高等数学6章常微分方程
- 格式:ppt
- 大小:4.00 MB
- 文档页数:64
高等数学题库常微分方程第6章常微分方程习题一一、填空题: 1、微分方程1sin 2=+''-'''x y y 的阶数为__________。
2、设某微分方程的通解为()xex c c y 221+=,且00==x y,10='=x y 则___________1=c ,_____________2=c 。
3、通解为xce y =(c 为任意常数)的微分方程是___________。
4、满足条件()()=+?dx x f x f x2的微分方程是__________。
5、 y y x 4='得通解为__________。
6、1+=y dxdy的满足初始条件()10=y 的特解为__________。
7、设()n c c c x y y =,,,21是微分方程12=+'-'''y y x y 的通解,则任意常数的个数__________=n 。
8、设曲线()x y y =上任意一点()y x ,的切线垂直于该点与原点的连线,则曲线所满足的微分方程为___________。
二、求下列微分方程满足初始条件的特解: 1、y y x y ln sin =',e y x ==2π2、()0sin 1cos =-+-ydy e ydx x ,40π==x y3、yx ey -='2,00==x y4、xdx y xdy y sin cos cos sin =,4π==x y三、求下列微分方程得通解:1、1222+='y y y x 2、2211y y x -='-3、0ln =-'y y y x4、by ax e dx dy+= 5、022=---'x y y y x 6、xy y dx dy x ln = 四、验证函数xe c x c y 21+=是微分方程()01=-'+''-y y x y x 的通解,并求满足初始条件1,100='-===x x y y的特解。
《常微分方程》课程大纲一、课程简介课程名称:常微分方程学时/学分:3/54先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。
面向对象:本科二年级或以上学生教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。
二、教学内容和要求常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。
(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数)第一章基本概念(2,0)(一)本章教学目的与要求:要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方向场),定解问题等基本概念。
本章教学重点解释常微分方程解的几何意义。
(二)教学内容:1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。
2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。
3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。
4.常微分方程所讨论的基本问题。
第二章初等积分法(4,2)(一)本章教学目的与要求:要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。
本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。
并通过习题课进行初步解题训练,提高解题技巧。
(二)教学内容:1. 恰当方程(积分因子法); 2. 分离变量法3. 一阶线性微分方程(常数变易法)4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)5.应用举例第三章常微分方程基本定理(10,2)(一)本章教学目的与要求:要求学生正确掌握存在和唯一性定理及解的延伸的含义,熟记初值问题的解存在唯一性条件,正确理解解对初值和参数的连续依赖性和可微性的几何含意。
第6章方程求根与解常微分方程6.1实验目的了解微分方程的通解、特解和近似解的概念。
熟悉方程求根和常微分方程解的概念,熟悉Mathematica软件的方程求根和求常微分方程解的命令,掌握用数学软件处理方程求根和常微分方程解的有关问题.6.2实验准备6.2.1数学概念1.微分方程2.微分方程的通解、特解6.2.2数学软件命令1. Solve[eqn, x]功能:求多项式方程eqn的所有根,当多项式方程的次数n≤4时,给出eqn所有根的准确形式, 当n>4时,不一定能求出所有的根, 此时,命令输出形式为{ToRules[Roots[eqn, x ]]}n次多项式方程的一般形式为:2 012nna a x a x a x++++="式中a0 ,a1, a2,…,a n为常数。
2.Solve[{eqn1, eqn2, …, eqnk}, {x1, x2,…, xk}]功能:求多项式方程组{eqn1, eqn2, …, eqnk}的所有根, 当其中每个多项式方程的次数n4 时, 给出所有根的准确形式, 否则,不一定能求出所有的根, 此时,命令输出形式为{ToRules[Roots[{eqn1, eqn2, …, eqnk}, {x1, x2,…, xk} ]]} 。
3. NSolve[eqn, x]功能:求多项式方程eqn的所有根的近似形式。
4. NSolve[{eqn1, eqn2, …, eqnk}, {x1, x2,…, xk}]功能:求多项式方程组{eqn1, eqn2, …, eqnk}所有根的近似形式。
5. FindRoot[eqn, {x, x0}]功能:求方程eqn的在初值x0附近的一个近似根。
6. FindRoot[{eqn1,eqn2, ... }, {x, x0}, {y, y0}, ... ]功能:求方程组{eqn1, eqn2, …}在初值(x0,y0,…)附近的一个近似根。
第六章常微分方程的数值解法第六章常微分方程的数值解法在自然科学研究和工程技术领域中,常常会遇到常微分方程的求解问题。
传统的数学分析方法仅能给出一些简单的、常系数的、经典的线性方程的解析表达式,不能处理复杂的、变系数的、非线性方程,对于这些方面的问题,只能求诸于近似解法和数值解法。
而且在许多实际问题中,确确实实并不总是需要精确的解析解,往往只需获得近似的解或者解在若干个点上的数值即可。
在高等数学课程中介绍过的级数解法和逐步逼近法,能够给出解的近似表达式,这一类方法称为近似解法。
还有一类方法是通过计算机来求解微分方程的数值解,给出解在一些离散点上的近似值,这一类方法称作为数值方法。
本章主要介绍常微分方程初值问题的数值解法,包括Euler 方法、Runge-Kutta 方法、线性多步法以及微分方程组与高阶微分方程的数值解法。
同时,对于求解常微分方程的边值问题中比较常用的打靶法与有限差分法作了一个简单的介绍。
§1 基本概念1.1 常微分方程初值问题的一般提法常微分方程初值问题的一般提法是求解满足如下条件的函数,,b x a x y ≤≤)(=<<=α)(),(a y bx a y x f dxdy, (1.1) 其中),(y x f 是已知函数,α是给定的数值。
通常假定上面所给出的函数),(y x f 在给定的区域},),{(+∞<≤≤=yb x a y x D 上面满足如下条件:(1) 函数),(y x f 在区域D 上面连续;(2) 函数),(y x f 在区域D 上关于变量y 满足Lipschitz(李普希茨)条件:212121,),(),(y y b x a y y L y x f y x f ?≤≤?≤?,, (1.2)其中常数L 称为Lipschitz(李普希茨)常数。
由常微分方程的基本理论可以知道,假如(1.1)中的),(y x f 满足上面两个条件,则常微分方程初值问题(1.1)对于任意给定的初始值α都存在着唯一的解,,b x a x y ≤≤)(并且该唯一解在区间[a,b]上是连续可微的。