高等数学6章常微分方程
- 格式:ppt
- 大小:4.00 MB
- 文档页数:64
高等数学题库常微分方程第6章常微分方程习题一一、填空题: 1、微分方程1sin 2=+''-'''x y y 的阶数为__________。
2、设某微分方程的通解为()xex c c y 221+=,且00==x y,10='=x y 则___________1=c ,_____________2=c 。
3、通解为xce y =(c 为任意常数)的微分方程是___________。
4、满足条件()()=+?dx x f x f x2的微分方程是__________。
5、 y y x 4='得通解为__________。
6、1+=y dxdy的满足初始条件()10=y 的特解为__________。
7、设()n c c c x y y =,,,21是微分方程12=+'-'''y y x y 的通解,则任意常数的个数__________=n 。
8、设曲线()x y y =上任意一点()y x ,的切线垂直于该点与原点的连线,则曲线所满足的微分方程为___________。
二、求下列微分方程满足初始条件的特解: 1、y y x y ln sin =',e y x ==2π2、()0sin 1cos =-+-ydy e ydx x ,40π==x y3、yx ey -='2,00==x y4、xdx y xdy y sin cos cos sin =,4π==x y三、求下列微分方程得通解:1、1222+='y y y x 2、2211y y x -='-3、0ln =-'y y y x4、by ax e dx dy+= 5、022=---'x y y y x 6、xy y dx dy x ln = 四、验证函数xe c x c y 21+=是微分方程()01=-'+''-y y x y x 的通解,并求满足初始条件1,100='-===x x y y的特解。
《常微分方程》课程大纲一、课程简介课程名称:常微分方程学时/学分:3/54先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。
面向对象:本科二年级或以上学生教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。
二、教学内容和要求常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。
(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数)第一章基本概念(2,0)(一)本章教学目的与要求:要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方向场),定解问题等基本概念。
本章教学重点解释常微分方程解的几何意义。
(二)教学内容:1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。
2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。
3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。
4.常微分方程所讨论的基本问题。
第二章初等积分法(4,2)(一)本章教学目的与要求:要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。
本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。
并通过习题课进行初步解题训练,提高解题技巧。
(二)教学内容:1. 恰当方程(积分因子法); 2. 分离变量法3. 一阶线性微分方程(常数变易法)4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)5.应用举例第三章常微分方程基本定理(10,2)(一)本章教学目的与要求:要求学生正确掌握存在和唯一性定理及解的延伸的含义,熟记初值问题的解存在唯一性条件,正确理解解对初值和参数的连续依赖性和可微性的几何含意。
第6章方程求根与解常微分方程6.1实验目的了解微分方程的通解、特解和近似解的概念。
熟悉方程求根和常微分方程解的概念,熟悉Mathematica软件的方程求根和求常微分方程解的命令,掌握用数学软件处理方程求根和常微分方程解的有关问题.6.2实验准备6.2.1数学概念1.微分方程2.微分方程的通解、特解6.2.2数学软件命令1. Solve[eqn, x]功能:求多项式方程eqn的所有根,当多项式方程的次数n≤4时,给出eqn所有根的准确形式, 当n>4时,不一定能求出所有的根, 此时,命令输出形式为{ToRules[Roots[eqn, x ]]}n次多项式方程的一般形式为:2 012nna a x a x a x++++="式中a0 ,a1, a2,…,a n为常数。
2.Solve[{eqn1, eqn2, …, eqnk}, {x1, x2,…, xk}]功能:求多项式方程组{eqn1, eqn2, …, eqnk}的所有根, 当其中每个多项式方程的次数n4 时, 给出所有根的准确形式, 否则,不一定能求出所有的根, 此时,命令输出形式为{ToRules[Roots[{eqn1, eqn2, …, eqnk}, {x1, x2,…, xk} ]]} 。
3. NSolve[eqn, x]功能:求多项式方程eqn的所有根的近似形式。
4. NSolve[{eqn1, eqn2, …, eqnk}, {x1, x2,…, xk}]功能:求多项式方程组{eqn1, eqn2, …, eqnk}所有根的近似形式。
5. FindRoot[eqn, {x, x0}]功能:求方程eqn的在初值x0附近的一个近似根。
6. FindRoot[{eqn1,eqn2, ... }, {x, x0}, {y, y0}, ... ]功能:求方程组{eqn1, eqn2, …}在初值(x0,y0,…)附近的一个近似根。