5.1丰富的图形世界(2)
- 格式:doc
- 大小:220.50 KB
- 文档页数:3
课题5.1丰富的图形世界(2)
编写:蔡建兵审阅:朱书军
班级学号姓名使用日期_________
【学习目标】
1.通过拼摆图形,体会图形的变换,发展空间观念;
2.知识目标:通过七巧板的拼摆等活动,初步认识垂直、平行、角等有关内容,做到学以致用。
【导学提纲】
1.认识七巧板七巧板的制作欣赏七巧板的并图
2.七巧板的构成:
它是用一个_______形分割成五个________ 形、一个_______形、和一个_________形。
你发现七巧板中最大板面积(三角形)是最小板(三角形)的几倍?平行四边形的面积是七巧板总面积的几分之几?
【展示交流】
活动一:
找一找:
有互相平行的线段吗?
有互相垂直的线段吗?
你能找出一个锐角、一个直角、一个钝角吗?并说出它们的度数。
活动二:
制作七巧板
分割正方形
活动三:
你会拼吗?P123的五个图形
【盘点收获】
【课堂反馈】
1.拼出下面的图形
2.下面这个图案还没拼完,你能帮忙把它拼完吗?
【迁移创新】
用两副七巧板拼P123“练一练”中的两个图形。
《5.1 丰富的图形世界》教案教学目标1.通过观察生活中的大量物体,认识基本几何体;2.通过比较不同的物体,学会观察物体间的不同特征,体会并能用语言描述几何体之间的联系与区别;3.经历从现实世界中抽象出图形的过程,感受图形世界的多姿多彩,发展空间观念,增强用数学的意识.教学重点、难点1.通过比较不同的物体,学会观察物体间的不同特征,体会并能用语言描述几何体之间的联系与区别;2.经历从现实世界中抽象出图形的过程,感受图形世界的多姿多彩,发展空间观念,增强用数学的意识.教学过程情境引入:图形世界是多姿多彩的,下面的图片有许多常见的几何体.你能找到哪些几何体?一、认识几何体试一试:把图5-1中的物体与图5-2中的相应的几何体用线连接起来.如图5-3,从建筑物的局部可以抽象出棱锥、棱柱.议一议:1.从本节开头的三幅图片中能抽象出哪些几何体?2.从你的身边,你还能找到哪些几何体?把图5-1中的物体与图5-2中的相应的几何体用线连接起来.归纳:如果只考虑物体的大小和形状,而不考虑其他属性,我们就可以将物体抽象成几何体.1.从天坛图片中可以抽象出圆锥,从东方明珠电视塔图片中可以抽象出球体等.2.寻找身边的几何体.二、平面与曲面桌面、黑板面、平静的水面等都给我们以平面的形象.水管、易拉罐的侧面、地球仪的表面等都给我们以曲面的形象.面与面相交得到线,线与线相交得到点.反之,点动成线,线动成面,你能举出这样的实例吗?几何体由点、线、面组成.结合实例,认识平面与曲面.夜空中划过的流星——点动成线,舞动的荧光棒——线动成面.三、棱柱、棱锥有关概念如图5-4,棱柱、棱锥中,任何相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱.棱柱的棱与棱的交点叫做棱柱的顶点.棱锥的各侧棱的公共点叫做棱锥的顶点.1.通过比较,你能说出棱柱、棱锥的相同点和不同点吗?2.你能分别说出圆柱与棱柱,圆锥与棱锥的相同点与不同点吗?结合图形,认识棱柱、棱锥有关概念.1.棱柱、棱锥的相同点:棱柱、棱锥的每一个面都是平面.不同点:棱柱的侧棱长相等,棱柱的上、下底面是相同的多边形,直棱柱的侧面都是长方形,棱锥的侧面都是三角形.2.棱柱与圆柱的相同点:它们都分别有2个形状、大小相同且相互平行的底面;棱柱与圆柱的不同点:(1)棱柱的表面由平面图形组成,组成圆柱的面中有一个是曲面;(2)棱柱的底面是多边形,圆柱的底面是圆面.棱锥与圆锥的相同点:它们都只有1个底面且都是平面图形;棱锥与圆锥的不同点:(1)棱锥的表面由平面图形组成,组成圆锥的面中有一个是曲面;(2)棱锥的底面是多边形,圆锥的底面是圆面.课堂练习:A:1.从下面的图片中,你能抽象出哪些几何体?请与同学交流.B:2.(1)围成下列几何体的各个面中,哪些面是平的?哪些面是曲的?(2)将下列几何体分类,并说明理由.课堂小结:谈谈你这一节课有哪些收获.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
课题:5.1丰富的图形世界教学目标: 教学时间:1.通过观察生活中的大量物体,认识基本几何体;2.通过比较不同的物体,学会观察物体间的不同特征,体会并能用语言描述几何体之间的联系与区别;3.经历从现实世界中抽象出图形的过程,感受图形世界的多姿多彩,发展空间观念,增强用数学的意识..教学重点:通过比较不同的物体,认识到这些物体及其相关特征;教学难点:经历从现实世界中抽象出图形的过程,感受图形世界的多姿多彩,发展空间观念,增强用数学的意识教学过程:一.【情境创设】图形世界是多姿多彩的,下面的图片有许多常见的几何体.你能找到哪些几何体?二.【问题探究】(一)、认识几何体试一试:把图5-1中的物体与图5-2中的相应的几何体用线连接起来.如图5-3,从建筑物的局部可以抽象出棱锥、棱柱.议一议:1.从本节开头的三幅图片中能抽象出哪些几何体?2.从你的身边,你还能找到哪些几何体?(二)、平面与曲面桌面、黑板面、平静的水面等都给我们以平面的形象.水管、易拉罐的侧面、地球仪的表面等都给我们以曲面的形象.面与面相交得到线,线与线相交得到点.几何体由点、线、面组成.(三)、棱柱、棱锥有关概念如图5-4,棱柱、棱锥中,任何相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱.棱柱的棱与棱的交点叫做棱柱的顶点.棱锥的各侧棱的公共点叫做棱锥的顶点.1.通过比较,你能说出棱柱、棱锥的相同点和不同点吗?2.你能分别说出圆柱与棱柱,圆锥与棱锥的相同点与不同点吗?三.【变式拓展】1.从下面的图片中,你能抽象出哪些几何体?请与同学交流.2.(1)围成下列几何体的各个面中,哪些面是平的?哪些面是曲的?(2)将下列几何体分类,并说明理由.四.【总结提升】谈谈你这一节课有哪些收获.。