第二章 第12课时 有理数的乘法(2)
- 格式:ppt
- 大小:249.50 KB
- 文档页数:4
有理数的乘法(第二课时) 教案[教学目标]知识目标:有理数乘法运算能力目标:能确定几个不是0的有理数乘积运算的符号,进行有理数运算;运用乘法的分配律进行有理数的乘法计算; 情感态度和价值观:体会用计算器给有理数运算带来的方便[教学重点与难点]重点: 有理数乘法运算有理数的乘法运算 你还记得有理数的乘法法则吗?(同号得正,异号得负,并把绝对值相乘)[知识讲解]活动一: 从有理数的乘法法则可以看出,有理数的乘法关键是符号的确定,那么三个以上的有理数相乘积的符号怎么确定呢?下面我们就来研究这个问题. 确定下列积的符号,你能从中发现什么?①()5432⨯⨯⨯- ②()()5432⨯⨯-⨯-③()()()()5432-⨯-⨯-⨯- ④()()()50432-⨯⨯⨯-⨯-学生归纳结论:结论1:有一个因数为0,则积为0;结论2:几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正. 巩固练习:判断下列积的符号(口答)①()()1432-⨯⨯⨯- ②()()()6532-⨯-⨯⨯-③()()()222-⨯-⨯- ④()()()()3333-⨯-⨯-⨯-活动二:例3 计算:41)54(6)5()2();41()59(65)3()1(⨯-⨯⨯--⨯-⨯⨯- 几个数相乘,如果其中有因数0,积等于0 课堂练习计算:(1)(-85)×(-25)×(-4);(2)(-87)×15×(-171); (3)(151109-)×30;(4)2524×7. (5)-9×(-11)-12×(-8);课后作业教科书第38页 习题1.4第7题(1)(2)(3)课后选作题1.计算:).8(161571)6(;04.0311843)5(;36187436597)4(;534.265)3();1.0()24.8()10)(2();8(25.12014)1(-⨯⎪⎭⎫ ⎝⎛--⨯-⨯⎪⎭⎫ ⎝⎛-+-⨯⨯--⨯-⨯--⨯⨯⎪⎭⎫ ⎝⎛- 2.2003减去它的21,再减去余下的31,再减去余下的41,依次类推,一直到减去余下的20031,求最后剩下的数。
第12课时 有理数的乘法与除法(2) (附答案)【基础巩固】1.几个不是0的数相乘,负因数的个数是_______时,积是正数;负因数的个数是________时,积是负数.(1)(-0.01)×(-1)×(+100)=_______; (2)()()()234-⨯-⨯-=_______;(3)123234⎛⎫⎛⎫⎛⎫-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=_______;(4)(-3.4)×(-2012)×7034⎛⎫-⨯= ⎪⎝⎭_______.3.计算:()111513333⨯--⨯=⨯( )=_______. 4.计算:(-4)×125×(-25)×(-0.08)=_______.5.-7的倒数是________,它的相反数是_______,它的绝对值是_______. 6.-225的倒数是________,-2.5的倒数是_______. 7.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积 ( ) A .一定为正 B .一定为负C .为零D .可能为正,也可能为负 8.若干个不等于0的有理数相乘,积的符号( ) A .由因数的个数决定 B .由正因数的个数决定 C 由负因数的个数决定D .由负因数和正因数个数的差决定 9.下列运算结果为负值的是 ( )A .(-7)×(-6)B .(-6)+(-4)C .0×(-2)(-3)D .(-7)-(-15)10.利用分配律计算981009999⎛⎫-⨯ ⎪⎝⎭时,正确的方法可以是( )A .-981009999⎛⎫-+⨯ ⎪⎝⎭B .-981009999⎛⎫--⨯ ⎪⎝⎭C .981009999⎛⎫-⨯ ⎪⎝⎭D .11019999⎛⎫--⨯ ⎪⎝⎭11.下列运算错误的是A .(-2)×(-3)=6B .()1632⎛⎫-⨯-= ⎪⎝⎭C .(-5)×(-2)×(-4)=-40D .(-3)×(-2)×(-4)=-24 12.下列说法错误的是 ( ) A .任何有理数都有倒数 B .互为倒数的两个数的积为1 C .互为倒数的两个数同号 D .1和-1互为负倒数 13.计算下列各题:(1)42575610⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎝⎭⎝⎭; (2)()511.249⎛⎫⨯-⨯- ⎪⎝⎭;(3)3416401373⎛⎫⎛⎫-⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭; (4)-5×8×(-7)×(-0.25);(5)318772156⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.14.用简便方法计算:(1)(-25)×(-85)×(-4); (2)11116428⎛⎫--⨯ ⎪⎝⎭;(3)315606060777⨯-⨯+⨯; (4)()()()()7.3342.07 2.077.33-⨯+-⨯-;(5)22218134333⎛⎫⨯-+⨯-⨯ ⎪⎝⎭.【拓展提优】15.倒数等于它本身的有理数是_______.16.算式411010.05810.0454⎛⎫-⨯-+=-+- ⎪⎝⎭.这个运算过程应用了 ( )A .加法结合律B .乘法结合律C .乘法交换律D .乘法分配律 17.计算:(1)111111111111234567⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;(2)111111111111223344⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;(3)15515132277272⎛⎫⎛⎫⎛⎫⨯---⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(4)41141421544545⎛⎫⎛⎫--⨯+-⨯+⨯ ⎪ ⎪⎝⎭⎝⎭;(5)()2215130.34130.343737-⨯-⨯+⨯--⨯.18.已知230x y ++-=,求152423x y xy --+的值.19.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是1,求(a +b)cd -2012m 的值.20.计算:1111111113243546⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯+⨯ ⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭…1111979998100⎛⎫⎛⎫⨯+⨯+ ⎪ ⎪⨯⨯⎝⎭⎝⎭.参考答案【基础巩固】1.偶数奇数2.(1)1 (2)-24 (3)-14(4)0 3.-5-13 -6 4.-10005.-177 7 6.512-25- 7.A 8.C 9.B 10.A 11.B 12.A13.(1) 73(2)16(3)0 (4)-70 (5)-21514.(1)-8500 (2)-6 (3)60 (4)-293.2 (5)-6 【拓展提优】15.1,-1 16.D 17.(1)53(2)58(3)-514(4)135(5)-13.34 18.-2419.±2012 20.1.98。
有理数的乘法(第二课时)教案教学目标1.知识与技能使学生经历探究有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之运算简便.2.过程与方法通过对问题的探究,培养观看、分析和概括的能力.3.情感、态度与价值观能面对数学活动中的困难,有学好数学的自信心.教学重点难点重点:熟练运用运算律进行运算.难点:灵活运用运算律.教与学互动设计(一)创设情境,导入新课想一想上一节课大伙儿一起学习了有理数的乘法运算法则,把握得较好.那在学习过程中,大伙儿有没有摸索多个有理数相乘该如何来运算?做一做(出示胶片)你能运算吗?(1)234(-5)(2)23(-4)(-5)(3)2(-3)(-4)(-5)(4)(-2)(-3)(-4)(-5)那个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录同时阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,因此内容要尽量广泛一些,能够分为人一辈子、价值、理想、学习、成长、责任、友谊、爱心、探究、环保等多方面。
如此下去,除假期外,一年便能够积存40多则材料。
假如学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?(5)-1302(-2021)0要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。
在运用观看法组织活动时,我着眼观看于观看对象的选择,着力于观看过程的指导,着重于幼儿观看能力和语言表达能力的提高。
由此我们可总结得到什么?死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素养教育的开展,死记硬背被作为一种僵化的、阻碍学生能力进展的教学方式,慢慢为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
事实上,只要应用得当,“死记硬背”与提高学生素养并不矛盾。
可编辑修改精选全文完整版有理数的乘法说课稿有理数的乘法说课稿(一)[教材分析]:教材背景:本节课是有理数的乘法的第一课时,是学习好有理数乘除法的基础和关健。
教材安排的内容较简单,从生活实际背景引入算术乘法,用相反意义的量过渡到负数与正数的乘法,通过让学生观察发现”把一个因数换成它的相反数,所得的积是原来积的相反数”.接着安排了”试一试”让同学自己体会演绎推理得出正数与负数,负数与负数相乘,任何数与零相乘的规律,进而讨论归纳得出有理数乘法法则。
并配有例习题让同学理解应用此法则。
最后通过练习3让同学想一想找规律,得出一个数与1及-1相乘积的特征。
整篇教材突出了让学生自己探索、试验、体验新知识的产生,规律的发现,自主探索,主动获得知识的新教改思想。
[学习目标]:知识目标:掌握有理数的乘法法则并会运用它进行计算。
能力目标:学会探究式合理推理,培养构建思想和创新意识;训练从特殊到一般归纳推理及合情演绎推理能力。
情感目标:会用已学的知识探索解决新问题,勇于向自己挑战,开放思维空间,善于合作与交流,提高自主学习能力,体验获得知识的过程,在生活实际中感受应用数学。
[教学重点]:两个有理数相乘的符号法则和有理数乘法法则的得出及应用。
[教学难点]:从正数与正数相乘过渡到正数与负数相乘及负数与负数相乘符号的变化。
[教材处理]:因本节课教学内容较简单,练习量不多。
为了更好地使数学融入生活,使所学的知识更贴近学生的生活实际,增加了环保公益广告引入新课。
为了达到面对全体同学,使不同的人学习不同的数学,本节课对例习题进行删补,增加了小数、带分数的乘法例型,增设了不同层次的思维训练题组A与思维训练B.[教法与学法]:遵循新教改提倡的”以学生为主体”的精神,让学生自己发现、探索、讨论、协作的主导思想,本节课采用了”发现、探究法”“分层递进法”“分组学习”“合作与交流”等有利于学生学习教法与学法。
[教具]多媒休课件[教学过程]:(一)看公益广告,渗透环保思想,引入新课。
有理数的乘法第2课时教学目标1掌握多个有理数相乘的运算方法2会进行有理数的乘法运算3通过对问题的探索,培养观察、分析和概括能力教学重点难点重点:多个有理数乘法运算符号的确定难点:正确进行多个有理数的乘法运算课前准备多媒体课件教学过程导入新课导入一:问题展示1有理数乘法法则:两数相乘,同号,异号,并把绝对值相乘任何数与0相乘,都得2乘积是的两个数互为倒数3两个有理数可以相乘,那么三个或多个有理数可以相乘吗若可以,如何计算导入二:上一节课,我们学习了有理数乘法法则,并学会了两个数相乘的方法,今天,我们一起来探究多个有理数相乘的方法探究新知1观察下列各式的积是正的还是负的2×3×4×-5,2×3×-4×-5,2×-3×-4×-5,-2×-3×-4×-5师生活动通过观察以上题目,归纳总结多个有理数相乘的法则课件展示下列问题思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系先分组讨论交流,再用自己的语言表达所发现的规律2总结:学生汇报交流的结果,教师用课件展示下列内容多个有理数相乘的法则:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数新知应用例1 你能一下子就看出下列式子的结果吗如果能,理由是什么××0×答案:0师生小结:几个数相乘,如果其中有因数为0,那么积等于0例2 教材第31页例3计算:1-3×56× (−95) ×(−14) ;2-5×6× (−45) ×14请你思考,多个不是0的数相乘,先做哪一步,再做哪一步师生活动让学生带着问题解答教材例题学生先独立在练习本上做,教师巡视,及时发现学生做题中出现的问题,当学生做完后集体订正答案教师:多个不是0的数相乘,先做哪一步,再做哪一步学生:多个不是0的数相乘,先确定积的符号,积的符号由负因数的个数决定:如果负因数的个数是奇数,则积的符号是负的,如果负因数的个数是偶数,则积的符号是正的;积的绝对值就是各因数绝对值的积课堂练习见导学案“当堂达标”参考答案41-4 2-1 36135解:原式=−2 0142 015×−2 0132 014×…×−9991 000=9992 015课堂小结1几个不是0的数相乘,负因数的个数是 时,积是正数;负因数的个数是 时,积是负数2几个数相乘,如果其中有因数为0,那么积等于0板书设计教学反思多个有理数相乘,积的符号的确定是本节课的重点和难点在本节教学的“探究新知”这一环节上设置了4组练习题,先由学生独立完成练习,并思考“几个不是0的数相乘,积的符号与负因数的个数之间有什么关系”,再分组讨论得出积的符号与负因数的个数有关这一教学设计,既培养了学生的观察、概括能力,又做到了难点的有效突破。
第12课时有理数的乘法与除法(1)预学目标1.通过数据的变化感受负数在乘法运算中的意义.2.通过课本中的“想一想”,尝试归纳有理数乘法运算的方法.3.熟记有理数乘法法则,初步了解法则的应用.知识梳理1.有理数乘法法则(1)两数相乘,同号得_______,异号得_______,并把_______相乘.说明:①类似于有理数的加法运算,首先应确定_______.②法则中确定符号的方法是针对“两数相乘”的结果而言的.③“同号”是指两个因数同为_______或_______.④“异号”指两个因数一个是_______,另一个是_______.(2)任何数与0相乘都等于_______.2.有理数乘法法则的推广(1)几个不为0的有理数相乘,积的符号可以由_______的个数决定,当它的个数为奇数时,积的符号为________,当它的个数为偶数时,积的符号为_______.(2)几个数相乘,有一个因数为0,积为_______.例题精讲例(1)计算:(-10)×13×0.1×6.(2)你能直接写出下列各式的结果吗?(-10)×13×0.1×6=_______;(-10)×(-13)×(-0.1)×6=_______;(-10)×(-13)×(-0.1)×(-6)=_______.(3)试一试:-1×1×1×1×1=_______;-1×(-1)×1×1×1=_______;-1×(-1)×(-1)×1×1=_______;-1×(-1)×(-1)×(-1)×1=________;-1×(-1)×(-1)×(-1)×(一1)=________.提示:几个因数的乘积是有理数,在确定乘积时应考虑两个方面:(1)符号;(2)绝对值.解答:(1)原式=-10×13×0.1×6=-2.(2) -2;-2;2.(3) -1;1;-1;1;-1.点评:一般地,几个不为0的有理数相乘,首先确定积的符号,可以由负因数的个数决定,当它的个数为奇数时,积的符号为负,当它的个数为偶数时,积的符号为正,然后把所有因数的绝对值相乘.热身练习1.计算2×(-12)的结果是( )A .-1B .1C .-2D .22.五个有理数相乘,积的符号为负,则负因数的个数是 ( )A .1个B .3个C .5个D .1个或3个或5个3.如果ab <0,那么下列判断正确的是 ( )A .a <0,b <0B .a >0,b >0C .a ≥0,6≤0D .a <0,b >0或a >0,b <04.一个有理数和它的相反数的积 ( )A .符号必为正B .符号必为负C .一定不大于0D .一定不小于05.计算:(1)(-6)×(+8); (2)(-0. 36)×29⎛⎫- ⎪⎝⎭; (3)212234⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭;(4)228805⎛⎫-⨯ ⎪⎝⎭; (5)1328214437⎛⎫⎛⎫⎛⎫⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(6)(-5)×(-8)×0×(-10)×(-15); (7)()11130.12233343⎛⎫⎛⎫-⨯-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭;(8)1211252343⎛⎫⎛⎫+⨯-⨯⨯- ⎪ ⎪⎝⎭⎝⎭; (9)(-3)×(-4)×(-5)+(-5)×(-7);(10)(-0.1)×(-1)×(-100)-0.01×(+1000) .参考答案1.A 2.D 3.D 4.C 5.(1) -48 (2) 0.08 (3)6 (4)0 (5) -3 (6)0 (7)-30 (8)-4 (9)-25 (10)-20。