中考数学复习试卷26-30答案
- 格式:doc
- 大小:850.50 KB
- 文档页数:12
人教版九年级数学下册复习_第26章_反比例函数_单元测试卷(有答案)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列关系中,是反比例函数的是()D.A. B. C.2. 函数的图象经过点,则的值为()C. D.A. B.3. 三角形面积为,底边上的高与底边之间的函数关系的图象大致是()A. B. C. D.4. 如图,一次函数的图象与反比例函数的图象交于、两点,过点作轴于点,过点作轴于点,连接、,下列说法正确的是()A.点和点关于原点对称B.当时,C. D.当时,、都随的增大而增大5. 某厂现有吨煤,这些煤能烧的天数与平均每天烧的吨数之间的函数关系是()A.B.C.D.6. 如图,反比例函数图象的对称轴的条数是()A. B. C. D.7. 已知点,,都在反比例函数的图象上,则下列关系中正确的是()A. B.C. D.8. 已知,则函数的图象大致是()A. B. C. D.9. 已知反比例函数,其图象在第二、四象限内,则的值可为()A. B. C. D.10. 已知反比例函数,若,则函数的取值范围是()A.B.C.D.或二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如图,已知,为反比例函数图象上的两点,动点在轴正半轴上运动,当线段与线段之差达到最大时,点的坐标是________.12. 已知,是反比例函数的图象上的两个点,则、的大小关系是________(用“”表示)13. 已知反比例函数,当自变量的值从增加到时,相应的函数值减少了,则该函数的解析式是________.14. 已知点、在反比例函数的图象上,则和的大小关系是________.15. 已知与成反比例,并且当时,,那么与之间的函数解析式为________.16. 一次函数与反比例函数的图象的交点坐标是________.17. 已知一次函数的图象与反比例函数的图象相交,其中有一个交点的横坐标是,则的值为________.18. 圆柱的体积为,则它的高与底面积之间的函数关系式是________.19. 点是一次函数与反比例函数的交点,则的值________.20. 已知反比例函数的图象如图所示,则________ ,在图象的每一支上,随的增大而________.三、解答题(本题共计8 小题,共计60分,)21.(6分) 在平面直角坐标系中,已知:直线反比例函数的图象的一个交点为.(1)试确定反比例函数的解析式;(2)写出该反比例函数与已知直线的另一个交点坐标.22.(6分) 反比例函数的图象如图所示.(1)求的取值范围;(2)点和在这个反比例函数图象上,求和的值.23. (8分)如图,在平面直角坐标系中,函数,常数的图象经过点,且,过点作轴的垂线,垂足为,若面积为,求点的坐标.24.(8分) 如图,的图象与反比例函数的图象相交于点和点,与轴相交于点.(1)求着两个函数的表达式;(2)请直接写出当取何值时,.25.(8分) 如图,第一象限的角平分线与反比例函数的图象相交于点,已知.(1)求点的坐标;(2)求此反比例函数的解析式.26.(8分) 如图,直角三角板放在平面直角坐标系中,直角边垂直轴,垂足为,已知,点,,均在反比例函数的图象上,分别作轴于,轴于,延长,交于点,且点为的中点.(1)求点的坐标;(2)求四边形的面积.27.(8分) 已知是的反比例函数,下表给出了与的一些值.(1)写出这个反比例函数的表达式;(2)根据函数表达式完成下表;28.(8分) 已知:反比例函数与一次函数的图象相交于点,两点.(1)求上述反比例函数和一次函数的解析式;(2)直接写出的面积.参考答案与试题解析人教版九年级数学下册复习第26章反比例函数单元测试卷一、选择题(本题共计10 小题,每题3 分,共计30分)1.【答案】C【考点】反比例函数的定义【解析】根据反比例函数的定义求解即可,反比例函数的一般式为.【解答】解:,中、都是正比例函数,错误;、是反比例函数,正确;、是常数函数,错误.故选.2.【答案】C【考点】待定系数法求反比例函数解析式【解析】运用待定系数法直接求出的值即可得出答案.【解答】解:∵函数的图象经过点,∴,将代入得:则的值为:.故选.3.【答案】B【考点】反比例函数的图象【解析】根据题意有:;故与之间的函数图象为反比例函数,且根据、实际意义、应大于,其图象在第一象限;即可得出答案.【解答】解:∵∴故选:.4.【答案】C【考点】反比例函数与一次函数的综合【解析】求出两函数式组成的方程组的解,即可得出、的坐标,即可判断;根据图象的特点即可判断;根据、的坐标和三角形的面积公式求出另三角形的面积,即可判断;根据图形的特点即可判断.【解答】解:、,∵把①代入②得:,解得:,,,,代入①得:,,∴,,∴、不关于原点对称,故本选项错误;、当或时,,故本选项错误;、∵,,∴,故本选项正确;、当时,随的增大而增大,随的增大而减小,故本选项错误;故选.5.【答案】A【考点】根据实际问题列反比例函数关系式【解析】这些煤能烧的天数煤的总吨数平均每天烧煤的吨数,把相关数值代入即可.【解答】解:∵煤的总吨数为,平均每天烧煤的吨数为,∴这些煤能烧的天数为,故选:.6.C【考点】反比例函数图象的对称性【解析】任意一个反比例函数的图象都是轴对称图形,且对称轴有且只有两条.【解答】解:沿直线或折叠,直线两旁的部分都能够完全重合,所以对称轴有条.故选.7.【答案】B【考点】反比例函数图象上点的坐标特征反比例函数的性质【解析】此题可直接把各点的纵坐标代入求得横坐标再比较大小即可.【解答】解:将点,,分别代入中,得,,.即.故选.8.【答案】B【考点】反比例函数的图象【解析】根据反比例函数的性质,分别分析和时图象所在象限.【解答】解:当时,,∵,∴图象在第四象限;当时,,∵,∴,∴图象在第三象限;9.【答案】A【考点】反比例函数的图象反比例函数的性质【解析】本题考查反比例函数的图象和性质,此图象位于二、四象限,则根据求解.【解答】解:反比例函数的图象在第二、四象限,根据反比例函数的图象和性质,,则.故选.10.【答案】D【考点】反比例函数的性质【解析】根据题意画出函数图象,利用数形结合即可得出结论.【解答】解:如图所示:由图可知,当时,或.故选.二、填空题(本题共计10 小题,每题3 分,共计30分)11.【答案】【考点】反比例函数图象上点的坐标特征【解析】先求出、的坐标,设直线的解析式是,把、的坐标代入求出直线的解析式,根据三角形的三边关系定理得出在中,,延长交轴于,当在点时,,此时线段与线段之差达到最大,求出直线于轴的交点坐标即可.【解答】解:∵把,代入反比例函数得:,,∴,.在中,由三角形的三边关系定理得:,∴延长交轴于,当在点时,,即此时线段与线段之差达到最大,设直线的解析式是把、的坐标代入得:,解得:,∴直线的解析式是,当时,,即;故答案为:.12.【答案】【考点】反比例函数图象上点的坐标特征【解析】根据反比例函数的性质可找出反比例函数在第二象限内为减函数,再结合即可得出结论.【解答】解:∵在反比例函数中,∴该反比例函数在第二象限内随的增加而减小,∵,∴.故答案为:人教版九年级数学下第二十六章《反比例函数》单元练习题(含答案)一、选择题1.已知反比例函数y=-,当x>0时,它的图象在()A.第一象限B.第二象限C.第三象限D.第四象限2.蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R(Ω)成反比例,其函数图象如图所示,则电流I与电阻R之间的函数关系式为()A.I=B.I=C.I=D.I=3.百米赛跑中,队员所用的时间y秒与其速度x米/秒之间的函数图象应为()A.B.C.D.4.函数y=kx与y=-在同一坐标系内的大致图象是()(1)(2)(3)(4)A.(1)和(2)B.(1)和(3)C.(2)和(3)D.(2)和(4)5.若y与x成反比例,x与成反比例,则y与z()A.成正比例B.成反比例C.不成比例D.不能确定6.若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是()A.(2,3)B.(3,2)C.(-2,3)D.(-2,-3)7.小明乘车从济宁市到济南,行车的平均速度y(km/h)和行车时间x(h)之间的函数图象是()A.B.C.D.8.如图,正比例函数y=mx与反比例函数y=(m、n是非零常数)的图象交于A、B两点.若点A的坐标为(1,2),则点B的坐标是()A.(-2,-4)B.(-2,-1)C.(-1,-2)D.(-4,-2)二、填空题9.我校滨湖校区计划劈出一块面积为100 m2的长方形土地做花圃,请写出这个花圃的长y(m)与宽x(m)的函数关系式_____________________.10.请你写出一个反比例函数的解析式,使它的图象在第一、三象限__________.11.已知反比例函数y=,当x<0时,y随x的增大而减小,那么k的取值范围是______________.12.在一个可以改变容积的密闭容器内,装有一定质量的某种气体,当改变容积V时,气体的密度ρ也随之改变.在一定范围内,密度ρ是容积V的反比例函数.当容积为5 m3时,密度是1.4 kg/m3,则ρ与V的函数关系式为_________________.13.对于函数y=,当函数值y<-1时,自变量x的取值范围是________.14.已知某市的耕地面积约为375 km2,人均占有的土地面积S(单位:km2/人),随全市人口n(单位:人)的变化而变化,则S与n的函数关系式是__________.15.如图,双曲线y=(x>0)与直线y=mx+n在第一象限内交于点A(1,5)和B(5,1),根据图象,在第一象限内,反比例函数值大于一次函数值时x的取值范围是______________.16.已知P1(1-a,y1),P2(a-1,y2)两点都在反比例函数y=-的图象上,则y1与y2的数量关系是____________.三、解答题17.如图,直线y=2x+4与反比例函数y=的图象相交于A(-3,a)和B两点.(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.18.若矩形的长为x,宽为y,面积保持不变,下表给出了x与y的一些值求矩形面积.(1)请你根据表格信息写出y与x之间的函数关系式;(2)根据函数关系式完成下表.19.蓄电池的电压为定值.使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R=10 Ω时,电流能是4 A吗?为什么?20.下列函数中,哪些表示y是x的反比例函数:(1)y=;(2)y=;(3)xy=6;(4)3x+y=0;(5)x-2y=1;(6)3xy+2=0.21.如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.(1)求y与x之间的函数关系式;(2)若围成的矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.第二十六章《反比例函数》答案解析1.【答案】D【解析】∵比例系数k=-2<0,∴其图象位于二、四象限,∵x>0,∴反比例函数的图象位于第四象限,故选D.2.【答案】A【解析】设所求函数解析式为I=,∵(4,6)在所求函数解析式上,∴k=4×6=24.故选A.3.【答案】C【解析】根据题意可知,时间y秒与速度x米/秒之间的函数关系式为y=(x>0),所以函数图象大致是C.故选C.4.【答案】D【解析】(1)∵由反比例函数的图象在一、三象限可知,-k>0,∴k<0,∴正比例函数y=kx的图象经过二、四象限,故错误;(2)∵由反比例函数的图象在一、三象限可知,-k>0,∴k<0,∴正比例函数y=kx的图象经过二、四象限,故正确;(3)∵由反比例函数的图象在二、四象限可知,-k<0,∴k>0,∴正比例函数y=kx的图象经过一、三象限,故错误;(4)∵由反比例函数的图象在二、四象限可知,-k<0,∴k>0,∴正比例函数y=kx的图象经过二、四象限,故正确;故选D.5.【答案】B【解析】由题意,可得y=,x=z,∴y=,∴y与z成反比例.故选B.6.【答案】D【解析】∵正比例函数与反比例函数的图象均关于原点对称,∴两函数的交点关于原点对称,∵一个交点的坐标是(2,3),∴另一个交点的坐标是(-2,-3).故选D.7.【答案】B【解析】根据速度=路程÷时间得出函数解析式为y=(x>0),由于路程S是定值,所以函数图象为B.8.【答案】C【解析】∵正比例函数y=mx与反比例函数y=的两交点A、B关于原点对称,∴点A(1,2)关于原点对称点的坐标为(-1,-2).故选C.9.【答案】y=【解析】根据等量关系“矩形一边长=面积÷另一边长”即可列出关系式.由题意,得y关于x的函数解析式是y=.10.【答案】y=(答案不唯一)【解析】∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:2.故答案为y=等.11.【答案】k>2【解析】∵当x<0时,y随x的增大而减小,∴反比例函数图象在第三象限有一支,∴k-2>0,解得k>2,故答案为k>2.12.【答案】ρ=【解析】∵密度ρ是容积V的反比例函数,∴设ρ=,由于(5,1.4)在此函数解析式上,∴k=1.4×5=7,∴ρ=.13.【答案】-2<x<0【解析】∵当y=-1时,x=-2,∴当函数值y<-1时,-2<x<0.故答案为-2<x<0.14.【答案】S=【解析】∵耕地面积约为375 km2,人均占有的土地面积S(单位:km2/人),随全市人口n(单位:人)的变化而变化,∴S与n的函数关系式是S=.15.【答案】0<x<1或x>5【解析】从图象可知反比例函数图象在一次函数图象上方时,即反比例函数的值大于一次函数的值,所以x的取值范围是0<x<1或x>5.16.【答案】y1+y2=0【解析】当x=1-a时,y1=-=;当x=a-1时,y2=-,所以y1+y2=0.17.【答案】解(1)∵点A(-3,a)在y=2x+4与y=的图象上,∴2×(-3)+4=a,∴a=-2,∴k=(-3)×(-2)=6;(2)∵M在直线AB上,∴M,N在反比例函数y=上,∴N,∴MN=xN-xM=-=4或xM-xN=-=4,∵m>0,∴m=2或m=6+4;(3)x<-1或5<x<6,由>x,得-x>0,∴>0,∴<0,∴或结合抛物线y=x2-5x-6的图象可知,由得∴x<-1,由得解得5<x<6,综上,原不等式的解集是x<-1或5<x<6.【解析】(1)把点A(-3,a)代入y=2x+4与y=即可得到结论;(2)根据已知条件得到M,N,根据MN=4列方程即可得到结论;(3)根据>x得到>0解不等式组即可得到结论.18.【答案】解(1)设y=,由于(1,4)在此函数解析式上,那么k=1×4=4,∴y=;(2)4÷=4×=6,=2,4÷2=2,=,=.【解析】(1)矩形的宽=矩形面积÷矩形的长,设出关系式,由于(1,4)满足,故可求得k的值;(2)根据(1)中所求的式子作答.19.【答案】解(1)由电流I(A)是电阻R(Ω)的反比例函数,设I=(k≠0),把(4,9)代入,得k=4×9=36,∴I=.(2)解法一:当R=10 Ω时,I=3.6 A≠4 A,∴电流不可能是4 A.解法二:∵10×4=40≠36,∴当R=10 Ω时,电流不可能是4 A.【解析】(1)利用待定系数法可得函数表达式;(2)把R=10 Ω代入函数表达式,求得电流即可作答.20.【答案】解(1)y=不是反比例函数.(2)∵y=,∴xy=.∴y=,是反比例函数.(3)∵xy=6,∴y=,是反比例函数.(4)∵3x+y=0,∴y=-3x,不是反比例函数.(5)∵x-2y=1,∴2y=x-1.∴y=x-1,不是反比例函数.(6)∵3xy+2=0,∴xy=-.∴y=,是反比例函数.【解析】先将各函数关系式变形,凡形式上符合y=(k≠0)的,则是反比例函数.21.【答案】解(1)由题意,得xy=60,即y=.∴所求的函数关系式为y=.(2)由y=,且x,y都是正整数,x可取1,2,3,4,5,6,10,12,15,20,30,60,又∵2x+y≤26,0<y≤12,∴符合条件的有x=5时,y=12;x=6时,y=10;x=10时,y=6.答:满足条件的围建方案有AD=5 m,DC=12 m或AD=6 m,DC=10 m或AD=10 m,DC=6 m.【解析】(1)由面积=长×宽,列出y与x之间的函数关系式;(2)由AD与DC均是正整数知,x、y的值均是60的因数,所以x=1,2,3,4,5,6,10,12,15,20,30,60.再根据三边材料总长不超过26 m,AB边长不超过12 m,得到关于x、y的不等式,然后将x的可能取值代入验证,得到AD和DC的长.九年级下册数学(人教版)-第二十六章-反比例函数-同步提升练习(含答案)一、单选题1. 矩形面积是40m2,设它的一边长为x(m),则矩形的另一边长y(m)与x的函数关系是()A. y=20﹣xB. y=40xC. y=D. y=2.点P(a,b)是直线y=﹣x﹣5与双曲线y=的一个交点,则以a、b两数为根的一元二次方程是()A. x2﹣5x+6=0B. x2+5x+6=0C. x2﹣5x﹣6=0D. x2+5x﹣6=03. 在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y= (x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A. 逐渐增大B. 不变C. 逐渐减小D. 先增大后减小4. 若反比例函数y=的图象位于第二、四象限内,则m的取值范围是()A. m>0B. m<0C. m>1D. m<15. 在函数的图象上有三点A1(x1,y1)、A2(x2,y2)、A3(x3,y3),若x1<0<x2<x3,则下列正确的是()A. y1<0<y2<y3B. y2<y3<0<y1C. y2<y3<y1<0D. 0<y2<y1<y36. 如图,点A是反比例函数y=(x>0)的图象上的一点,且点A的横坐标为2,连接OA并延长到点B,使AB=OA,过点B作x轴和y轴的垂线,垂足分别为C,D,则图中阴影部分的面积为()A. 23B. 18C. 11D. 87. 如图,已知矩形OABC的面积为25,它的对角线OB与双曲线y=(k>0)相交于点G,且OG:GB=3:2,则k的值为()A. 15B.C.D. 98. 如图,点P(3a ,a)是反比例函(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A. B. C. D.二、填空题9. 如图,点A、B在反比例函数y=(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,AOC的面积为6,则k 的值为________ .10.某厂有煤2500吨,则这些煤能用的天数y与每天用煤的吨数x之间的函数关系式为________11. 如图,过点的直线与反比例函数的图象相交于,两点,,直线轴,与反比例函数的图象交于点,连接,则的面积是________.12.在下列四个函数①y=2x;②y=﹣3x﹣1;③y= ;④y=x2+1(x<0)中,y随x的增大而减小的有________(填序号).13.如图:M为反比例函数图象上一点,MA⊥y轴于A,S MAO=2时,k=________.14.如图,在直角坐标系中,矩形OABC的顶点A、B在双曲线y=kx(x>0)上,BC与x轴交于点D.若点A的坐标为(1,2),则点B的坐标为________三、解答题15. 在平面直角坐标系和第一象限中有一矩形ABCD,AD平行于x轴,其中点A(3,4)且AB=2,BC=3.若将矩形ABCD向左平移a个单位之后,矩形到了第二象限,这时B、D两点在同一双曲线y=上.(1)请直接写出平移前B与D两点的坐标;(2)试求a与k的值.16. 当k为何值时,y=(k﹣1)x是反比例函数?四、综合题17. 如图,点A(3,2)和点M(m,n)都在反比例函数y= (x>0)的图象上.(1)求k的值,并求当m=4时,直线AM的解析式;(2)过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,直线AM交x轴于点Q,试说明四边形ABPQ是平行四边形;(3)在(2)的条件下,四边形ABPQ能否为菱形?若能,请求出m的值;若不是,请说明理由.答案部分一、单选题1.【答案】C【解析】【解答】解:由于矩形的另一边长=矩形面积÷一边长,∴矩形的另一边长y(m)与x的函数关系是y= .故选C.【分析】根据等量关系“矩形的另一边长=矩形面积÷一边长”列出关系式即可.2.【答案】B【解析】【解答】解:把P(a,b)分别代入y=﹣x﹣5和y=得b=﹣a﹣5,b=,所以a+b=﹣5,ab=6,而以a、b两数为根的一元二次方程为x2﹣(a+b)x+ab=0,所以所求的方程为x2+5x+6=0.故选B.【分析】先把P(a,b)分别两个解析式整理得到a+b=﹣5,ab=6,然后根据一元二次方程的根与系数的关系即可得到以a、b两数为根的一元二次方程.3.【答案】C【解析】【解答】解:设点P的坐标为(x,),∵PB⊥y轴于点B,点A是x轴正半轴上的一个定点,∴四边形OAPB是个直角梯形,∴四边形OAPB的面积= (PB+AO)•BO= (x+AO)• = + = + • ,∵AO是定值,∴四边形OAPB的面积是个减函数,即点P的横坐标逐渐增大时四边形OAPB的面积逐渐减小.故选:C.【分析】由双曲线y= (x>0)设出点P的坐标,运用坐标表示出四边形OAPB的面积函数关系式即可判定.4.【答案】D【解析】【分析】反比例函数y=(k≠0),当k<0时,图象是位于二、四象限,从而可以确定m的取值范围.【解答】由题意可得m-1<0,即m<1.故选D.【点评】此题主要考查反比例函数图象的性质,属于基础题,关键是掌握(1)k>0时,图象是位于一、三象限.(2)k<0时,图象是位于二、四象限.5.【答案】B【解析】【解答】解:∵k=﹣<0,∴点A1在第二象限,点A2、A3在第四象限,如图,y2<y3<0<y1.故答案为:B.【分析】由于反比例函数的比例系数小于零,故其图像分布于第二、四象限,在每一个象限内y随x的增大而增大,由A1(x1,y1)、A2(x2,y2)、A3(x3,y3),若x1<0<x2<x3知点A1在第二象限,点A2、A3在第四象限,根据题意画出示意图求解即可。
第1页,共5页人教版九年级数学下册第 26章反比例函数单元测试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.如果函数y =(k +4)x k 2−17是反比例函数,那么( )A. k =4B. k =−4C. k =±4D. k ≠42.如果反比例函数y =a−2x(a 是常数)的图象在第一、三象限,那么a 的取值范围是()A. a <0 B. a >0C. a <2D. a >23.在下列反比例函数中,其图象经过点(3,4)的是( )A. y =−12xB. y =12xC. y =7xD. y =−7x4.如图,反比例函数y =−6x 的图象过点A ,则矩形ABOC 的面积为等于( )A. 3B. 1.5C. 6D. −65.一次函数y =kx−k 与反比例函数y =kx (k ≠0)在同一个坐标系中的图象可能是( )A. B.C. D.6.若点A(2,y 1),B(3,y 2)是反比例函数y=−6x 图象上的两点,则y 1与y 2的大小关系是( ).A. y1<y2B. y1>y2C. y1=y2D. 3y1=2y27.若点A(x1,−6),B(x2,−2),C(x3,2)均在反比例函数y=k2+1x的图象上,则x1,x2,x3的大小关系正确的是()A. x1<x2<x3B. x2<x1<x3C. x2<x3<x1D. x3<x2<x18.点M(a,2a)在反比例函数y=8x的图象上,那么a的值是( )A. 4B. −4C. 2D. ±29.点A(−1,1)是反比例函数y=m+1x的图象上一点,则m的值为( )A. −1B. −2C. 0D. 110.如图,直线y=−3x+3与x轴交于点A,与y轴交于点B,以AB为边在直线AB的左侧作正方形ABDC,反比例函数y=kx的图象经过点D,则k的值是( )A. −3B. −4C. −5D. −6二、填空题(本大题共5小题,共15分)11.反比例函数y=6x的图象经过点(m,−3),则m=________.12.反比例函数y=1−2mx的图象有一支位于第一象限,则常数m满足的条件是__.13.反比例函数y=2m−5x的图象的两个分支分别在第二、四象限,则m的取值范围为______,在每个象限内y随x的增大而______.14.已知同一个反比例函数图象上的两点P1(x1,y1)、P2(x2,y2),若x2=x1+2,且1y2=1 y1+12,则这个反比例函数的解析式为______.15.如图,一次函数y=−x+b与反比例函数y=4x(x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D 两点,连结OA,OB,过A作AE⊥x轴于点E,交OB 于点F,设点A的横坐标为m.(1)b=______ (用含m的代数式表示);第3页,共5页(2)若S △OAF +S 四边形EFBC =4,则m 的值是______ .三、解答题(本大题共6小题,共55分)16.在一个不透明的布袋里,装有完全相同的3个小球,小球上分别标有数字1,2,5;先从袋子里任意摸出1个球,记其标有的数字为x ,不放回;再从袋子里任意摸出一个球,记其标有的数字为y ,依次确定有理数xy .(1)请用画树状图或列表的方法,写出xy 的所有可能的有理数;(2)求有理数xy 为整数的概率.17.已知平面直角坐标系xOy 中,O 是坐标原点,点A(2,5)在反比例函数y =kx 的图象上,过点A 的直线y =x +b 交x 轴于点B .(1)求反比例函数解析式;(2)求△OAB 的面积.18.如图,已知反比例函数y =6x 的图象与一次函数y =kx +b 的图象交于点A(1,m),B(n,2)两点.(1)求一次函数的解析式;≥kx+b的解集;(2)直接写出不等式6x在第一象限的图像,如图所示,过点A(1,0)作x轴的垂线,交反比19.反比例函数y=kx的图像于点M,△AOM的面积为3.例函数y=kx(1)求反比例函数的解析式.(2)设点B的坐标为(t,0),其中t>1,若以AB为一边的正方形ABCD有一个顶点的图像上,求t的值.在反比例函数y=kx20.阅读材料:公元前3世纪,古希腊学者阿基米德发现了著名的“杠杆原理”.杠杆平衡时,阻力×阻力臂=动力×动力臂.第5页,共5页问题解决:若工人师傅欲用提棍动一块大石头,已知阻力和阻力臂不变,分别为1500N 和0.4m .(1)动力F(N)与动力臂l(m)有怎样的函数关系⋅当动力臂为1.5m 时,提动石头需要多大的力⋅(2)若想使动力F(N)不超过题(1)中所用力的一半,则动力臂至少要加长多少⋅数学思考(3)请用数学知识解释:我们使用攉棍,当阻力与阻力臂一定时,为什么动力臂越长越省力.21.某商场出售一批名牌衬衣,衬衣进价为60元,在营销中发现,该衬衣的日销售量y(件)是日销售价x 元的反比例函数,且当售价定为100元/件时,每日可售出30件.(1)请写出y 关于x 的函数关系式;(2)该商场计划经营此种衬衣的日销售利润为1800元,则其售价应为多少元?。
人教版九年级数学第26章反比例函数复习题一、选择题(本大题共10道小题)1.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的叙述,姜老师给出的这个函数表达式可能是( )A. y=3xB. y=3 xC. y=-1x D. y=x22.一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地,当他按原路匀速返回时,汽车的速度v千米/小时与时间t小时的函数关系是( )A. v=320tB. v=320t C. v=20t D. v=20t3.(2019·江苏扬州)若反比例函数的图象上有两个不同的点关于y轴对称点都在一次函数y=–x+m的图象上,则m的取值范围是A.B.C.D.4. 如图,一次函数y1=ax+b与反比例函数y2=k x的图象如图所示,当y1<y2时,则x的取值范围是( )A. x<2B. x>5C. 2<x<5D. 0<x<2或x>55. (2020·长沙)2019年10月,《长沙晚报》对外发布长沙高铁两站设计方案,该方案以三湘四水,杜鹃花开,塑造出杜鹃花开的美丽姿态,该高铁站建设初期需要运送大量的土石方,某运输公司承担了运送总量为106 m3土石方的任务,该运输公司平均运送土石方的速度v(单位:m3/天)与完成运送任务所需的时间t(单位:天)之间的函数关系式是 ···········································()A.B.C.D.6. (2019·江苏无锡)如图,已知A为反比例函数y=(x<0)的图象上一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为2,则k的值为A.2 B.﹣2C.4 D.﹣47. (2020·淄博)如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B (3,0)为顶点的R t△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y的图象上,则k的值为()A.36 B.48 C.49 D.648. (2020·威海)一次函数y=ax﹣a与反比例函数y(a≠0)在同一坐标系中的图象可能是()A.B.C.D.9. 反比例函数y=1-6t x的图象与直线y=-x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是( )A. t<16 B. t>16 C. t≤16 D. t≥1610. (2019·江苏宿迁)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A与原点O重合,顶点B落在x轴的正半轴上,对角线AC、BD交于点M,点D、M恰好都在反比例函数y=(x>0)的图象上,则的值为A.B.C.2 D.二、填空题(本大题共8道小题)11. 已知反比例函数y=k x(k≠0)的图象如图所示,则k的值可能是________(写一个即可).12.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y=-3x的图象上有一些整点,请写出其中一个整点的坐标________.13. 如图,点A,C分别是正比例函数y=x的图象与反比例函数y=的图象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为.14. 双曲线y=m-1 x在每个象限内,函数值y随x的增大而增大,则m的取值范围是________.15. (2019·浙江绍兴)如图,矩形ABCD的顶点A,C都在曲线y(常数k>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是__________.16. 如图,点A,B是双曲线y=6 x上的点,分别过点A,B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和.为________.17. 如图,已知点A,C在反比例函数y=ax的图象上,点B,D在反比例函数y=bx的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=34,CD=32,AB与CD间的距离为6,则a-b的值是________.18. (2019·浙江宁波)如图,过原点的直线与反比例函数y(k>0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为__________.三、解答题(本大题共4道小题)19. 如图,一次函数y=kx+b的图象与反比例函数y=m x(x>0)的图象交于A(2,-1),B(12,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.20. 如图,在直角坐标系中,直线y=-12x与反比例函数y=kx的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=-1 2x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.21. (2019·浙江金华)如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数y(k>0,x>0)的图象上,边CD在x轴上,点B在y轴上,已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理由;(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.22. (2019·浙江舟山)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB 的顶点A在反比例函数y的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B',当这个函数图象经过△O'A'B'一边的中点时,求a的值.人教版九年级数学第26章反比例函数复习题-答案一、选择题(本大题共10道小题)1. 【答案】B 【解析】图象经过一,三象限,则它可能是正比例函数或反比例函数;在每一个象限内,y随x的增大而减小,则它是反比例函数,并且反比例函数中的比例系数大于0,故本题选B.2. 【答案】B【解析】∵由题意可得路程s=80×4=320,∴v=320 t.3. 【答案】C【解析】∵反比例函数上两个不同的点关于y轴对称的点,在一次函数y=–x+m图象上,∴反比例函数与一次函数y=–x+m有两个不同的交点,联立两个函数解方程,∵有两个不同的交点,∴有两个不等的根,∴Δ=m2–8>0,∴m>2或m<–2,故选C.4. 【答案】D【解析】根据图象得:当y1<y2时,x的取值范围是0<x<2或x>5.5. 【答案】A【解析】本题考查了对实际问题的解析能力,根据题意找到函数中的数量关系,运送速度=运送总量÷时间,因此本题选A.6. 【答案】D【解析】∵AB⊥y轴,∴S△OAB=|k|,∴|k|=2,∵k<0,∴k=﹣4.故选D.7. 【答案】过P分别作AB、x轴、y轴的垂线,垂足分别为C、D、E,如图,∵A(0,4),B(3,0),∴OA=4,OB=3,∴AB5,∵△OAB的两个锐角对应的外角角平分线相交于点P,∴PE=PC,PD=PC,∴PE=PC=PD,设P(t,t),则PC=t,∵S△P AE +S△P AB+S△PBD+S△OAB=S矩形PEOD,∴t×(t﹣4)5×t t×(t﹣3)3×4=t×t,解得t=6,∴P(6,6),把P(6,6)代入y得k=6×6=36.故选:A.8. 【答案】:A 、由函数y =ax ﹣a的图象可知a >0,﹣a >0,由函数y (a ≠0)的图象可知a <0,错误;B 、由函数y =ax ﹣a 的图象可知a <0,由函数y (a ≠0)的图象可知a >0,相矛盾,故错误;C 、由函数y =ax ﹣a 的图象可知a >0,由函数y (a ≠0)的图象可知a <0,故错误;D 、由函数y =ax ﹣a 的图象可知a <0,由函数y (a ≠0)的图象可知a <0,故正确; 故选:D .9.【答案】B 【解析】将y =-x +2代入到反比例函数y =1-6tx中,得:-x +2=1-6t x ,整理,得:x 2-2x +1-6t =0,∵反比例函数y =1-6tx 的图象与直线y =-x +2有两个交点,且两交点横坐标的积为负数,∴⎩⎪⎨⎪⎧(-2)2-4(1-6t )>01-6t <0,解得t >16.10. 【答案】A【解析】设D (m ,),B (t ,0),∵M 点为菱形对角线的交点,∴BD ⊥AC ,AM =CM ,BM =DM ,∴M (,),把M(,)代入y=得•=k,∴t=3m,∵四边形ABCD为菱形,∴OD=AB=t,∴m2+()2=(3m)2,解得k=2m2,∴M(2m,m),在Rt△ABM中,tan∠MAB=,∴.故选A.二、填空题(本大题共8道小题)11. 【答案】-2(答案不唯一)【解析】根据反比例函数的图象在二、四象限,则k<0,如k=-2(答案不唯一).12. 【答案】(1,-3)(答案不唯一,合理即可)【解析】对于y=-3x,依题意,说明只要x是3的约数即可,如(1,-3),(-1,3).13. 【答案】8[解析]由得或,∴A的坐标为(2,2),C的坐标为(-2,-2).∵AD⊥x轴于点D,CB⊥x轴于点B,∴B(-2,0),D(2,0),∴BD=4,AD=2,∴四边形ABCD的面积=AD·BD×2=8.14. 【答案】m<1【解析】∵在每个象限内,函数值y随x的增大而增大,∴双曲线在二、四象限内,∴在函数y=m-1x中,m-1<0,即m<1.15. 【答案】y x【解析】∵D(5,3),∴A(,3),C(5,),∴B(,),设直线BD的解析式为y=mx+n,把D(5,3),B(,)代入,得,解得,∴直线BD的解析式为y x.故答案为y x.16. 【答案】8【解析】设两个空白矩形面积为S1、S2,则根据反比例函数的几何意义得:S1+2=S2+2=6,∴S1=S2=4,∴两个空白矩形的面积和为:S1+S2=8.17. 【答案】3【解析】设点A的纵坐标为y1,点C的纵坐标为y2,∵AB∥CD∥x轴,∴点B的纵坐标为y1,点D的纵坐标为y2,∵点A在函数y=ax的图象上,点B在函数y=bx的图象上,且AB=34,∴ay1-by1=34,∴y1=4(a-b)3,同理y2=2(b-a)3,又∵AB与CD间的距离为6,∴y1- y2=4(a-b)3-2(b-a)3=6,解得a-b=3.18. 【答案】6【解析】如图,连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF,∵过原点的直线与反比例函数y(k>0)的图象交于A,B两点,∴A与B关于原点对称,∴O是AB的中点,∵BE⊥AE,∴OE=OA,∴∠OAE=∠AEO,∵AE为∠BAC的平分线,∴∠BAE=∠DAE,∴∠DAE=∠AEO,∴AD∥OE,∴S△ACE =S△AOC,∵AC=3DC,△ADE的面积为8,∴S△ACE=S△AOC=12,设点A(m,),∵AC=3DC,DH∥AF,∴3DH=AF,∴D(3m,),∵CH∥GD,AG∥DH,∴△DHC∽△AGD,∴S△HDC S△ADG,∵S△AOC=S△AOF+S梯形AFHD+S△HDC(DH+AF)×FH+S△HDC2m12,∴2k=12,∴k=6;故答案为6.三、解答题(本大题共4道小题)19. 【答案】解:(1)∵点A(2,-1)在反比例函数y=mx的图象上,∴-1=m2,即m=-2.(1分)∴反比例函数的解析式为y=-2x.(2分)∵点B(12,n)在反比例函数y=-2x的图象上,∴n=-212=-4,即点B的坐标为(12,-4).将点A(2,-1)和点B(12,-4)分别代入y=kx+b,得⎩⎪⎨⎪⎧2k+b=-112k+b=-4,解得⎩⎪⎨⎪⎧k=2b=-5,∴一次函数的解析式为y=2x-5.(5分)(2)如解图,设直线AB交y轴于点D.令y=2x-5中x=0,得y=-5,即点D的坐标是(0,-5),∴OD=5.(7分)∵直线y=2与y轴交于点C,∴C点的坐标是(0,2),(8分)∴CD=OC+OD=7.∴S△ABC=S△ACD-S△BCD=12×7×2-12×7×12=7-74=214.(10分) 20. 【答案】解:(1)∵点A的纵坐标是3,当y=3时,3=-12x, 解得x=-6,∴点A 的坐标为(-6,3),(1分)把A(-6,3)代入y =k x ,得3=k-6, 解得k =-18,∴反比例函数的解析式为y =-18x .(3分)解图(2)如解图,连接CO ,∵A ,B 关于原点对称, ∴AO =BO ,∴S △AOC =12S △ABC =24.(4分)作CF ⊥x 轴于点F ,AE ⊥x 轴于点E ,则S △CFO =S △AEO =12AE·EO =12×3×6=9,S △AOC =S 梯形AEFC =24.设C(x ,-18x ),则有(3-18x )(x +6)2=24,(5分)整理得x 2-16x -36=0, ∴x 1=-2,x 2=18(舍去), ∴C(-2,9),(7分)设y =-12x 平移后的解析式为y =-12x +b , 把C(-2,9)代入上式得, 9=1+b , 解得b =8,∴平移后的直线的函数表达式为y =-12x +8.(8分)21. 【答案】(1)点A 在该反比例函数的图象上,理由见解析;(2)Q 点横坐标为;【解析】(1)点A 在该反比例函数的图象上,理由如下: 如图,过点P 作x 轴垂线PG ,连接BP ,∵P是正六边形ABCDEF的对称中心,CD=2,∴BP=2,G是CD的中点,∴PG,∴P(2,),∵P在反比例函数y上,∴k=2,∴y,由正六边形的性质,A(1,2),∴点A在反比例函数图象上;(2)由题易得点D的坐标为(3,0),点E的坐标为(4,),设直线DE的解析式为y=ax+b,∴,∴,∴y x﹣3,联立方程,解得x(负值已舍),∴Q点横坐标为;(3)A(1,2),B(0,),C(1,0),D(3,0),E(4,),F(3,2),设正六边形向左平移m个单位,向上平移n个单位,则平移后点的坐标分别为∴A(1﹣m,2n),B(﹣m,n),C(1﹣m,n),D(3﹣m,n),E(4﹣m,n),F(3﹣m,2n),①将正六边形向左平移两个单位后,E(2,),F(1,2);则点E与F都在反比例函数图象上;②将正六边形向左平移–1个单位,再向上平移个单位后,C(2,),B(1,2),则点B与C都在反比例函数图象上;③将正六边形向左平移2个单位,再向上平移–2个单位后,B(﹣2,),C(﹣1,﹣2);则点B与C都在反比例函数图象上.22. 【答案】(1)反比例函数的解析式为y;(2)a的值为1或3.【解析】(1)如图1,过点A作AC⊥OB于点C,∵△OAB是等边三角形,∴∠AOB=60°,OC OB,∵B(4,0),∴OB=OA=4,∴OC=2,AC=2.把点A(2,2)代入y,解得k=4.∴反比例函数的解析式为y;(2)分两种情况讨论:①当点D是A′B′的中点,如图2,过点D作DE⊥x轴于点E.由题意得A′B′=4,∠A′B′E=60°,在Rt△DEB′中,B′D=2,DE=,B′E=1.∴O′E=3,把y代入y,得x=4,∴OE=4,∴a=OO′=1;②如图3,点F是A′O′的中点,过点F作FH⊥x轴于点H.由题意得A′O′=4,∠A′O′B′=60°,在Rt△FO′H中,FH,O′H=1.把y代入y,得x=4,∴OH=4,∴a=OO′=3,综上所述,a的值为1或3.。
中考数学专题复习《有理数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法正确的是()A.−4是16的一个平方根B.两个无理数的和一定是无理数C.无限小数是无理数D.0没有算术平方根2.现规定一种运算:a∗b=ab−a−b,其中a,b为有理数,则2∗(−1)=()A.−6B.−3C.5D.113.小夕学习了有理数运算法则后,编了一个计算程序.当他输入任意一个有理数时,显示屏上出现的结果总等于所输入的有理数的3倍与-2的差.当他第一次输入-6,然后又将所得的结果再次输入后,显示屏上出现的结果应是()A.-46B.-50C.-58D.-664.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9−32÷8=0÷8=0.乙:24−(4×32)=24−4×6=0.丙:(36−12)÷32=36×23−12×23=16.丁:(−3)2÷13×3=9÷1=9.A.甲B.乙C.丙D.丁5.下列说法正确的是()A.有理数与数轴上的点一一对应B.若a,b互为相反数,则ab=−1C.√16的算术平方根为4D.3.40万是精确到百位的近似数6.定义一种关于整数n的“F”运算:⑴当n是奇数时,结果为3n+5⑴当n是偶数时,结果是k2n (其中k是使k2n是奇数的正整数),并且运算重复进行.例如:取n=58 第一次经F运算是29 第二次经F运算是92 第三次经F运算是23 第四次经F运算是74… 若n=9 则第2023次运算结果是()A.6B.7C.8D.97.对于若干个数先将每两个数作差再将这些差的绝对值相加这样的运算称为对这若干个数进行“绝对运算”.例如对于123进行“绝对运算” 得到:|1−2|+|2−3|+|1−3|=4.①对13510进行“绝对运算”的结果是29②对x−25进行“绝对运算”的结果为A则A的最小值是7③对a b b c进行“绝对运算” 化简的结果可能存在8种不同的表达式以上说法中正确的个数为()A.0B.1C.2D.38.如图所示数轴上A,B两点分别对应有理数a,b则下列结论正确的是()A.b−a<0B.a−b>0C.a+b>0D.|a|−|b|>09.用“⑴”定义一种新运算:对于任意有理数x和y x⑴y=a2x+ay+1(a为常数)如:2⑴3=a2⋅2+ a⋅3+1=2a2+3a+1.若1⑴2=3 则3⑴6的值为()A.7B.8C.9D.1310.已知有理数a,b,c满足abc<0则a|a|+|b|b+c|c|−|abc|abc的值是()A.±1B.0或2C.±2D.±1或±2二填空题11.定义一种新运算“⑴” 规定有理数a⊕b=4ab−b如:2⊕3=4×2×3−3=21根据该运算计算3⊕(−3)=.12.定义新运算:对于任意有理数a b 都有a⊕b=12(|a−b|+a+b)例如4⊕2=12(|4−2|+4+2)=4.将1,2,3,4,⋯,50这50个自然数分成25组每组2个数进行a⊕b运算得到25个结果则这25个结果的和的最大值是.13.对于任意有理数a b 定义新运算:a⑴b=a2-2b+1 则2⑴(-6)=.14.a为有理数定义运算符号∇:当a>−2时∇a=−a当a<−2时∇a=a当a=−2时∇a=a根据这种运算则∇[4+∇(2−5)]的值为.15.在学习了有理数的运算后小明定义了新的运算:取大运算“V”和取小运算“Λ” 比如:3 V 2=3 3Λ2=2 利用“加减乘除”以及新运算法则进行运算下列运算中正确的是.①[3V(-2)]Λ4=4②(aVb)Vc=aV(bVc)③-(aVb)=(-a)Λ(-b)④(aΛb)×c=acΛbc16.已知a b c为非零有理数请你探究以下问题:(1)当a<0时a |a|=(2)ab|ab|+|bc|bc+ca|ca|+|abc|abc的最小值为.17.设有理数a b c满足a+b+c=0 abc> 0 则a b c中正数的个数为三计算题18.已知a b是有理数运算“⊕”的定义是:a⊕b=ab+a−b.(1)求2⊕(−3)的值(2)若x⊕34=1求x的值(3)运算“⊕”是否满足交换律请证明你的结论.19.学习了有理数的运算后王老师给同学们出了这样的一道题.计算:711516×(−8).解:=(72−116)×(−8)=72×(−8)−116×(−8)=−576+12=−57512.请你灵活运用王老师讲的解题方法计算:392326÷(−113).20.用“Δ”定义新运算对于任意有理数a b都有aΔb=a2−ab.例如:7Δ4=72−7×4=21.(1)求(−2)Δ5的值(2)若继续用“*”定义另一种新运算a∗b=3ab−b2例如:1∗2=3×1×2−22=2.求4∗(2Δ3).21.现定义一种新运算“*” 对任意有理数a b规定a*b=ab+a﹣b例如:1*2=1×2+1﹣2.(1)求2*(﹣3)的值(2)求(﹣3)*[(﹣2)*5]的值.22.已知a b为有理数现规定一种新运算⑴ 满足a※b=a×b+1例如:4※5=4×5+1= 21.(1)求2※(−4)的值(2)若a=5|b|=3且a×b<0求(a※b)※(−b)的值.23.实数运算:(1)√16+2×√9−√273(2)|1−√2|+√4−√−83.24.简便运算:(1)82022×(−0.125)2023(2)992−98×100.25.定义新运算:对于任意实数a b(a≠0)都有a*b= b a﹣a+b 等式右边是通常的加减除运算比如:2*1= 12﹣2+1=﹣12.(1)求4*5的值(2)若x*(x+2)=5 求x的值.26.a b为有理数且|a+b|=a−b试求ab的值.27.如果有理数a,b满足|ab−2|+(1−b)2=0试求1ab+1(a+1)(b+1)+1(a+2)(b+2)+⋅⋅⋅+1(a+2007)(b+2007)的值。
初三数学26章试题及答案试题一:代数方程1. 解下列方程:\[x^2 - 5x + 6 = 0\]2. 判断方程\[3x^2 + 5x - 2 = 0\]的根的情况。
3. 计算方程\[2x^3 - 4x^2 + x - 6 = 0\]的根。
试题二:几何问题4. 在直角三角形ABC中,∠A=90°,AB=6cm,AC=8cm,求BC的长度。
5. 在矩形PQRS中,若PS=10cm,PR=4cm,求矩形的面积。
6. 圆O的半径为r,点A在圆上,求圆心O到点A的距离。
试题三:函数与图像7. 已知函数\[y = 3x - 2\],求当x=1时y的值。
8. 画出函数\[y = x^2 - 4x + 4\]的图像,并找出顶点坐标。
9. 判断函数\[y = 2x + 3\]的增减性。
试题四:概率与统计10. 抛一枚均匀硬币两次,求正面朝上一次的概率。
11. 随机抽取10个学生,求至少有3个学生生日在同一个月的概率。
12. 某班有50名学生,其中30名男生,20名女生。
随机抽取一名学生,求抽到女生的概率。
答案:1. 方程\[x^2 - 5x + 6 = 0\]的根为\[x_1 = 2, x_2 = 3\]。
2. 方程\[3x^2 + 5x - 2 = 0\]的判别式\[Δ = 25 + 24 > 0\],因此有两个不相等的实根。
3. 方程\[2x^3 - 4x^2 + x - 6 = 0\]的根需要使用高次方程的求解方法,这里不提供具体解法,但可以说明存在三个根。
4. 根据勾股定理,BC的长度为\[BC = \sqrt{AB^2 + AC^2} =\sqrt{6^2 + 8^2} = 10cm\]。
5. 矩形的面积为\[面积 = PS \times PR = 10cm \times 4cm =40cm^2\]。
6. 圆心O到点A的距离为半径r。
7. 当x=1时,y的值为\[y = 3 \times 1 - 2 = 1\]。
图形的变化——图形的平移1一.选择题(共8小题)1.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为()A.16cm B.18cm C.20cm D.22cm2.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直 B.相等 C.平分 D.平分且垂直3.已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)4如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD 的周长为()A.12 B.16 C.20 D.245如图,已知∠EFD=∠BCA,BC=EF,AF=DC.若将△ABC沿AD向右平移,使点C与点D重合,则所得到的图形形状是()A.梯形 B.平行四边形C.矩形 D.等边三角形6.如图将等腰直角△ABC沿BC方向平移得到△A1B1C1,若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=()A.1 B.C.D.27.如图,EF是△ABC的中位线,AD是中线,将△AEF沿AD方向平移到△A1E1F1的位置,使E1、F1落在BC边上,此时点A1恰好落在EF上,已知△AEF的面积是7,则阴影部分的面积是()A.7 B.14 C.21 D.288如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若四边形ABED 的面积等于8,则平移距离等于()A.2 B.4 C.8 D.16二.填空题(共8小题)9.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于_________ .10.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为_________ .11.如图,在直角坐标系中,已知点A(﹣3,﹣1),点B(﹣2,1),平移线段AB,使点A 落在A1(0,﹣1),点B落在点B1,则点B1的坐标为_________ .12.如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为_________ .13在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x 轴的对称点C的坐标是_________ .14如图,矩形ABCD中,AB=3cm,BC=4cm.沿对角线AC剪开,将△ABC向右平移至△A1BC1位置,成图(2)的形状,若重叠部分的面积为3cm2,则平移的距离AA1= _________ cm.15.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_________ .16.如图,已知A(﹣3,1),B(﹣1,﹣1),C(﹣2,0),曲线ACB是以C为对称中心的中心对称图形,把此曲线沿x轴正方向平移,当点C运动到C′(2,0)时,曲线ACB描过的面积为_________ .三.解答题(共7小题)17.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为_________ ;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为_________ .18.如图,△ABC中,AB=BC,将△ABC沿直线BC平移到△DCE(使B与C重合),连接BD,求∠BDE的度数.19.如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x 轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.20.如图,已知△ABC的面积为16,BC=8.现将△ABC沿直线BC向右平移a个单位到△DEF 的位置.(1)当a=4时,求△ABC所扫过的面积;(2)连接AE、AD,设AB=5,当△ADE是以DE为一腰的等腰三角形时,求a的值.21.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′.(1)证明△A′AD′≌△CC′B;(2)若∠ACB=30°,试问当点C'在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由.22.如图,在三角形ABC中,AC=BC,若将△ABC沿BC方向向右平移BC长的距离,得到△CEF,连接AE.(1)试猜想,AE与CF有何位置上的关系?并对你的猜想给予证明;(2)若BC=10,tan∠ACB=时,求AB的长.23如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.(1)求四边形CEFB的面积;(2)试判断AF与BE的位置关系,并说明理由;(3)若∠BEC=15°,求AC的长.图形的变化——图形的平移1参考答案与试题解析一.选择题(共8小题)1.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为()A.16cm B.18cm C.20cm D.22cm考点:平移的性质.专题:几何图形问题.分析:根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC 即可得出答案.解答:解:根据题意,将周长为16cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=CF=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=16cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20cm.故选:C.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.2.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直考点:平移的性质;勾股定理.专题:网格型.分析:先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC的关系.解答:解:如图,将点A先向下平移3格,再向左平移1格到达A′点,连接A′B,与线段AC交于点O.∵A′O=OB=,AO=OC=2,∴线段A′B与线段AC互相平分,又∵∠AOA′=45°+45°=90°,∴A′B⊥AC,∴线段A′B与线段AC互相垂直平分.故选:D.点评:本题考查了平移的性质,勾股定理,正确利用网格求边长长度及角度是解题的关键.3.已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2)B(2,9)C(5,3)D.(﹣9,﹣4)考点:坐标与图形变化-平移.专题:常规题型.分析:根据点A、C的坐标确定出平移规律,再求出点D的坐标即可.解答:解:∵点A(﹣1,4)的对应点为C(4,7),∴平移规律为向右5个单位,向上3个单位,∵点B(﹣4,﹣1),∴点D的坐标为(1,2).故选:A.点评:本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD 的周长为()A.12 B.16 C.20 D.24考点:平移的性质;等边三角形的性质.专题:数形结合.分析:根据平移的性质易得AD=BE=2,那么四边形ABFD的周长即可求得.解答:解:∵将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,∴AD=BE=2,各等边三角形的边长均为4.∴四边形ABFD的周长=AD+AB+BE+FE+DF=16.故选B.点评:本题考查平移的性质,用到的知识点为:平移前后对应线段相等;关键是找到所求四边形的各边长.5.如图,已知∠EFD=∠BCA,BC=EF,AF=DC.若将△ABC沿AD向右平移,使点C与点D重合,则所得到的图形形状是()A.梯形B.平行四边形C矩形D.等边三角形考点:平移的性质;平行四边形的判定.分析:首先根据平移后点C与点D重合,AF=DC,得到点A和点F重合,然后根据∠EFD=∠BCA,得到BC∥EF,从而判定所得到的图形形状是平行四边形.解答:解:∵平移后点C与点D重合,AF=DC,∴点A和点F重合,∵∠EFD=∠BCA,∴BC∥EF,∵BC=EF,∴所得到的图形形状是平行四边形,故选B.点评:本题考查了平移的性质及平行四边形的判定,解题的关键是了解平行四边形的判定定理,难度不大.6.如图将等腰直角△ABC沿BC方向平移得到△A1B1C1,若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=()A. 1 B.C.D.2考点:平移的性质;等腰直角三角形.分析:重叠部分为等腰直角三角形,设B1C=2x,则B1C边上的高为x,根据重叠部分的面积列方程求x,再求BB1.解答:解:设B1C=2x,根据等腰三角形的性质可知,重叠部分为等腰直角三角形,则B1C边上的高为x,∴×x×2x=2,解得x=(舍去负值),∴B1C=2,∴BB1=BC﹣B1C=.故选:B.点评:本题考查了等腰直角三角形的性质,平移的性质.关键是判断重叠部分图形为等腰直角三角形,利用等腰直角三角形的性质求斜边长.7.如图,EF是△ABC的中位线,AD是中线,将△AEF沿AD方向平移到△A1E1F1的位置,使E1、F1落在BC边上,此时点A1恰好落在EF上,已知△AEF的面积是7,则阴影部分的面积是()A.7 B14 C.21 D.28考点:平移的性质.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可知S△ABC=4S△AEF,再根据平移变换只改变图形的位置不改变图形的形状可知S△A1E1F1=S△AEF,然后列式计算即可得解.解答:解:∵EF是△ABC的中位线,∴S△ABC=4S△AEF=4×7=28,∵△AEF沿AD方向平移到△A1E1F1,∴S△A1E1F1=S△AEF=7,∴阴影部分的面积=28﹣7﹣7=14.故选B.点评:本题考查了平移的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质是解题的关键,难点在于理解三角形的中位线把三角形分成的小三角形的面积等于原三角形的面积的.8如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若四边形ABED 的面积等于8,则平移距离等于()A. 2 B 4 C.8 D.16考点:平移的性质.分析:根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED是平行四边形,再根据平行四边形的面积公式即可求解.解答:解:∵将△ABC沿CB向右平移得到△DEF,四边形ABED的面积等于8,AC=4,∴平移距离=8÷4=2.故选A.点评:本题主要考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.二.填空题(共8小题)9.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于4或8 .考点:平移的性质;解一元二次方程-因式分解法;平行四边形的判定与性质;正方形的性质.专题:几何动点问题.分析:根据平移的性质,结合阴影部分是平行四边形,△AA′H与△HCB′都是等腰直角三角形,则若设AA′=x,则阴影部分的底长为x,高A′D=2﹣x,根据平行四边形的面积公式即可列出方程求解.解答:解:设AC交A′B′于H,∵∠A=45°,∠D=90°∴△A′HA是等腰直角三角形设AA′=x,则阴影部分的底长为x,高A′D=12﹣x∴x•(12﹣x)=32∴x=4或8,即AA′=4或8cm.故答案为:4或8.点评:考查了平移的性质及一元二次方程的解法等知识,解决本题关键是抓住平移后图形的特点,利用方程方法解题.10.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为12 .考点:平移的性质.分析:根据平移性质,判定△A′B′C为等边三角形,然后求解.解答:解:由题意,得BB′=2,∴B′C=BC﹣BB′=4.由平移性质,可知A′B′=AB=4,∠A′B′C=∠ABC=60°,∴A′B′=B′C,且∠A′B′C=60°,∴△A′B′C为等边三角形,∴△A′B′C的周长=3A′B′=12.故答案为:12.点评:本题考查的是平移的性质,熟知图形平移后新图形与原图形的形状和大小完全相同是解答此题的关键.11.如图,在直角坐标系中,已知点A(﹣3,﹣1),点B(﹣2,1),平移线段AB,使点A 落在A1(0,﹣1),点B落在点B1,则点B1的坐标为(1,1).考点:坐标与图形变化-平移.分析:根据网格结构找出点A1、B1的位置,然后根据平面直角坐标系写出点B1的坐标即可.解答:解:通过平移线段AB,点A(﹣3,﹣1)落在(0,﹣1),即线段AB沿x轴向右移动了3格.如图,点B1的坐标为(1,1).故答案为:(1,1).点评:本题考查了坐标与图形变化﹣平移,熟练掌握网格结构准确找出点的位置是解题的关键.12如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为(﹣1,3).考点:坐标与图形变化-平移.专题:几何图形问题.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y)进行计算即可.解答:解:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1﹣2,3),即(﹣1,3),故答案为:(﹣1,3).点评:此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.13在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x 轴的对称点C的坐标是(2,﹣2).考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.专题:几何图形问题.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:解:点A(﹣1,2)向右平移3个单位长度得到的B的坐标为(﹣1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,﹣2),故答案为:(2,﹣2).点评:此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.14如图,矩形ABCD中,AB=3cm,BC=4cm.沿对角线AC剪开,将△ABC向右平移至△A1BC1位置,成图(2)的形状,若重叠部分的面积为3cm2,则平移的距离AA1= 2 cm.考点:平移的性质.专题:压轴题.分析:首先假设AA1=x,DA1=4﹣x,再利用平移的性质以及相似三角形的性质得出,求出x的值即可.解答:解:∵矩形ABCD中,AB=3cm,BC=4cm.沿对角线AC剪开,将△ABC向右平移至△A1BC1位置,成图(2)的形状,重叠部分的面积为3cm2,设AA1=x,∴DA1=4﹣x,∴NA1×DA1=3,∴NA1=,∵NA1∥CD,∴,∴,解得:x=2则平移的距离AA1=2,故答案为:2.点评:此题主要考查了平移的性质以及相似三角形的性质,根据题意得出是解决问题的关键.15如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为10 .考点:平移的性质.分析:根据平移的基本性质解答即可.解答:解:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.16.如图,已知A(﹣3,1),B(﹣1,﹣1),C(﹣2,0),曲线ACB是以C为对称中心的中心对称图形,把此曲线沿x轴正方向平移,当点C运动到C′(2,0)时,曲线ACB描过的面积为8 .考点:平移的性质;坐标与图形性质.专题:计算题.分析:连接AB和A′B′,根据平移的性质可知,平行四边形ABB′A′的面积即是曲线ACB描过的面积,然后利用平行四边形的面积公式求解即可.解答:解:连接AB和A′B′,过点B作BD⊥AA′,如下图所示:根据平移的性质可知,平行四边形ABB′A′的面积即是曲线ACB描过的面积,∵S▱ABB′A′=AA′×BD=CC′×BD=4×2=8.∴曲线ACB描过的面积为8.故答案为:8.点评:本题考查平移的性质及坐标与图形的性质,难度适中,解题关键是将曲线ACB描过的面积转化为求平行四边形ABB′A′的面积.三.解答题(共7小题)17.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为(﹣3,2);(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为(﹣2,3).考点:作图-平移变换;关于x轴、y轴对称的点的坐标.专题:作图题.分析:(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等解答;(2)根据网格结构找出点A、O、B向左平移后的对应点A1、O1、B1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出坐标即可.解答:解:(1)B点关于y轴的对称点坐标为(﹣3,2);(2)△A1O1B1如图所示;(3)A1的坐标为(﹣2,3).故答案为:(1)(﹣3,2);(3)(﹣2,3).点评:本题考查了利用平移变换作图,关于y轴对称点的坐标,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.如图,△ABC中,AB=BC,将△ABC沿直线BC平移到△DCE(使B与C重合),连接BD,求∠BDE的度数.考点:平移的性质.专题:计算题.分析:先根据平移的性质得AB=DC,AB∥CD,AC∥DE,利用AB=BC可判断四边形ABCD 为菱形,根据菱形的性质得AC⊥BD,而AC∥DE,所以BD⊥DE,则∠BDE=90°.解答:解:∵△ABC沿直线BC平移到△DCE(使B与C重合),∴AB=DC,AB∥CD,AC∥DE,∴四边形ABCD为平行四边形,∵AB=BC,∴四边形ABCD为菱形,∴AC⊥BD,而AC∥DE,∴BD⊥DE,∴∠BDE=90°.点评:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了菱形的判定与性质.19如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x 轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.考点:作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出坐标即可;(2)观图形可得△ABC扫过的面积为四边形AA′B′B的面积与△ABC的面积的和,然后列式进行计算即可得解.解答:解:(1)平移后的△A′B′C′如图所示;点A′、B′、C′的坐标分别为(﹣1,5)、(﹣4,0)、(﹣1,0);(2)由平移的性质可知,四边形AA′B′B是平行四边形,∴△ABC扫过的面积=S四边形AA'B'B+S△ABC=B′B•AC+BC•AC=5×5+×3×5=25+=.点评:本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.20.如图,已知△ABC的面积为16,BC=8.现将△ABC沿直线BC向右平移a个单位到△DEF 的位置.(1)当a=4时,求△ABC所扫过的面积;(2)连接AE、AD,设AB=5,当△ADE是以DE为一腰的等腰三角形时,求a的值.考点:平移的性质.专题:计算题.分析:(1)要求△ABC所扫过的面积,即求梯形ABFD的面积,根据题意,可得AD=4,BF=2×8﹣4=12,所以重点是求该梯形的高,根据直角三角形的面积公式即可求解;(2)此题注意分两种情况进行讨论:①当AD=DE时,根据平移的性质,则AD=DE=AB=5;②当AE=DE时,根据等腰三角形的性质以及勾股定理进行计算.解答:解:(1)△ABC所扫过面积即梯形ABFD的面积,作AH⊥BC于H,∴S△ABC=16,BC•AH=16,AH===4,∴S梯形ABFD=×(AD+BF)×AH=(4+12)×4=32;(2)①当AD=DE时,a=5;②当AE=DE时,取BE中点M,则AM⊥BC,∵S△ABC=16,∴BC•AM=16,∴×8×AM=16,∴AM=4;在Rt△AMB中,BM===3,此时,a=BE=6.综上,a=5,6.点评:熟悉平移的性质以及等腰三角形的性质和直角三角形的性质.考查了学生综合运用数学的能力.21.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′.(1)证明△A′AD′≌△CC′B;(2)若∠ACB=30°,试问当点C'在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由.考点:平移的性质;全等三角形的判定;菱形的判定.专题:几何综合题.分析:(1)根据已知利用SAS判定△A′AD′≌△CC′B;(2)由已知可推出四边形ABC′D′是平行四边形,只要再证明一组邻边相等即可确定四边形ABC′D′是菱形,由已知可得到BC′=AC,AB=AC,从而得到AB=BC′,所以四边形ABC′D′是菱形.解答:(1)证明:∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到,∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC.∴∠D′A′C′=∠BCA.∴△A′AD′≌△CC′B.(2)解:当点C′是线段AC的中点时,四边形ABC′D′是菱形.理由如下:∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到,∴C′D′=CD=AB.由(1)知AD′=C′B.∴四边形ABC′D′是平行四边形.在Rt△ABC中,点C′是线段AC的中点,∴BC′=AC.而∠ACB=30°,∴AB=AC.∴AB=BC′.∴四边形ABC′D′是菱形.点评:本题即考查了全等的判定及菱形的判定,注意对这两个判定定理的准确掌握.考查了学生综合运用数学的能力.22.如图,在三角形ABC中,AC=BC,若将△ABC沿BC方向向右平移BC长的距离,得到△CEF,连接AE.(1)试猜想,AE与CF有何位置上的关系?并对你的猜想给予证明;(2)若BC=10,tan∠ACB=时,求AB的长.考点:平移的性质;勾股定理;菱形的判定.专题:探究型.分析:(1)由平移可得,∠ACB=∠FEC,AC=CE=EF=AF,那么四边形ACEF是菱形,由邻边相等可得到是菱形,所以对角线互相垂直;(2)作出BC边上高AD,利用AC,及tan∠ACB的值,求得AD,CD长,进而得到BD长,利用勾股定理求解即可.解答:解:(1)AE⊥CF证明:如图,连接AF,∵AC=BC,又∵△ABC沿BC方向向右平移BC长的距离,∴AC=CE=EF=AF.∴四边形ACEF是菱形.∴AE⊥CF.(2)如图,作AD⊥BC于D.∵tan∠ACB=,设AD=3KDC=4K,在Rt△ADC中,AC=10,∵AD2+DC2=AC2∴K=2.∴AD=6cm,DC=8cm.∴BD=2cm.在Rt△ADB中,根据勾股定理:AB=2cm.点评:平移前后对应线段,对应角相等,作高构造已给三角函数所在的直角三角形是常用的辅助线作法.23.如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.(1)求四边形CEFB的面积;(2)试判断AF与BE的位置关系,并说明理由;(3)若∠BEC=15°,求AC的长.考点:平移的性质;全等三角形的判定;菱形的判定.专题:综合题.分析:(1)根据平移的性质及平行四边形的性质可得到S△EFA=S△BAF=S△ABC,从而便可得到四边形CEFB的面积;(2)由已知可证得平行四边形EFBA为菱形,根据菱形的对角线互相垂直平分可得到AF与BE的位置关系为垂直;(3)作BD⊥AC于D,结合三角形的面积求解.解答:解:(1)由平移的性质得AF∥BC,且AF=BC,△EFA≌△ABC∴四边形AFBC为平行四边形S△EFA=S△BAF=S△ABC=3∴四边形EFBC的面积为9;(2)BE⊥AF证明:由(1)知四边形AFBC为平行四边形∴BF∥AC,且BF=AC又∵AE=CA∴四边形EFBA为平行四边形又已知AB=AC∴AB=AE∴平行四边形EFBA为菱形∴BE⊥AF;(3)如上图,作BD⊥AC于D∵∠BEC=15°,AE=AB∴∠EBA=∠BEC=15°∴∠BAC=2∠BEC=30°∴在Rt△BAD中,AB=2BD设BD=x,则AC=AB=2x∵S△ABC=3,且S△A BC=AC•BD=•2x•x=x2∴x2=3∵x为正数∴x=∴AC=2.点评:此题主要考查了全等三角形的判定,平移的性质,菱形的性质等知识点的综合运用及推理计算能力.。
人教版初三数学下册第二十六章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列函数中,表示y 是x 的反比例函数的是( ) A .x(y +1)=1 B .y =1x -1C .y =-1x 2D .y =12x2.反比例函数y =n +5x的图象经过点(2,3),则n 的值是( ) A .-2 B .-1 C .0 D .13.反比例函数y =kx 的图象经过点P(-1,2),则这个函数的图象位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限4.已知反比例函数y =3x ,下列结论中不正确的是( )A .图象经过点(-1,-3)B .图象在第一、三象限C .当x >1时,0<y <3D .当x <0时,y 随着x 的增大而增大5.为了更好保护水资源,造福人类,某工厂计划建一个容积V(m 3)一定的污水处理池,池的底面积S(m 2)与其深度h(m )满足关系式V =Sh(V ≠0),则S 关于h 的函数图象大致是( )(第6题)6.如图所示,直线y =x +2与双曲线y =kx相交于点A ,点A 的纵坐标为3,则k 的值为( )A .1B .2C .3D .47.已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数y =2x 图象上的三点,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A .y 3<y 2<y 1B .y 1<y 2<y 3C .y 2<y 1<y 3D .y 2<y 3<y 18.已知二次函数y =-(x -a)2-b 的图象如图所示,则反比例函数y =abx 与一次函数y=ax +b 的图象可能是( )(第8题)9.如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2x 的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1的值为( )A .4B .143C .163D .610.反比例函数y =a x (a >0,a 为常数)和y =2x 在第一象限内的图象如图所示,点M 在y=a x 的图象上,MC ⊥x 轴于点C ,交y =2x 的图象于点A ;MD ⊥y 轴于点D ,交y =2x 的图象于点B.当点M 在y =ax (x >0)的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB的面积不变;③当点A 是MC 的中点时,点B 是MD 的中点.其中正确结论的个数是( )A .0个B .1个C .2个D .3个(第9题)(第10题)(第14题)二、填空题(每题3分,共30分)11.请写出一个图象在第二、四象限的反比例函数的解析式:________.12.已知反比例函数y =kx 的图象经过A(-3,5),则当x =-5时,y 的值是________.13.若函数y =m -2x的图象在每个象限内y 的值随x 值的增大而增大,则m 的取值范围为________.14.某闭合电路,电源的电压为定值,电流I(A )与电阻R(Ω)成反比例.如图表示的是该电路中电流I 与电阻R 之间的函数关系的图象,当电阻R 为6 Ω时,电流I 为________A .15.已知反比例函数y =4x ,当函数值y ≥-2时,自变量x 的取值范围是________.16.若变量y 与x 成反比例,且当x =2时,y =-3,则y 与x 之间的函数关系式是________,在每个象限内函数值y 随x 的增大而________.17.函数y =1x 与y =x -2的图象的交点的横坐标分别为a 、b ,则1a +1b 的值为________.18.一菱形的面积为12 cm 2,它的两条对角线长分别为a cm ,b cm ,则a 与b 之间的函数关系式为a =________;这个函数的图象位于第________象限.19.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y =kx 的图象上,OA =1,OC =6,则正方形ADEF 的边长为________.(第19题)(第20题)20.如图,点A在函数y=4x(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.已知y与x-1成反比例,且当x=-5时,y=2.(1)求y与x的函数关系式;(2)当x=5时,求y的值.22.在平面直角坐标系xOy中,直线y=x+b与双曲线y=mx的一个交点为A(2,4),与y轴交于点B.(1)求m的值和点B的坐标;(2)点P在双曲线y=mx上,△OBP的面积为8,直接写出点P的坐标.23.已知反比例函数y=4 x.(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图所示,反比例函数y=4x(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移到C2处所扫过的面积.(第23题)24.如图是药品研究所测得的某种新药在成人用药后,血液中的药物浓度y(微克/毫升)随用药后的时间x(小时)变化的图象(图象由线段OA 与部分双曲线AB 组成).并测得当y =a 时,该药物才具有疗效.若成人用药4小时,药物开始产生疗效,且用药后9小时,药物仍具有疗效,则成人用药后,血液中药物浓度至少需要多长时间达到最大?(第24题)25.如图所示,在平面直角坐标系xOy 中,直线y =x -2与y 轴相交于点A ,与反比例函数y =kx在第一象限内的图象相交于点B(m ,2).(1)求该反比例函数的关系式;(2)若直线y=x-2向上平移后与反比例函数y=kx在第一象限内的图象相交于点C,且△ABC的面积为18,求平移后的直线对应的函数关系式.(第25题) 26.如图所示,一次函数y1=k1x+2的图象与反比例函数y2=k2x的图象交于点A(4,m)和B(-8,-2),与y轴交于点C.(第26题)(1)k1=__________,k2=__________;(2)根据函数图象可知,当y1>y2时,x的取值范围是____________;(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC S△ODE=3 1时,求点P的坐标.参考答案一、1.D2.D 点拨:∵反比例函数y =n +5x 的图象过点(2,3).∴3=n +52,∴n =1. 3.D 点拨:∵点P(-1,2)在第二象限,∴反比例函数y =kx 的图象在第二、四象限.4.D 5.C6.C 点拨:把y =3代入y =x +2,得x =1.∴A(1,3).把点A 的坐标代入y =kx ,得k =xy =3.7.C 点拨:观察如图所示的图象,易知答案选C.(第7题)8.B 点拨:观察二次函数图象,发现: 抛物线的顶点在第四象限,即a >0,-b <0, ∴b >0. ∴ab >0.∴反比例函数y =abx 的图象在第一、三象限.一次函数y =ax +b 的图象过第一、二、三象限. 故选B .9.A 点拨:设A 点坐标为⎝⎛⎭⎫m ,k 1m ,B 点坐标为⎝⎛⎭⎫n ,k 1n ,则C 点坐标为⎝⎛⎭⎫m ,k 2m ,D 点坐标为⎝⎛⎭⎫n ,k 2n , 由题意得⎩⎪⎨⎪⎧n -m =103,k 1-k2m =2,解得k 2-k 1=4.k 2-k 1n =3,10.D 点拨:①由于A 、B 在同一反比例函数y =2x 的图象上,则S △ODB =S △OCA =12×2=1,∴①正确;②由于矩形OCMD 、△ODB 、△OCA 的面积为定值,则四边形MAOB 的面积不会发生变化,∴②正确;③连接OM ,当点A 是MC 的中点时,S △OAM =S △OAC .∵S △ODM=S △OCM =a2,S △ODB =S △OCA ,∴S △OBM =S △OAM ,∴S △OBD =S △OBM ,∴点B 一定是MD 的中点,∴③正确.二、11.y =-6x 点拨:答案不唯一.12.313.m <2 点拨:∵函数y =m -2x的图象在每个象限内y 的值随x 值的增大而增大,∴m -2<0,解得m <2.14.115.x ≤-2或x>0 点拨:结合图象考虑反比例函数增减性. 16.y =-6x ;增大17.-2 18.24b (b>0);一 19.220.4+26 点拨:设A 点坐标为(x ,y),则由OA =4,可得x 2+y 2=OA 2=16,由点在函数图象上可得xy =4,所以(x +y)2=x 2+y 2+2xy =24.又点A 在第一象限,可得x >0,y >0,所以x +y =26,故△OAB 的周长为4+2 6.三、21.解:(1)设y 与x 的函数关系式为y =kx -1, 由题意得2=k-5-1,解得k =-12.∴y 与x 的函数关系式为y =-12x -1.(2)当x =5时,y =-12x -1=-125-1=-3.22.解:(1)∵双曲线y =mx 经过点A(2,4),∴m =8.∵直线y =x +b 经过点A(2,4),∴b =2. ∴此直线与y 轴的交点B 的坐标为(0,2). (2)点P 的坐标为(8,1)或(-8,-1).23.解:(1)联立方程组⎩⎪⎨⎪⎧y =4x ,y =kx +4,得kx 2+4x -4=0.∵反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,∴Δ=16+16k =0,∴k =-1.(2)如图所示,C 1平移至C 2处所扫过的面积为2×3=6.(第23题)24.解:设直线OA 对应的函数解析式为y =kx ,把(4,a)代入,得a =4k ,解得k =a4,即直线OA 对应的函数解析式为y =a4x.根据题意,(9,a)在反比例函数的图象上,则反比例函数的解析式为y =9a x .当a 4x =9ax 时,解得x =±6(负值舍去),故成人用药后,血液中药物浓度至少需要6小时达到最大.25.解:(1)∵点B(m ,2)在直线y =x -2上, ∴m -2=2,解得m =4,∴点B(4,2). 又∵点B(4,2)在反比例函数y =kx 的图象上,∴k =8,∴反比例函数的关系式为y =8x.(2)设平移后的直线对应的函数关系式为y =x +b ,C 点坐标为⎝⎛⎭⎫x ,8x . ∵△ABC 的面积为18,∴4×⎝⎛⎭⎫8x +2-12×4×4-12×(4-x)⎝⎛⎭⎫8x -2-12x ⎝⎛⎭⎫8x +2=18, 化简,得x 2+7x -8=0,解得x 1=-8,x 2=1. ∵x >0,∴x =1,∴C 点坐标为(1,8).把C 点坐标(1,8)代入y =x +b 得:8=1+b ,∴b =7. ∴平移后的直线对应的函数关系式为y =x +7. 26.解:(1)12;16(2)-8<x <0或x >4(3)由(1)知,y 1=12x +2,y 2=16x.∴m =4,点C 的坐标是(0,2),点A 的坐标是(4,4). ∴CO =2,AD =OD =4. ∴S 梯形ODAC =CO +AD 2×OD =2+42×4=12. ∵S 梯形ODAC S △ODE =3 1, ∴S △ODE =13×S 梯形ODAC =13×12=4.即12OD·DE =4,∴DE =2.∴点E 的坐标为(4,2). 又点E 在直线OP 上,∴直线OP 对应的函数解析式为y =12x.由⎩⎨⎧y =16x ,y =12x ,得⎩⎨⎧x =42,y =22 或⎩⎨⎧x =-42,y =-22(不合题意,舍去).∴点P 的坐标为(42,22).。
中考数学复习题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. πB. 0.33333...C. 1.1010010001...D. √22. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 24. 一个多项式P(x) = 2x^3 - 5x^2 + 3x - 1,当x=1时,P(x)的值是多少?A. -1B. 0C. 1D. 25. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π6. 如果一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 5或-5D. 07. 一个正比例函数y = kx,当x=2时,y=6,那么k的值是多少?A. 3B. 4C. 6D. 88. 一个二次函数y = ax^2 + bx + c,当x=0时,y=4,当x=1时,y=3,当x=-1时,y=5,那么a的值是多少?A. 1B. -1C. 2D. -29. 下列哪个是二次方程的根?A. x^2 - 5x + 6 = 0B. x^2 + 5x + 6 = 0C. x^2 - 5x - 6 = 0D. x^2 + 5x - 6 = 010. 如果一个数列的前三项是1, 3, 6,那么这个数列是等差数列还是等比数列?A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定二、填空题(每题3分,共15分)11. 一个数的立方根是它本身,这个数可以是________。
12. 如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么这个三角形是________。
13. 一个函数f(x) = x^2 - 4x + 4,当x=________时,f(x)取得最小值。
14. 一个圆的周长为44π,那么这个圆的半径是________。
中考数学复习专题复习训练试题汇总(附答案)一、代数部分1. 题目:求解一元二次方程 $ x^2 3x + 2 = 0 $ 的解。
答案:$ x_1 = 1, x_2 = 2 $。
2. 题目:求解一元二次方程 $ x^2 + 4x 5 = 0 $ 的解。
答案:$ x_1 = 5, x_2 = 1 $。
3. 题目:求解一元二次方程 $ x^2 5x + 6 = 0 $ 的解。
答案:$ x_1 = 2, x_2 = 3 $。
二、几何部分1. 题目:求直角三角形 $ ABC $ 中,已知 $ AB = 3 $,$ AC = 4 $,求 $ BC $ 的长度。
答案:$ BC = 5 $。
2. 题目:求直角三角形 $ ABC $ 中,已知 $ BC = 5 $,$ AC = 4 $,求 $ AB $ 的长度。
答案:$ AB = 3 $。
3. 题目:求直角三角形 $ ABC $ 中,已知 $ AB = 3 $,$ BC =4 $,求 $ AC $ 的长度。
答案:$ AC = 5 $。
三、应用题部分1. 题目:某工厂生产的产品,每件成本为 50 元,销售价为 80 元。
已知该工厂生产 100 件产品的总成本为 5000 元,求该工厂生产的产品数量。
答案:该工厂生产的产品数量为 100 件。
2. 题目:某商店销售一款商品,原价为 100 元,打 8 折后的售价为 80 元。
求该商品的折扣率。
答案:该商品的折扣率为 20%。
3. 题目:某水果店购买一批苹果,每千克进价为 5 元,销售价为 10 元。
已知该水果店购买了 100 千克苹果,求该水果店的利润。
答案:该水果店的利润为 500 元。
中考数学复习专题复习训练试题汇总(附答案)四、函数部分1. 题目:已知一次函数 $ y = 2x + 1 $,求 $ x = 3 $ 时的$ y $ 值。
答案:当 $ x = 3 $ 时,$ y = 7 $。
2. 题目:已知二次函数 $ y = x^2 4x + 4 $,求该函数的顶点坐标。
中考数学复习试卷二十六参考答案
1. A.
2. B.
3. B.
4. C.
5.
略. 6. D. 7.
B. 8.
C. 9.略 10. 略 11、360. 12、6. 13、2x =. 14、4:9. 15、10
21
. 16、4. 17. 解方程:2320x x -+=. 【答案】解:(1)(2)0x x --=
∴10x -=或20x -= ∴11x =,22x =
18. 先化简,再求值:
21
(1)11x x x ÷+--,其中1x =. 【答案】解:原式=1
(1)(1)x x x x x -⋅
+- =11
x +
当1x 时,原式
.
19.3>x
20、(1) 如图,补全树状图;
(2) 从树状图可知,共有9种可能结果,其中两次抽取卡片上的数字之积为奇数的有4种结果,
∴P (积为奇数)=
4
9
21、(1) 设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:
5(30)(40)76
6(30)3(40)120x y x y -+-=⎧⎨
-+-=⎩
,解得x=42,y=56, 答:A ,B 两种型号计算器的销售价格分别为42元,56元; (2) 设最少需要购进A 型号的计算a 台,得
3040(70)2500a a +-≥
解得30x ≥
答:最少需要购进A 型号的计算器30台.
22.
23.
24.略 25.略
26.(1) ∵A (1,3),
∴OB =1,AB =3, 又AB =3BD , ∴BD =1, ∴B (1,1), ∴111k =⨯=;
(2) 由(1)知反比例函数的解析式为1y x
=
, 解方程组31y x
y x =⎧⎪
⎨=⎪⎩
,得x y ⎧⎪⎨
⎪⎩
或x y ⎧=⎪⎨⎪=⎩
, ∴点C 的坐标为
; (3) 如图,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.
设直线CE 的解析式为y kx b =+,则
1b k b +=⎪-+=⎩
3k =
,2b =, ∴直线CE
的解析式为3)2y x =+, 当x =0时,y
=2, ∴点M 的坐标为(0
,2).
24.、(1)
∵AB 为⊙O 直径,BP PC =, ∴PG ⊥BC ,即∠ODB =90°, ∵D 为OP 的中点,
∴OD =11
22OP OB =,
∴cos ∠BOD =
1
2
OD OB =, ∴∠BOD =60°,
∵AB 为⊙O 直径, ∴∠ACB =90°, ∴∠ACB =∠ODB , ∴AC ∥PG ,
∴∠BAC =∠BOD =60°; (2) 由(1)知,CD =BD ,
∵∠BDP =∠CDK ,DK =DP , ∴△PDB ≌△CDK ,
∴CK =BP ,∠OPB =∠CKD , ∵∠AOG =∠BOP , ∴AG =BP , ∴AG =CK ∵OP =OB ,
∴∠OPB =∠OBP , 又∠G =∠OBP , ∴AG ∥CK ,
∴四边形AGCK 是平行四边形; (3) ∵CE =PE ,CD =BD ,
∴DE ∥PB ,即DH ∥PB ∵∠G =∠OPB , ∴PB ∥AG , ∴DH ∥AG ,
∴∠OAG =∠OHD , ∵OA =OG ,
∴∠OAG =∠G , ∴∠ODH =∠OHD , ∴OD =OH ,
又∠ODB =∠HOP ,OB =OP , ∴△OBD ≌△HOP ,
∴∠OHP =∠ODB =90°, ∴PH ⊥A B.
25、(1)
(2) 如图,过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ,则NE =DF .
∵∠ACD =60°,∠ACB =45°, ∴∠NCF =75°,∠FNC =15°,
∴sin 15°=FC
NC
,又NC =x ,
∴FC ,
∴NE =DF +.
∴点N 到AD +cm ;
(3) ∵sin 75°=
FN NC ,∴FN ,
∵PD =CP
∴PF
∴111)222y x x =++-·
)
即2y ++,
当x =
时,y
.
中考数学复习试卷二十七参考答案
26.解:(1)由图可得:可设(0)y kx b k =+≠图象经过(130,50)和(150,30)
代入求得:1,180k b =-= 即:180y x =-+……………………………5分
(2)
2(180)(100)28018000(140)1600
W x x x x x =-+-=-+-=--+
当140x =元时,W 最大值为1600元。
………………………………………12分
27.(1)由题意设A 型货箱用了x 节,则B 型货箱用了(50-x )节,则可列不等式组: 35x +25(50-x )≥1530
15x+35(50-x )≥1150………………………………………………………………2分 解得:28≤x ≤30…………………………………………………………………………3分 ∵x 取整数 ∴ x = 28、29、30……………………………………………………4分 ∴ 有三种方案:当A 型货箱用了28节时,B 型货箱用了22节。
当A 型货箱用了29节时,B 型货箱用了21节。
当A 型货箱用了30节时,B 型货箱用了20节。
…………………6分 (2)∵总费用 = 0.x+0.8(50-x )
= -0.3x +40………………………………………………………8分 ∵费用随x 的增大而减小…………………………………………………………9分
∴当x = 30时,总费用 = 31元。
……………………………………………10分
中考数学复习试卷二十八参考答案
1.B
2.B
3.C
4.C
5.C
6.A
7. B
13. 2±,2 14. 1-≥x 15.5 16. 2)2(b a - 17. 11<<-x 18. 3,4-
19.
20.
21.
22.
23.
24.
25.略
26.略
27.
中考数学复习试卷二十九参考答案略
中考数学复习试卷三十参考答案1-5 ABCCD 6-10 CDCBA 11-12CD
13. 2 14.2 x 15.3 16.15
17-19
20.
21.
22.
23.略
24.(1)证明:∵△ABC为等边三角形,
∴AC=BC,
又∵AC=CD,
∴AC=BC=CD,
∴△ABD为直角三角形,
∴AB⊥AD,
∵AB为直径,
∴AD是⊙O的切线;
(2)解:连接OE,
∵OA=OE,∠BAC=60°,
∴△OAE是等边三角形,
∴∠AOE=60°,
∵CB=BA,OA=OB,
∴CO⊥AB,
∴∠AOC=90°,
∴∠EOC=30°,
∵△ABC是边长为4的等边三角形,
∴AO=2,由勾股定理得:OC==2,
同理等边三角形AOE边AO上高是=,
S阴影=S△AOC﹣S等边△AOE﹣S扇形EOG==.。