自控实验报告二典型系统的时域响应和稳定性分析
- 格式:docx
- 大小:341.35 KB
- 文档页数:6
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。
图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。
图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图1.2-4 所示。
图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由Routh 判断得Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。
由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。
实验二典型系统动态性能和稳定性分析一.实验目的1.学习和掌握动态性能指标的测试方法。
2.研究典型系统参数对系统动态性能和稳定性的影响。
二.实验内容1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。
2.观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。
三.实验步骤1.熟悉实验箱,利用实验箱上的模拟电路单元,参考本实验附录中的图2.1.1和图2.1.2,设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路(如用U9、U15、U11和U8连成)。
注意实验接线前必须对运放仔细调零(出厂已调好,无需调节)。
信号输出采用U3单元的O1、信号检测采用U3单元的I1、锁零接U3单元的G1。
2.利用实验设备观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。
3.改变该二阶系统模拟电路的参数,观测参数对系统动态性能的影响。
4.利用实验箱上的模拟电路单元,参考本实验附录中的图2.2.1和图2.2.2,设计并连接由一个积分环节和两个惯性环节组成的三阶闭环系统的模拟电路(如用U9、U15、U11、U10和U8连成)。
5.利用实验设备观测该三阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。
6.改变该三阶系统模拟电路的参数,观测参数对系统稳定性与动态指标的影响。
7.分析实验结果,完成实验报告。
软件界面上的操作步骤如下:①按通道接线情况:通过上位机界面中“通道选择”选择I1、I2路A/D通道作为被测环节的检测端口,选择D/A通道的O1(“测试信号1”)作为被测对象的信号发生端口.不同的通道,图形显示控件中波形的颜色将不同。
②硬件接线完毕后,检查USB口通讯连线和实验箱电源后,运行上位机软件程序,如果有问题请求指导教师帮助。
③进入实验模式后,先对显示模式进行设置:选择“X-t 模式”;选择“T/DIV ”为1s/1HZ 。
中南大学典型系统时域响应及稳定性分析实验报告典型试验系统的时域响应和稳定性分析1.目的要求1。
研究二阶系统的特征参数(ξ,ωn)对跃迁过程的影响。
2.研究二阶对象在三种阻尼比下的响应曲线和系统稳定性。
3.熟悉劳斯判据,用劳斯判据分析三阶系统的稳定性。
2.原则1简介。
典型二阶系统的稳定性分析(1)结构框图:如图所示。
(2)理论分析系统的开环传递函数为:开环增益2。
典型三阶系统的稳定性分析(1)结构框图:如图所示。
(2)理论分析系统的开环传递函数为:系统的特征方程为:三个,一台仪表电脑,TD-1.目的要求1。
研究二阶系统的特征参数(ξ,ωn)对跃迁过程的影响。
2.研究二阶对象在三种阻尼比下的响应曲线和系统稳定性。
3.熟悉劳斯判据,用劳斯判据分析三阶系统的稳定性。
2.原则1简介。
典型二阶系统的稳定性分析(1)结构框图:如图所示。
(2)理论分析系统的开环传递函数为:开环增益2。
典型三阶系统的稳定性分析(1)结构框图:如图所示。
(2)理论分析系统的开环传递函数为:系统的特征方程为:三、一台仪表微机,TD:首先计算临界阻尼、欠阻尼和过阻尼时电阻R的理论值,然后将理论值应用于模拟电路,观察二阶系统的动态性能和稳定性,这应与理论分析基本一致。
系统的闭环传递函数为:其中固有振荡角频率:阻尼比:2.典型三阶系统稳定性分析实验内容Routh行列式由Routh在实验前确定为:为了确保系统的稳定性,第一列中的值应该是正的,因此有实验步骤:1.用“短路块”缩短信号源单元的“ST”端脚和“S”端脚。
由于每个运算放大器单元配备有零锁定场效应晶体管,所以运算放大器具有零锁定功能。
将开关置于“方波”位置,分别调节调幅和调频电位器,使“输出”端的方波幅度输出为1V,周期约为10s。
2.典型二阶系统瞬态性能指标测试(1)根据模拟电路图1.2-系统闭环传递函数:其中固有振荡角频率:阻尼比:2.典型三阶系统稳定性分析实验内容Routh行列式由Routh在实验前确定为:为了确保系统的稳定性,第一列中的值应该是正的,因此有实验步骤:1.用“短路块”缩短信号源单元的“ST”端脚和“S”端脚。
实验2——时域系统分析和线性系统的稳定性研究1. 研究性教学目的① 学习二阶系统阶跃响应曲线的实验测试方法;② 研究二阶系统的两个重要参数n ωζ,对阶跃瞬态响应指标的影响;③ 研究线性系统的开环比例系数K 对稳定性的影响; ④ 研究线性系统的时间常数T 对稳定性的影响。
2. 知识点训练① 自行设计二阶及三阶系统电路。
② 选择好必要的参数值, 计算出相应的阶跃响应数值, 进行仿真分析。
3. 研究性要求① 自行设计二阶及三阶仿真电路, 可以使用Proteus\Multisim\EWB\Matlab 等仿真软件;② 针对各环节选择好必要的参数值, 理论计算环节的输出响应; ③ 仿真分析环节的在典型输入信号作用下的输出波形。
4. 研究性内容实验一:典型二阶系统方块图和实现电路如图1-1所示。
图1-1 二阶系统闭环传递函数如下:, (T 是时间常数)。
各运算放大器运算功能: OP1, 积分, ; OP2, 积分, ; OP9, 反相, (-1);OP6, 反相比例, 。
可以得到:31010021211⨯====f n R k RCT ζω实验一步骤, 使, , 取, , 使T=0.47s, , 加入单位阶跃扰动, 记录响应曲线, 记作[1]。
仿真结果实验结果通过游标读图可以得到以下数据:保持不变, 单位阶跃扰动不变, 取, , 使T=1.47s, , 记录响应曲线, 记作[2]。
仿真结果实验结果保持不变, 单位阶跃扰动不变, 取, ,使T=1.0s, , 记录响应曲线, 记作[3]。
仿真结果实验结果保持不变, 单位阶跃扰动不变, 取, 使k=0.8, , 记录响应曲线, 记作[4]。
仿真结果实验结果保持不变, 单位阶跃扰动不变, 取, 使k=2.0, , 记录响应曲线, 记作[5]。
仿真结果实验结果要求: 将曲线[1]、[2]、[3]进行对比, [3]、[4]、[5] 进行对比, 将[3]中的和理论值进行比较。
中南大学典型系统的时域响应和稳定性分析实验报告实验介绍:本实验以中南大学典型系统为研究对象,通过构建数学模型和实际建模结果,分析系统的时域响应和稳定性,以及初步探讨系统的性能和优化方法。
实验步骤:1、对中南大学典型系统进行数学建模,并得到系统的传递函数。
2、通过Matlab对系统的传递函数进行分析,得到系统的时域响应。
3、分析系统特征方程的根,判断系统的稳定性。
4、探讨系统的性能指标,并初步探讨系统的优化方法。
实验结果:1、数学模型及传递函数:根据中南大学典型系统的构成,我们可以得到其传递函数为:$$G(s) = \frac{Y(s)}{X(s)}=\frac{K}{s(T_1s+1)(T_2s+1)}$$2、时域响应分析:阶跃响应脉冲响应可以看出,在系统输入为阶跃信号时,系统的响应随着时间的增加逐渐趋于稳定;在系统输入为脉冲信号时,系统的响应在一定时间范围内会有一个稳定的振荡。
3、稳定性分析:我们根据系统的特征方程$$1+G(s)=0$$得到特征方程为:$$s^3+T_1T_2s^2+(T_1+T_2)s+K=0$$我们通过Matlab计算特征方程的根,得到系统的特征根分别为:$-0.0327\pm0.6480j$和$-2.4341$。
根据根的位置,我们可以判断系统的稳定性。
由于系统的根都在左半平面,因此系统是稳定的。
4、性能指标和优化方法:本实验中,我们主要关注系统的稳定性和响应速度等性能指标。
在实际应用中,我们可以通过调整系统控制参数,如增益$K$和时间常数$T_1$和$T_2$等,来优化系统的性能。
结论:本实验通过对中南大学典型系统进行数学建模和实际响应分析,得到了系统的传递函数、阶跃响应和脉冲响应等数学模型,并根据特征方程的根判断了系统的稳定性。
在探讨系统性能指标和优化方法的基础上,我们可以进一步探究系统的优化方案,并为实际控制应用提供参考。
典型系统的时域响应与稳定性分析1. 时域响应分析时域响应指的是系统在时间上的响应特性。
时间域分析主要是利用微分方程分析系统的时域响应。
对于一个线性时不变系统(LTI)来说,可以通过拉普拉斯变换来得到系统的微分方程和传递函数,然后通过求解微分方程或者使用传递函数的极点和零点分析系统的时域响应。
常见的系统时域响应包括阶跃响应、脉冲响应和正弦响应。
这里以阶跃响应为例:阶跃响应可以用系统的传递函数 H(s) 通过拉普拉斯逆变换来求得:h(t) = L^-1[H(s)]其中,L^-1表示拉普拉斯逆变换。
如果系统的传递函数可以表示为有理函数的形式,可以通过部分分式分解和拉普拉斯逆变换将传递函数分解为简单的分式形式,例如:H(s) = K / (s+a)(s+b)上述传递函数的分解形式可以根据不同的分母极点对系统的时域响应进行分析。
例如,对于第一种分解形式,系统的时域响应可以表示为:h(t) = K1e^(-at) - K2e^(-bt)其中,K1和K2是待定系数,可以根据初值条件求解。
根据这个时域响应可以得到系统的稳定性分析结论:当a和b的实部均小于零时,系统是稳定的;当a和b的实部均大于零时,系统是不稳定的;当a和b的实部均等于零时,系统是临界稳定的。
2. 稳定性分析稳定性分析是对系统的稳定性进行判断和评价的过程。
系统的稳定性取决于时域响应的长期行为,可以通过系统的极点和零点的位置来进行判断。
对于一个单输入单输出(SISO)的线性时不变系统(LTI),系统的稳定性可以根据系统的传递函数 H(s) 的极点位置进行判断。
如果所有的极点都位于s平面的左半平面,也就是实部都小于零,则系统是稳定的。
如果存在一个或多个极点位于s平面的右半平面,则系统是不稳定的。
如果极点都位于s平面的虚轴上,则系统是临界稳定的。
稳定性分析是控制系统设计过程中必不可少的一步,它能够帮助控制工程师预测系统的行为并避免不稳定的结果。
在实际应用中,稳定性分析可以应用于飞行控制系统、机器人控制系统、电力系统等领域,为实际系统的设计和控制提供基础支持。
《自动控制理论》实验报告姓名班级学号台号日期节次成绩教师签字实验二典型系统瞬态响应和稳定性分析一、实验目的1.研究二阶系统的特征参量对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD-ACC+教学试验系统一套三、实验原理及内容一、典型二阶系统1、结构框图2、模拟电路3、理论分析 开环传函: )1(/)1()()(101101+=+=S T S T k S T S T k S H S G 系统的开环增益: 01/T k K =当s T 10= ,s T 1.01= ,R k /1001= , R k T k K /100/101=== 时 系统的开环传递函数为:)11.0(/100)()(+=S S RS H S G 系统的闭环传递函数为: RS S RR S S R S H S G S G S W /100010/1000/100)11.0(/100)()(1)()(2++=++=+=系统闭环传递函数标准式为: 2222)(n n nS S S W ωξωω++= 二式比较得: R n /10002=ω 102=n ξωR n /1010=ω R/10105=ξ当R=10k 时: 5.0/10105==Rξ0 < ξ < 1 , 当R=20k 时: 707.0/10105==Rξ 0 < ξ < 1 当R=40k 时: 1/10105==Rξ1=ξ ,当R=100k 时: 58.1/10105==Rξ ξ > 12.1 R=10Kp t =0.375S, s t =1.117S ,%p σ近似为零理论值p t = 0.363S, s t = 1.0S ,%p σ=12.8% 由此可以分析,理论值与实际值接近。
R=20Kp t =0.650S, s t 无法看出,%p σ近似为零理论值p t =0.444S ,s t =0.651S ,%p σ=1% 由此分析,理论值与实际值近似相等。
实验二 控制系统稳定性分析和时域响应分析一、实验目的与要求1、熟悉系统稳定性的Matlab 直接判定方法和图形化判定方法;2、掌握如何使用Matlab 进行控制系统的动态性能指标分析;3、掌握如何使用Matlab 进行控制系统的稳态性能指标分析。
二、实验类型设计三、实验原理及说明1. 稳定性分析 1)系统稳定的概念经典控制分析中,关于线性定常系统稳定性的概念是:若控制系统在初始条件和扰动共同作用下,其瞬态响应随时间的推移而逐渐衰减并趋于原点(原平衡工作点),则称该系统是稳定的,反之,如果控制系统受到扰动作用后,其瞬态响应随时间的推移而发散,输出呈持续震荡过程,或者输出无限偏离平衡状态,则称该系统是不稳定的。
2)系统特征多项式以线性连续系统为例,设其闭环传递函数为nn n n mm m m a s a s a s a b s b s b s b s D s M s ++++++++==----11101110......)()()(φ 式中,n n n n a s a s a s a s D ++++=--1110...)(称为系统特征多项式;0...)(1110=++++=--n n n n a s a s a s a s D 为系统特征方程。
3)系统稳定的判定对于线性连续系统,其稳定的充分必要条件是:描述该系统的微分方程的特征方程具有负实部,即全部根在左半复平面内,或者说系统的闭环传递函数的极点均位于左半s 平面内。
对于线性离散系统,其稳定的充分必要条件是:如果闭环系统的特征方程根或者闭环传递函数的极点为n λλλ,...,21,则当所有特征根的模都小于1时,即),...2,1(1n i i =<λ,该线性离散系统是稳定的,如果模的值大于1时,则该线性离散系统是不稳定的。
4)常用判定语句2.动态性能指标分析系统的单位阶跃响应不仅完整反映了系统的动态特性,而且反映了系统在单位阶跃信号输入下的稳定状态。
实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、实验内容1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=s s s s s s s G可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。
2.对典型二阶系统2222)(nn n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标ss s p r p e t t t ,,,,σ。
2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数nω对系统的影响。
3.单位负反馈系统的开环模型为)256)(4)(2()(2++++=s s s s Ks G试判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。
三、实验报告1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。
1) 程序代码如下: >> num=[1 3 7];den=[1 4 6 4 1 0]; impulse(num,den) grid曲线如下:2) 程序代码如下:num=[1 3 7 0]; den=[1 4 6 4 1 0]; step(num,den) grid曲线如下:2.对典型二阶系统2222)(nn n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标ss s p r p e t t t ,,,,σ。
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。
图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。
图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图 1.2-4 所示。
图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由 Routh 判断得 Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。
由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。
实验二典型系统的时域响应和稳定性分析一、实验目的
1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。
二、实验设备
PC 机一台,TD-ACC+(或 TD-ACS)教学实验系统一套。
三、实验原理及内容
1.典型的二阶系统稳定性分析
(1) 结构框图:如图1.2-1 所示。
(2) 对应的模拟电路图:如图 1.2-2 所示。
(3) 理论分析
系统开环传递函数为:G(s)=k1
T0S(T1S+1)=
K1
T0
S(T1S+1)
; 开环增益K=K1
T0
(4) 实验内容
先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值使用于模拟电路中,观察二阶系统的动态性能及稳定性,应和理论分析基本吻合。
在此实验中(图 1.2-2)
2.典型的三阶系统稳定性分析
(1) 结构框图:如图 1.2-3 所示。
(2) 模拟电路图:如图 1.2-4 所示。
(3) 理论分析
系统的开环传函为:G(s)H(s)=
500
R
S(0.1S+1)(0.5S+1)
(其中K=500
R
)
系统的特征方程为: 1 +G(s)H(s)=0 S3+12S2+20S+20K=0。
(4) 实验内容
实验前由Routh 判断得Routh 行列式为:
四、实验步骤
1.将信号源单元的“ST”端插针和“S”端插针用“短路块”短接。
由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。
将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT”端输出的方波幅值为 1V,周期为 10s 左右。
2. 典型二阶系统瞬态性能指标的测试
(1) 按模拟电路图 1.2-2 接线,将 1 中的方波信号接至输入端,取 R = 10K。
(2) 用示波器观察系统响应曲线 C(t),测量并记录超调 MP、峰值时间 tp 和调节时tS。
(3) 分别按 R = 50K;160K;200K;改变系统开环增益,观察响应曲线
C(t),测量并记录性能指标 MP、tp 和 tS,及系统的稳定性。
并将测量值和计算值进行比较 (实验前必须按公式计算出)。
将实验结果填入表 1.2-1 中。
表 1.2-2 中已填入了一组参考测量值,供参照。
3.典型三阶系统的性能
(1) 按图 1.2-4 接线,将 1 中的方波信号接至输入端,取 R = 30K。
(2) 观察系统的响应曲线,并记录波形。
(3) 减小开环增益 (R = 41.7K;100K),观察响应曲线,并将实验结果填入表 1.2-3 中。
表 1.2-4 中已填入了一组参考测量值,供参照。
五、实验结果
1、实验截图
① R=10
② R=50
③ R=160
④ R=200
2、实验结果分析
(1)典型二阶系统瞬态性能指标
(2)典型三阶系统在不同开环增益下的响应情况。