4-2 洛必达法则
- 格式:ppt
- 大小:1.65 MB
- 文档页数:26
洛必达法则一、基本内容洛必达法则:设函数)(x f 和)(x g(1)在0x 的某去心邻域(或M x >||,0>M )内可导且0)(≠'x g ; (2)当0x x →(或∞→x )时,)(x f 和)(x g 都趋于零(或都是无穷大); (3))()(lim)(0x g x f x x x ''∞→→存在(或为无穷大),则)()(lim )(0x g x f x x x ∞→→存在(或为无穷大),且)()(lim)()(lim)()(00x g x f x g x f x x x x x x ''=∞→→∞→→ 洛必达法则以导数为工具,给出了计算未定式极限的一般方法。
二、学习要求熟练掌握用洛必达法则求未定型极限的方法。
三、基本题型及解题方法 题型1 利用洛必达法则求“00”与“∞∞”型极限 解题方法:在验证了是这两种类型极限后,首先应该想到第一章中提到的各种方法,如约掉零因子,等价无穷小替换等等,然后再结合洛必达法则一起解题。
在应用该法则时要注意,分子分母同时取导数,当取导之后仍为“00”或“∞∞”,可以再次利用洛必达法则,而且当洛必达法则失败时,也不代表极限不存在,要重新研究。
【例1】 求下列极限: (1)22)2(sin ln limx x x -→ππ; (2)xx xx x tan tan lim20-→ (3)ee x x x x -+-→ln 1lim 31; (4) x x x e x x arctan 1)1ln(lim 0---+→ 解:(1)所给极限为型,由洛必达法则,有22)2(sin ln limx x x -→ππ)2(4cot lim 2/x xx --=→ππ仍为型,再利用洛必达法则,得 原式81sin 1lim 818csc lim 22/22/-=-=-=→→xx x x ππ (2)所给极限为型,且因为当 0→x 时,x x ~tan ,则 x x x x x tan tan lim 20-→30tan lim xxx x -=→)()(tan lim 30''-=→x x x x 22031sec lim x x x -=→ 31sec lim 316tan sec 2lim 202000==→→x x x x x x 洛必达法则型(3)e e x x x x -+-→ln 1lim 31 )()ln 1(lim 31'-'+-=→e e x x x x xx e x x 13lim 21+=→e4=(4) x x x e x x arctan 1)1ln(lim 0---+→[])arctan (1)1ln(lim 0'-'--+=→x x x e x x2011111lim x x e x x +--+=→111)1(lim 220-+⋅+-=→x x xe x x x 201)1(lim x e x x x +--=→x e x e xx x 2)1(lim 0-+-=→ 212lim 0-=-=→x xe x x题型2 利用洛必达法则求其他未定型极限解题方法:其它未定型极限主要包括∞-∞,∞⋅0,∞1,00 ,0∞,首先要把它们转化为00型或∞∞型,再用洛必达法则求之。
第四章微分中值定理4.1 微分中值定理微分中值定理在微积分理论中占有重要地位,它建立了函数与导数之间的联系,提供了导数应用的基础理论依据,本节介绍罗尔(Rolle)定理以及拉格朗日(Lagrange)中值定理。
一、罗尔定理我们已经知道,有界闭区间上的连续函数一定有最大值与最小值,但是最大值与最小值不一定是极值,例如当最大值和最小值仅在区间端点处取得时就不是极值,而如果最大值或最小值在区间内部取得时,则一定为极值,因此,如果有界闭区间上的连续函数在两个端点处的函数值相等,那么它的最大值与最小值中至少有一个在开区间内取得,从而一定是极值,如果函数可导的话,相应的极值点一定是驻点,即该点处导数为0,这样,我们自然得到下面的罗尔定理。
定理4.1(罗尔定理)设函数f(x)满足:(1)在闭区间[a、b]上连续;(2)在开区间(a、b)内可导;(3)f(a)=f(b),则至少存在一点罗尔定理也有十分明显的几何意义,设曲线弧(如图4.1所示)的方程为y=f(x)(a≤x≤b),罗尔定理的条件在几何上表示:是一条连续的曲线弧,除了端点外处处有不垂直于x轴的切线,并且两个端点A 和B的纵坐标相同。
定理结论表述了这样的几何事实:曲线弧上至少有一点C,在这点处曲线的切线是水平的,即罗尔定理的几何意义是:当曲线弧在[a、b]上为连续弧段,在(a、b)的曲线弧上每一点均有不垂直于x轴的切线,并且曲线弧两个端点的纵坐标相同,那么曲线弧上至少有一点的切线平行于x轴(如图4.1所示)有必要指出,罗尔定理中的三个条件缺一不可,条件(1)保证了函数f(x)的最大值与最小值的存在性;条件(3)保证了最大值与最小值中至少有一个在开区间内取得,从而是极值;条件(2)保证了该极值点处函数的可导性,因此,如果缺少这三个条件中的任何一个定理都将不成立,读者不妨自己举些反例加以验证。
例1 在区间[-1,1]上满足罗尔定理条件的函数是()[答疑编号10040101:针对该题提问]解:因为在x=0处没定义,所以不连续,故在区间[-1,1]上不满足罗尔定理的条件。
诺必达法则公式摘要:1.诺必达法则公式的概述2.诺必达法则公式的推导过程3.诺必达法则公式的应用领域4.诺必达法则公式的优缺点分析正文:1.诺必达法则公式的概述诺必达法则公式,又称为洛必达法则,是一种求极限的方法。
它是由法国数学家吉尼拉- 罗兰·诺必达(Guillaume de l"Hpital)提出的,适用于求解形如“0/0”和“∞/∞”这样的不定式极限。
2.诺必达法则公式的推导过程诺必达法则公式的推导过程相对简单。
假设我们有一个不定式极限:f(x)/g(x),当x 趋近于a 时,f(x) 和g(x) 都趋近于0,那么根据极限的定义,我们可以得到:lim (f(x)/g(x)) = 0/0为了解决这个问题,我们可以将分子和分母同时乘以g(x),得到:lim (f(x) * g(x) / g(x) * g(x)) = lim (f(x) * g(x)) / lim (g(x) * g(x))由于g(x) * g(x) = g^2(x),当x 趋近于a 时,g(x) 趋近于0,所以g^2(x) 趋近于0。
这样我们就得到了一个新的极限:lim (f(x) * g(x)) / lim (g(x) * g(x)) = lim (f(x) * g(x)) / 0根据极限的性质,当分子和分母同时乘以一个无穷小的量时,极限值不变。
因此,我们可以将分子f(x) * g(x) 视为无穷小量,那么原极限就可以变为:lim (f(x) * g(x)) / lim (g(x) * g(x)) = lim (f(x)) / lim (1)由于lim (f(x)) = 0,lim (1) = 1,所以:lim (f(x) * g(x)) / lim (g(x) * g(x)) = 0通过这样的推导,我们就得到了诺必达法则公式。
3.诺必达法则公式的应用领域诺必达法则公式在微积分中有广泛的应用,尤其在求解不定式极限时。
诺必达法则公式【原创版】目录1.诺必达法则公式的定义与含义2.诺必达法则公式的推导与证明3.诺必达法则公式的应用领域与实际案例4.诺必达法则公式的局限性与未来发展正文诺必达法则公式,又称为洛必达法则,是微积分学中一种求极限的方法,特别是在求解“0/0”型极限时具有广泛的应用。
这一法则是由法国数学家吉尼拉 - 罗兰·诺必达(Guillaume de l"Hpital)提出的,因此得名。
一、诺必达法则公式的定义与含义诺必达法则公式的定义是:若函数 f(x) 和 g(x) 在 x0 的某邻域内可导,且 g"(x)≠0,如果1)当 x->x0 时,f(x)->0,g(x)->0;2)当 x->x0 时,f"(x)/g"(x)->±∞,那么,当 x 趋近于 x0 时,[f(x)/g(x)] 的极限等于 [f"(x)/g"(x)] 的极限。
二、诺必达法则公式的推导与证明为了更好地理解诺必达法则公式,我们可以通过一个具体的例子来进行推导。
假设我们要求函数 f(x)=x^2/x 在 x=0 处的极限。
此时,我们可以将函数表示为 f(x)=x*x/x,那么当 x 趋近于 0 时,分子和分母都趋近于 0。
根据诺必达法则,我们需要分别求分子和分母的导数,然后做除法。
f"(x) = 2x,g"(x) = 1,当 x 趋近于 0 时,f"(x)/g"(x) = 2x/1 = 2x,显然 2x 趋近于 0。
因此,根据诺必达法则,函数 f(x)=x^2/x 在 x=0 处的极限等于 0。
三、诺必达法则公式的应用领域与实际案例诺必达法则公式在微积分领域具有广泛的应用,尤其在求解“0/0”型极限时,可以有效地解决一些实际问题。
例如,求函数 h(x)=sinx/x 在 x=π/2 处的极限。