间;2、能解决含参数函数的单调性问题以及函数单调性与导数关系逆推。
(二)过程与方法目标:1、通过本节的学习,掌握用导数研究函数单调性的方法。
2、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、分类讨论的数学思想。
(三)情感、态度与价值观目标:1、通过在教学过程中让学生多动手、多观察、勤思考、善总结,2、培养学生的探索精神,渗透辩证唯物主义的方法论和认识论教育。
4教学重点,难点教学重点:利用导数研究函数的单调性、求函数的单调区间。
探求含参数函数的单调性的问题。
二、教法分析1“ 以”, 针对本知识点在高考中的地位、作用,以及学生前期预备基础,应注重理解函数单调性与导数的关系,进行合理的推理,引导学生明确求可导函数单调区间的一般步骤和方法,无参数的一般问题转化为解关于导函数的不等式。
1.3.1导数在研究函数中的应用—单调性教案12017-2018学年高中数学苏教版选修2-2导数在研究函数中的应用——单调性【教学分析】1.教材分析本节课是高中数学苏教版教材选修2-2第1.3.1节导数在研究函数单调性中的应用.这节内容是导数作为研究函数的工具的起点,是本节的重点,学生对本节的收获直接影响着后面极值、最值的学习.函数单调性是高中阶段讨论函数“变化”的一个最基本的性质.学生在中学阶段对于单调性的学习共分为三个阶段:第一阶段,在初中以具体函数为载体,从图形直观上感知单调性;第二阶段在高中学习必修一时,用运算的性质研究单调性;第三阶段就是在本节课中,用导数的性质研究单调性.本节内容属于导数的应用,是本章的重点,学生在学习了导数的概念、几何意义、基本函数的导数、导数的四则运算的基础上学习本节内容.学好它既可加深对导数的理解,又为研究函数的极值和最值打好基础,具有承前启后的重要作用.研究过程蕴含了数形结合、分类讨论、转化与化归等数学思想方法,以及研究数学问题的一般方法,即从特殊到一般,从简单到复杂,培养了学生应用导数解决实际问题的意识.2.学情分析《普通高中数学新课程标准(实验)》中要求:结合实例,借助几何直观探索并了解函数的单调性与导数间的关系.对于函数的单调性学生已经掌握图象、定义两种判断方法,但是图象和定义法不是万能的.对于不能用这两种方法解决的单调性问题学生需要思考.学生之前学习了导数的概念,经历过从平均变化率到瞬时变化率的过程,研究过导数的几何意义是函数图象在某点处的切线,从数和形的角度认识了导数也是刻画函数变化陡峭程度的量,但是沟通导数和单调性之间的练习对学生来说是教学中要突破的难点和重点.3. 教学目标(1)了解函数的单调性与导数的关系,能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.(2)通过实例,借助几何直观、数形结合探索函数的单调性与导数的关系;通过初等方法与导数方法研究函数性质过程中的比较,体会导数在研究函数性质中的一般性和有效性,同时感受和体会数学自身发展的一般规律.(3)通过教师指导下的学生交流探索活动,激发学生的学习兴趣,培养学生转化与化归的思维方式,并引导学生掌握从特殊到一般,从简单到复杂的思维方法,用联系的观点认识问题,提高学生提出问题、分析问题、解决问题的能力.4. 教学重点:利用导数研究函数的单调性5. 教学难点:发现和揭示导数的正负与函数单调性的关系.6. 教学方法与教学手段:问题教学法、合作学习法、多媒体课件等【教学过程】1.创设情境,激发兴趣情境一:过山车章头图情境二:观看过山车视频【设计意图】通过章头图拉近学生与数学的关系,让学生感受到生活处处有数学,也为本节课的研究埋下伏笔。