1.2.1 任意角的三角函数(二) 教案+习题
- 格式:doc
- 大小:630.00 KB
- 文档页数:12
课 题:1.2.1 任意角的三角函数(二)教学目标:(1)掌握三角函数的符号;(2)根据定义理解与运用公式一,把求任意角的三角函数值转化为求0°~360°间的三角函数值.(3)初步应用定义分析与解决与三角函数值有关的一些简单问题. 教学重点:三种三角函数的定义域和函数值在各象限的符号;终边相同的角的同一三角函数值相等(公式一).教学难点: 理解转化,灵活运用诱导公式(一). 教学设想: 一、复习回顾:任意角的三角函数定义是什么? 二、探究新知:1.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:例1.求证:当且仅当不等式组sin 0{tan 0θθ<>成立时,角θ为第三象限角.练习:书P15练习42.提问:角的终边落在坐标轴上三个三角函数值是多少? 完成书上P15练习33.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 显然: 终边相同的角的同一三角函数值相等.即有公式一:sin(2)sin k απα+=, cos(2)cos k απα+=,tan(2)tan k απα+= (其中k Z ∈)利用公式一,可以把求任意角的三角函数值, 转化为求0到2π(或0︒到360︒)角的三角函数值.例2.确定下列三角函数值的符号:(1)cos250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan 3π练习: tan(-666°36’)、tan113π例3.求下列三角函数值:(1)9cos4π; (2)11tan()6π-三、学习小结(1)你能准确判断三角函数值在各象限内的符号吗?(2)请写出各三角函数的定义域;(3)终边相同的角的同一三角函数值有什么关系?你在解题时会准确熟练应用公式一吗?。
11、任意角的三角函数(1)一、教学内容分析三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用.直角三角形简单朴素的边角关系,以直角坐标系为工具进行自然地推广而得到简明的任意角的三角函数定义,紧紧扣住三角函数定义这个宝贵的源泉,自然地导出三角函数线、定义域、符号判断、同角三角函数关系、多组诱导公式、图象和性质。
三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身.二、学生学习情况分析在初中学生学习过锐角三角函数。
因此本课的内容对于学生来说,有比较厚实的基础,新课的引入会比较容易和顺畅。
学生要面对的新的学习问题是,角的概念推广了,原先学生所熟悉的锐角三角函数的定义是否也可以推广到任意角呢?通过这个问题,让学生体会到新知识的发生是可能的,自然的。
三、设计思想教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学.四、教学目标1.掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);2、理解任意角的三角函数不同的定义方法;掌握并能初步运用公式一;树立映射观点,正确理解三角函数是以实数为自变量的函数.3、通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.借助有向线段进一步认识三角函数.4、通过任意三角函数的定义,认识锐角三角函数是任意三角函数的一种特例,加深特殊与一般关系的理解。
5、通过三角函数的几何表示,使学生进一步加深对数形结合思想的理解,拓展思维空间。
通过学生积极参与知识的“发现”与“形成”的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。
第一章:三角函数第一课时教材:角的概念的推广目的:要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
过程:一、提出课题:“三角函数”回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。
相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。
二、角的概念的推广1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”2.讲解:“旋转”形成角突出“旋转”注意:“顶点”“始边”“终边”“始边”往往合于x轴正半轴3.“正角”与“负角”——这是由旋转的方向所决定的。
记法:角α或α∠可以简记成α4.由于用“旋转”定义角之后,角的范围大大地扩大了。
1︒角有正负之分如:α=210︒β=-150︒γ=-660︒2︒角可以任意大实例:体操动作:旋转2周(360︒³2=720︒) 3周(360︒³3=1080︒)3︒还有零角一条射线,没有旋转三、关于“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)例如:30︒ 390︒-330︒是第Ⅰ象限角, 300︒-60︒是第Ⅳ象限角585︒ 1180︒是第Ⅲ象限角,-2000︒是第Ⅱ象限角等四、关于终边相同的角1.观察:390︒,-330︒角,它们的终边都与30︒角的终边相同2.终边相同的角都可以表示成一个0︒到360︒的角与)k∈个周角的和(Zk390︒=30︒+360︒)1k(=-330︒=30︒-360︒ )1(-=k 30︒=30︒+0³360︒ )0(=k 1470︒=30︒+4³360︒ )4(=k -1770︒=30︒-5³360︒ )5(-=k3.所有与α终边相同的角连同α在内可以构成一个集合 {}Z k k S ∈⋅+==,360| αββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和 五、小结: 1︒ 角的概念的推广, 用“旋转”定义角,角的范围的扩大 2︒“象限角”与“终边相同的角”第二课时教材:弧度制目的:要求学生掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的集合与实数集R 一一对应关系的概念。
《任意角的三角函数》教学设计一、教学目标1、知识与技能目标(1)理解任意角三角函数(正弦、余弦、正切)的定义。
(2)掌握三角函数在各象限的符号。
(3)能够根据角的终边上的点的坐标求出三角函数值。
2、过程与方法目标(1)通过单位圆的引入,经历从锐角三角函数推广到任意角三角函数的过程,体会从特殊到一般的数学思想方法。
(2)通过三角函数的定义的探究,培养学生的观察、分析和解决问题的能力。
3、情感态度与价值观目标(1)通过数学知识的探究和应用,感受数学的严谨性和实用性,激发学生学习数学的兴趣。
(2)培养学生勇于探索、敢于创新的精神,提高学生的数学素养。
二、教学重难点1、教学重点任意角三角函数的定义。
2、教学难点用坐标法定义任意角的三角函数。
三、教学方法讲授法、讨论法、探究法四、教学过程1、导入新课(1)复习锐角三角函数的定义:在直角三角形中,锐角的正弦、余弦、正切分别是对边与斜边、邻边与斜边、对边与邻边的比值。
(2)提出问题:对于任意角,如何定义三角函数呢?2、新课讲授(1)单位圆的概念在平面直角坐标系中,以原点为圆心,以单位长度为半径的圆称为单位圆。
(2)任意角三角函数的定义设角α的终边与单位圆交于点 P(x,y),则定义:正弦函数:sinα = y余弦函数:cosα = x正切函数:tanα = y/x (x≠0)(3)三角函数在各象限的符号根据角α终边上点的坐标的正负,确定三角函数值在各象限的符号。
3、例题讲解例 1:已知角α的终边经过点 P(3,-4),求角α的正弦、余弦和正切值。
解:因为 x = 3,y =-4,所以 r =√(3²+(-4)²) = 5sinα = y/r =-4/5cosα = x/r = 3/5tanα = y/x =-4/3例 2:确定角α所在的象限,使得sinα > 0 且cosα < 0。
解:因为sinα > 0,所以角α的终边在第一、二象限或 y 轴的正半轴上;因为cosα < 0,所以角α的终边在第二、三象限或 x 轴的负半轴上。
任意角的三角函数(教案)一、教学内容本节课的教学内容来自于高中数学必修一的第四章第一节,主要内容包括任意角的三角函数的定义、正弦函数、余弦函数和正切函数的图像与性质。
二、教学目标1. 让学生理解任意角的三角函数的定义,掌握正弦函数、余弦函数和正切函数的图像与性质。
2. 培养学生运用三角函数解决实际问题的能力。
3. 培养学生合作学习、探究学习的能力。
三、教学难点与重点1. 教学难点:任意角的三角函数的定义,正弦函数、余弦函数和正切函数的图像与性质的理解和应用。
2. 教学重点:任意角的三角函数的定义,正弦函数、余弦函数和正切函数的图像与性质的掌握。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:笔记本、尺子、圆规、三角板。
五、教学过程1. 实践情景引入:让学生观察教室的布置,找出角的度量单位,引出角的概念。
2. 任意角的三角函数的定义:通过多媒体展示正弦函数、余弦函数和正切函数的定义,让学生理解并掌握它们的定义。
4. 例题讲解:出示例题,让学生独立解答,然后讲解答案,讲解过程中强调解题思路和方法。
5. 随堂练习:出示随堂练习题,让学生独立完成,然后批改并讲解答案。
8. 布置作业:布置相关的作业题目,让学生巩固所学知识。
六、板书设计1. 任意角的三角函数的定义2. 正弦函数、余弦函数和正切函数的图像与性质七、作业设计1. 题目:已知一个角的度数为30°,求它的正弦值、余弦值和正切值。
答案:正弦值:1/2余弦值:√3/2正切值:√3/32. 题目:画出角α的正弦函数、余弦函数和正切函数的图像。
答案:见附图。
八、课后反思及拓展延伸1. 课后反思:本节课的教学过程中,学生对任意角的三角函数的定义掌握较好,但在正弦函数、余弦函数和正切函数的图像与性质的理解上还有待加强。
2. 拓展延伸:让学生研究任意角的三角函数在实际问题中的应用,如测量大树的高度、计算物体在斜面上的速度等。
重点和难点解析一、任意角的三角函数的定义任意角的三角函数的定义是本节课的核心内容,学生需要理解并掌握正弦函数、余弦函数和正切函数的定义。
1.2.1任意角的三角函数重难点题型【举一反三系列】【知识点1 三角函数的定义】1.任意角的三角函数定义2.三角函数的定义域:【知识点2 三角函数值的符号】第一象限角的各三角函数值都为正;第二象限角的正弦值为正,其余均为负;第三象限角的正切值为正,其余均为负;第四象限角的余弦值为正,其余均为负.注:一全正,二正弦,三正切,四余弦.【知识点3 诱导公式一】由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一:【知识点4 单位圆的三角函数线定义】如图(1)PM表示α角的正弦值,叫做正弦线.OM表示α角的余弦值,叫做余弦线.如图(2)AT表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.【考点1 三角函数的定义】【分析】根据三角函数的定义,列方程求出m的值.【答案】解:角α的终边上一点(1,)P m,所以0m>,故选:B.【点睛】本题考查了三角函数的定义与应用问题,是基础题.A .4B .4±C .3D .3±【分析】由题意利用任意角的三角函数的定义,求得m 的值.故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.)【分析】由题意利用任意角的三角函数的定义,求得tan α的值.【答案】解:角故选:C .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.【变式1-3】(2019春•牡丹江期末)角α的终边上一点(P a ,2)(0)a a ≠,则2sin cos (αα-= )【分析】由题意利用任意角的三角函数的定义,分类讨论求得结果. 【答案】解:α的终边上一点(P a ,2)(0)a a ≠, 555a a =,22555a a =,555a a=-,2555a a=-故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题. 【考点2 利用象限角判断三角函数的符号】【例2】(2019春•湖北期中)下列命题成立的是( ) A .若θ是第二象限角,则cos tan 0θθ< B .若θ是第三象限角,则cos tan 0θθ> C .若θ是第四象限角,则sin tan 0θθ< D .若θ是第三象限角,则sin cos 0θθ>【分析】根据角所在的象限判断三角函数值的符号进行判断即可.【答案】解:若θ是第二象限角,则cos 0θ<,tan 0θ<,则cos tan 0θθ>,故A 错误, 若θ是第三象限角,则cos 0θ<,tan 0θ>,则cos tan 0θθ<,故B 错误, 若θ是第四象限角,则sin 0θ<,tan 0θ<,则sin tan 0θθ>,故C 错误, 若θ是第三象限角,则sin 0θ<,cos 0θ<,则sin cos 0θθ>,故D 正确, 故选:D .【点睛】本题主要考查三角函数值符号的判断,结合角的象限与三角函数值符号的关系是解决本题的关键. 【变式2-1】(2019春•珠海期末)已知点(sin ,tan )M θθ在第三象限,则角θ在( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】由题意可得sin 0θ<且tan 0θ<,分别求得θ的范围,取交集得答案. 【答案】解:由题意,00sin tan θθ<⎧⎨<⎩①②,由①知,θ为第三、第四或y 轴负半轴上的角; 由②知,θ为第二或第四象限角. 则角θ在第四象限. 故选:D .【点睛】本题考查三角函数的象限符号,是基础题.【变式2-2】(2019春•玉山县校级月考)若sin cos 0θθ<,则θ在( ) A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限【分析】判断三角函数的符号,然后判断角所在象限即可.【答案】解:sin cos 0θθ<,可知sin θ与cos θ异号,说明θ在第或第四象限. 故选:D .【点睛】本题考查三角函数的符号的判断,角所在象限,是基本知识的考查. 【变式2-3】(2018秋•安庆期末)式子sin1cos2tan4的符号为( )A.正B.负C.零D.不能确定【分析】由1,2,4分别表示第一、二、三象限的角,由此可得答案.【答案】解:1,2,4分别表示第一、二、三象限的角,<,tan40>.∴>,cos20sin10故选:B.【点睛】本题考查三角函数值的符号,是基础题.【考点3 利用诱导公式一判断三角函数的符号】【例3】(2019秋•武邑县校级期中)下列三角函数值的符号判断正确的是()【分析】根据角所在的象限、诱导公式、三角函数值的符号逐项判断即可.【答案】解:A、因为156︒在第二象限,所以sin1560︒>,故A错误;︒=︒+︒=︒,且196︒在第三象限,D、因为tan556tan(360196)tan196所以tan5560︒>,故D错误;故选:C.【点睛】本题考查了三角函数的诱导公式,及三角函数在各象限的符号的应用,属于基础题.【变式3-1】(2019秋•西陵区校级期末)下列三角函数值的符号判断错误的是() A.sin1650︒<︒>D.tan3100︒>B.cos2800︒>C.tan1700【分析】直接利用诱导公式化简,判断符号即可.【答案】解:sin1650︒=︒>,正确;︒>,正确;cos280cos800tan1700︒=-︒<,正确;︒>,错误;tan310tan500故选:C.【点睛】本题考查诱导公式的应用,三角函数值的符号的判断,是基础题.【变式3-2】(2019春•武功县期中)下列值①sin(1000)-︒;④sin2是负值-︒;②cos(2200)-︒;③tan(10)的为()A.①B.②C.③D.④【分析】根据终边相同的角的三角函数值相同,利用三角函数符号判断方法,即可得出结论.【答案】解:①sin(1000)sin1000sin 2800-︒=-︒=-︒>; ②cos(2200)cos2200cos400-︒=︒=︒>; ③tan(10)tan100-︒=-︒<;综上,是负值的序号为③. 故选:C .【点睛】本题考查了终边相同的角与三角函数符号判断问题,是基础题.【变式3-3】(2019秋•夷陵区校级月考)给出下列各函数值:①sin(1- 000)︒;②cos(2- 200)︒;③tan(10)-;A .①④B .②③C .③⑤D .④⑤【分析】利用诱导公式分别对五个选项进行化简整理,进而根据三角函数的性质判断正负. 【答案】解:①,sin(1000)sin(2360280)sin 280cos100-︒=-⨯︒-︒=-︒=︒>; ②,cos(2200)cos(636040)cos400-︒=-⨯︒-︒=︒>; ③,tan(10)tan(30.58)tan(0.58)0π-=-+=-<;,πsin2cos3tan40∴<.∴其中符号为负的是:③⑤.故选:C .【点睛】本题主要考查了运用诱导公式化简求值,解题时应正确把握好函数值正负号的判定,是基础题. 【考点4 三角函数定义域】【分析】列出使函数有意义的不等式组,即由被开方数不小于零,得三角不等式组,分别利用正弦函数和余弦函数图象解三角不等式组即可【答案】解:要使函数有意义,需解得: (k ∈Z )即2k π+≤x ≤2k π+π (k ∈Z )故答案为Z )【点睛】本题考查了函数定义域的求法,三角函数的图象和性质,解简单的三角不等式的方法 可.【答案】解:函数【点睛】本题考查了函数的概念,三角函数的定义域,解三角函数的不等式,属于中档题. 【分析】由绝对值的特点得到sin α-和0的关系,由正弦曲线和角的正弦值可以得到角的范围,写出角的范围后注意加上k 的取值. 【答案】解:|sin |sin αα=-,sin 0α∴-, sin 0α∴,由正弦曲线可以得到[2k αππ∈-,2]k π,k Z ∈, 故答案为:[2k ππ-,2]k π,k Z ∈【点睛】本题主要考查三角函数不等式,解题时最关键的是要掌握三角函数的图象,通过数形结合得到要求的角的范围,这个知识点应用非常广泛,可以和其他知识结合来考查.【变式4-3】求下列函数的定义域:(2)(2sin1)=-;y lg x【分析】利用函数的定义域以及三角函数线化简求解即可.【答案】解:(1)要使y=有意义,可得cos x≥0,解得{x|﹣,k∈Z};(2)要使y=lg(2sin x﹣1)有意义,可得2sin x﹣1>0,即:sin x,解得{x|,k∈Z};(3)要使y=有意义,可得sin x≠﹣1.所以函数的定义域为:{x|x=﹣+2kπ,k∈Z}.【点睛】本题考查三角函数的定义域的求法,三角函数线的应用,考查计算能力.【考点5 利用诱导公式一化简求值】【例5】(2019春•娄星区期中)求下列各式的值:(2)sin1170cos1440tan1845︒+︒-︒【分析】(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;【答案】(本题满分10分)(2)sin1170cos1440tan1845︒+︒-︒sin(336090)cos(43600)tan(536045)=⨯︒+︒+⨯︒+︒-⨯︒+︒ sin90cos0tan45=︒+︒-︒1=.【点睛】此题考查了运用诱导公式化简求值,以及特殊角的三角函数值,熟练掌握诱导公式是解本题的关键.【变式5-1】求下列各式的值(2)9cos2708cos03tan011sin180︒+︒+︒+︒.【分析】由特殊角的三角函数值即可计算得解.1(1)(1)=+-+-1=-.(2)9cos2708cos03tan011sin180︒+︒+︒+︒ 08100=+⨯++ 8=.【点睛】本题主要考查了特殊角的三角函数值在三角函数化简求值中的应用,属于基础题. 【变式5-2】(2019春•船营区校级月考)计算下列各式的值: (1)sin(1395)cos1140cos(1020)sin750-︒︒+-︒︒; tan 4ππ; 【分析】(1)原式中的角度变形后,利用诱导公式化简,再利用特殊角的三角函数值计算即可得到结果. (2)利用诱导公式即可计算得解.【答案】解:(1)原式sin(144045)cos(108060)cos(108060)sin(72030)=-︒+︒︒+︒+-︒+︒︒+︒ sin45cos60cos60sin30=︒︒+︒︒tan 4ππ )0【点睛】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键,属于基础题. 【变式5-3】(2019春•平罗县校级期中)求下列各式的值 )cos(570)cos(1140)tan(210)sin(690)︒-︒-︒-︒-︒【分析】(1)利用诱导公式以及特殊角的三角函数化简求值即可. (2)利用诱导公式以及特殊角的三角函数化简求值即可. )cos(570)cos(1140)tan(210)sin(690)-︒-︒=-︒-︒25)sin cos tan 463πππ=+-【点睛】本题考查诱导公式的应用,三角函数化简求值,考查计算能力. 【考点6 利用三角函数线解不等式】【例6】(2019春•泗县校级月考)利用单位圆,求适合下列条件的角的集合:【分析】在单位圆中画出三角函数线. (1)由[0,2π)内,,结合正弦线得的解集;(2)由[0,2π)内,,结合余弦线得的解集.【答案】解:在单位圆内作三角函数线如图:(1)∵在[0,2π)内,,OA,OB分别为的终边,由正弦线可知,满足的角的终边在劣弧AB内,∴的解集为{α|};(2))∵在[0,2π)内,,OC,OD分别为的终边,由余弦线可知,满足的终边在劣弧CD内,∴的解集为{α|}.【点睛】本题考查了三角函数线,考查了三角不等式的解法,训练了数形结合的解题思想方法,是中低档题.【变式6-1】求下列不等式的解集:【分析】作出单元圆,利用三角函数线进行求解即可.【答案】解:(1)正弦线大于0的角为x轴的上方,对应的角为2kπ<x<2kπ+π,k∈Z,则不等式的解集为(2kπ,2kπ+π),k∈Z.(2)余弦线小于0的角为y轴的左侧,对应的角为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(3)sin x>对应的区域在阴影部分,对应角的范围为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(4)cos x≤﹣对应的区域在阴影部分,对应角的范围为2kπ+≤x≤2kπ+,k∈Z,则不等式的解集为[2kπ+,2kπ+],k∈Z.【点睛】本题主要考查三角不等式的求解,利用三角函数的三角函数线是解决本题的关键.【变式6-2】利用三角函数线,写出满足下列条件的角x的集合:(2)tan x≥﹣1.【分析】根据三角函数线分别进行求解即可.【答案】解:(1)作出y=﹣,交单位圆于B,C,则sin x>﹣对应的区域为阴影部分,作出x=,交单位圆于E,D,则cos x>对应的区域为阴影部分OD,OE之间,则sin x>﹣且cos x>对应的区域为OC到OE之间,其中OC对应的角为﹣,OE对应的角为,则阴影部分对应的范围是2kπ﹣<x<2kπ+,k∈Z,即sin x>﹣且cos x>对应的范围是{x|2kπ﹣<x<2kπ+,k∈Z}(2)作出正切函数线AT=﹣1,则tan x≥﹣1对应的区域为阴影部分,OT对应的角为﹣,则阴影部分对应的角的范围是kπ﹣≤x<kπ+,即不等式的解集为{x|kπ﹣≤x<kπ+,k∈Z}【点睛】本题主要考查三角函数对应不等式的求解,利用三角函数线是解决本题的关键.【变式6-3】利用三角函数线,写出满足下列条件的角x的集合.(3)tan x≥﹣1;【分析】作出单位圆,由三角函数值先求出角在[0,2π]内的取值范围,再由终边相同的角的概念加上周期,由此能求出满足条件的角x的集合.【答案】解:(1)由sin x,作出单位圆,如下图,∵sin x,∴,∴满足sin x≥的角x的集合为{x|2kπ+,k∈Z}.(2)由cos x≤,作出单位圆,如下图,∵cos x≤,∴,∴满足cos x≤的角x的集合为{x|2kπ+≤x≤2kπ+,k∈Z}.(3)由tan x≥﹣1,作出单位圆,如下图,∵tan x ≥﹣1,∴﹣≤x <, ∴满足tan x ≥﹣1的角x 的集合为{x |k π﹣,k ∈Z }. (4)由sin x >且cos x >,作出单位圆,如下图,∵sin x >且cos x >,∴,∴满足sin x >且cos x >x 的集合为{x |2k π+,k ∈Z }. 【点睛】本题考查角的取值范围的求法,是基础题,解题时要注意单位圆和三角函数线的合理运用.【考点7 利用三角函数线比较大小】【例7】比较下列各组数的大小:【分析】(1)根据余弦函数单调性的大小进行比较(2)利用三角函数的诱导公式以及作差法进行比较即可.704π<-cos(π∴-02πα<<则0sin(cos <cos(sin )α222ππ-<【点睛】本题主要考查三角函数值的大小比较,结合三角函数的诱导公式以及三角函数的单调性是解决本题的关键.【变式7-1】利用三角函数线比较下列各组三角函数值的大小:【分析】根据题意,依次作出各个角的三角函数值对应的三角函数线,进而比较大小即可得答案.【点睛】本题考查的知识点是三角函数线,三角函数值的大小比较,关键是掌握三角函数线的定义.【变式7-2】比较大小:可知:21AT AT >,可知:BD BC >,【点睛】本题考察了诱导公式的化简运用,正切线的画法,属于三角函数线的基础题目.【变式7-3】比较下列各组数的大小:【分析】根据三角函数线进行比较即可.)5 cos7π=在单位圆中作出对应的三角函数线如图,则余弦线为OM,正弦线为MP,(2)在单位圆中作出对应的三角函数线如图,则正切线为AT,正弦线为MP,则AT MP>,【点睛】本题主要考查三角函数值的大小比较,根据三角函数线是解决本题的关键.。
1.2.1 任意角的三角函数(二)学习目标 1.掌握正弦、余弦、正切函数的定义域(重点).2.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切(重点).3.能利用三角函数线解决一些简单的三角函数问题(难点).预习教材P15-17完成下面问题: 知识点1 三角函数的定义域正弦函数y =sin x 的定义域是R ;余弦函数y =cos x 的定义域是R ;正切函数y =tan x 的定义域是{x |x ∈R 且x ≠k π+π2,k ∈Z }.【预习评价】函数y =cos x 的定义域为________.解析 由cos x ≥0得{x |2k π-π2≤x ≤2k π+π2,k ∈Z }.答案 {x |2k π-π2≤x ≤2k π+π2,k ∈Z }知识点2 三角函数线 1.相关概念 (1)单位圆:以原点O 为圆心,以单位长度为半径的圆. (2)有向线段:带有方向(规定了起点和终点)的线段.规定:方向与x 轴或y 轴的正方向一致的为正值,反之为负值. 2.三角函数线【预习评价】作出下列各角的正弦线、余弦线和正切线. (1)-π4; (2)17π6; (3)103π.答案题型一 三角函数线及其作法【例1】 分别作出下列各角的正弦线、余弦线、正切线. (1)π4;(2)2π3;(3)-3π4;(4)11π6. 解 作图,如图所示:图(1),(2),(3),(4)中的MP ,OM ,AT 分别表示各个角的正弦线、余弦线、正切线. 规律方法 三角函数线的画法(1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x 轴的垂线,得到垂足,从而得正弦线和余弦线.(2)作正切线时,应从A (1,0)点引x 轴的垂线,交α的终边(α为第一或第四象限角)或α终边的反向延长线(α为第二或第三象限角)于点T ,即可得到正切线AT .【训练1】 (1)作出-π3的正弦线;(2)作出4π3的正切线.解 (1)作出-π3的正弦线MP 如图所示.(2)作出43π的正切线AT 如图所示.方向1 利用三角函数线比较大小【例2-1】 利用三角函数线比较下列各组数的大小: (1)sin 2π3与sin 4π5;(2)tan 2π3与tan 4π5.解 如图所示,角2π3的终边与单位圆的交点为P ,其反向延长线与单位圆的过点A 的切线的交点为T ,作PM ⊥x 轴,垂足为M ,sin 2π3=MP ,tan 2π3=AT ;4π5的终边与单位圆的交点为P ′,其反向延长线与单位圆的过点A 的切线的交点为T ′,作P ′M ′⊥x 轴,垂足为M ′,则sin 4π5=M ′P ′,tan 4π5=AT ′,由图可见,MP >M ′P ′>0,AT <AT ′<0, 所以(1)sin 2π3>sin 4π5,(2)tan 2π3<tan 4π5.方向2 利用三角函数线解不等式【例2-2】 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:(1)sin α≥32;(2)tan α≥-1. 解 (1)作直线y =32交单位圆于A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域即为角α的终边的范围,如图所示,故满足条件的角α的集合为⎩⎨⎧⎭⎬⎫a |2k π+π3≤α≤2k π+23π,k ∈Z .(2)在单位圆过点A (1,0)的切线上取AT =-1,连接OT ,OT 所在直线与单位圆交于P 1,P 2两点,则图中阴影部分即为角α终边的范围,如图所示,所以α的取值集合是⎩⎨⎧⎭⎬⎫α|-π4+k π≤α<π2+k π,k ∈Z .规律方法 1.利用三角函数线比较大小的两个注意点 (1)角的终边的位置要找准;(2)比较两个三角函数值的大小,不仅要看其长度,还要看其方向. 2.利用三角函数线解不等式的方法(1)首先作出单位圆,然后根据各问题的约束条件,利用三角函数线画出角x 满足条件的终边范围.(2)角的终边与单位圆交点的横坐标是该角的余弦值,与单位圆交点的纵坐标是该角的正弦值.(3)写角的范围时,抓住边界值,然后再注意角的范围的写法要求. 【训练2】 解不等式cos α≤-12.解 作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,如图所示,故满足条件的角α的集合为⎩⎨⎧⎭⎬⎫α|2k π+23π≤α≤2k π+43π,k ∈Z .题型三 求三角函数的定义域 【例3】 求下列函数的定义域: (1)f (x )=sin x ·tan x ; (2)f (x )=lg sin x +9-x 2. 解 (1)∵要使函数f (x )有意义, ∴sin x ·tan x ≥0,∴sin x 与tan x 同号或sin x ·tan x =0,故x 是第一、四象限的角或终边在x 轴上的角. ∴函数的定义域为{x |2k π-π2<x <2k π+π2或x =(2k +1)π,k ∈Z }.(2)由题意,要使f (x )有意义,则⎩⎪⎨⎪⎧sin x >0,9-x 2≥0.由sin x >0得2k π<x <2k π+π(k ∈Z ), ① 由9-x 2≥0得-3≤x ≤3,②由①②得:f (x )的定义域为{x |0<x ≤3}.规律方法 求三角函数定义域的方法(1)求函数的定义域,就是求使解析式有意义的自变量的取值范围,一般通过解不等式或不等式组求得,对于三角函数的定义域问题,还要考虑三角函数自身定义域的限制.(2)要特别注意求一个固定集合与一个含有无限多段的集合的交集时,可以用取特殊值把不固定的集合写成若干个固定集合再求交集.【训练3】 求下列函数的定义域: (1)y =2cos x -1;(2)y =lg(3-4sin 2x ). 解 (1)∵2cos x -1≥0,∴cos x ≥12.如图,∴x ∈⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ). ∴函数的定义域为⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ). (2)∵3-4sin 2x >0,∴sin 2x <34,∴-32<sin x <32.如图,∴x ∈⎝⎛⎭⎫2k π-π3,2k π+π3∪⎝⎛⎭⎫2k π+2π3,2k π+4π3(k ∈Z ). 即x ∈⎝⎛⎭⎫k π-π3,k π+π3(k ∈Z ). ∴函数的定义域为⎝⎛⎭⎫k π-π3,k π+π3(k ∈Z ).课堂达标1.下列四个命题中:①α一定时 ,单位圆中的正弦线一定; ②单位圆中,有相同正弦线的角相等; ③α和α+π有相同的正切线;④具有相同正切线的两个角终边在同一条直线上. 不正确命题的个数是( ) A .0 B .1 C .2D .3解析 由三角函数线的定义①③④正确,②不正确. 答案 B2.如果π4<α<π2,那么下列不等式成立的是( )A .cos α<sin α<tan αB .tan α<sin α<cos αC .sin α<cos α<tan αD .cos α<tan α<sin α解析 方法一 (特值法)令α=π3,则cos α=12,tan α=3,sin α=32,故cos α<sin α<tan α.方法二 如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT ,则OM <MP <AT ,即cos α<sin α<tan α.答案 A3.比较大小:sin 1________sin π3(填“>”或“<”).解析 因为0<1<π3<π2,结合单位圆中的三角函数线,知sin 1<sin π3.答案 <4.当x ∈[0,2π]时,不等式sin x ≥12的解集为________.解析 如图所示,不等式的解集为{x |π6≤x ≤5π6}.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪π6≤x ≤5π6 5.比较sin 4π7与tan 4π7的大小.解4π7的正弦线MP 与正切线AT 如图所示.由图易知sin 4π7>0,tan 4π7<0,∴sin 4π7>tan 4π7.基础过关1.下列说法不正确的是( )A .当角α的终边在x 轴上时,角α的正切线是一个点B .当角α的终边在y 轴上时,角α的正切线不存在C .正弦线的始点随角的终边位置的变化而变化D .余弦线和正切线的始点都是原点解析 根据三角函数线的概念,A ,B ,C 是正确的,只有D 不正确,因为余弦线的始点在原点而正切线的始点在单位圆与x 轴正半轴的交点上.答案 D2.使sin x ≤cos x 成立的x 的一个变化区间是( ) A .⎣⎡⎦⎤-3π4,π4 B .⎣⎡⎦⎤-π2,π2 C .⎣⎡⎦⎤-π4,3π4 D .[0,π]解析 如图所示,当x =π4和x =-3π4时,sin x =cos x ,故使sin x ≤cos x 成立的x 的一个变化区间是[-3π4,π4].答案 A3.函数f (x )=tan(2x -π4)的定义域为( )A .{x |x ≠3π8+12k π,k ∈Z }B .{x |x ≠3π8+k π,k ∈Z } C .{x |x ≠3π8+2k π,k ∈Z }D .{x |x ≠5π8+12k π,k ∈Z }解析 易知2x -π4≠π2+k π,,k ∈Z ,即x ≠3π8+12k π,k ∈Z ,故f (x )的定义域为{x |x ≠3π8+12k π,k ∈Z }.答案 A4.若θ∈(π2,5π4),则sin θ的取值范围是________.解析 如图所示,作出π2和5π4的正弦线,可得sin θ∈(-22,1).答案 (-22,1) 5.比较大小:sin 1.2________sin 1.5(填“>”或“<”).解析 ∵1.2∈(0,π2),1.5∈(0,π2),正弦线在(0,π2)内随角α的增大而增大,∴sin 1.2<sin 1.5. 答案 <6.在单位圆中画出适合下列条件的角α的终边. (1)sin α=23;(2)cos α=-35.解 (1)作直线y =23交单位圆于P ,Q 两点,则OP ,OQ 为角α的终边,如图甲.(2)作直线x =-35交单位圆于M ,N 两点,则OM ,ON 为角α的终边,如图乙.7.求函数f (x )=1-2cos x +ln ⎝⎛⎭⎫sin x -22的定义域. 解 由题意,得自变量x 应满足不等式组⎩⎪⎨⎪⎧1-2cos x ≥0,sin x -22>0,即⎩⎨⎧cos x ≤12,sin x >22.则不等式组的解的集合如图(阴影部分)所示,即定义域为⎩⎨⎧⎭⎬⎫x |2k π+π3≤x <2k π+34π,k ∈Z .能力提升8.点P (sin 3-cos 3,sin 3+cos 3)所在的象限为( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 ∵56π<3<π,作出单位圆如图所示.设MP ,OM 分别为a ,b . sin 3=a >0,cos 3=b <0, 所以sin 3-cos 3>0.因为|MP |<|OM |即|a |<|b |,所以sin 3+cos 3=a +b <0.故点P (sin 3-cos 3,sin 3+cos 3)在第四象限.答案 D9.已知函数f (x )=2a sin ⎝⎛⎭⎫2x +π6+b 的定义域为⎣⎡⎦⎤0,π2,值域为[-5,1],则函数g (x )=a bx +7在[b ,a ]上( )A .有最大值2B .有最小值2C .有最大值1D .有最小值1解析 易知2x +π6∈[π6,7π6],a >0,∴由三角函数线易得f (x )∈[-a +b,2a +b ],即⎩⎪⎨⎪⎧ -a +b =-5,2a +b =1,解得⎩⎪⎨⎪⎧a =2,b =-3.∴g (x )=2-3x +7,x ∈[-3,2],故当x =2时,g (x )有最小值2.答案 B10.函数f (x )=cos 2x -sin 2x 的定义域为________.解析 如图所示.答案 [k π-π4,k π+π4],k ∈Z 11.sin 1,cos 1,tan 1的大小关系是________.解析 由题意1>π4,在单位圆中作出锐角α=1的正切线、正弦线、余弦线,可知正切线最长,余弦线最短,所以有cos 1<sin 1<tan 1.答案 cos 1<sin 1<tan 112.设θ是第二象限角,试比较sin θ2,cos θ2,tan θ2的大小.解θ是第二象限角,即2k π+π2<θ<2k π+π(k ∈Z ), 故k π+π4<θ2<k π+π2(k ∈Z ). 作出θ2所在范围如图所示. 当2k π+π4<θ2<2k π+π2(k ∈Z )时, cos θ2<sin θ2<tan θ2. 当2k π+5π4<θ2<2k π+32π(k ∈Z )时, sin θ2<cos θ2<tan θ2. 13.(选做题)利用三角函数线证明:若0<α<β<π2,则β-α>sin β-sin α.证明 如图,单位圆O 与x 轴正半轴交于点A ,与角α,β的终边分别交于点Q ,P ,过P ,Q 分别作OA 的垂线,设垂足分别为点M ,N ,则由三角函数线定义可知:sin α=NQ ,sin β=MP ,过点Q 作QH ⊥MP 于点H ,于是MH =NQ ,则HP =MP -MH =sin β-sin α.由图可知HP <PQ =AP -AQ =β-α,即β-α>sin β-sin α.。