氮气吸附法(等温吸附)..共37页
- 格式:ppt
- 大小:3.33 MB
- 文档页数:8
氮气等温吸脱附计算比表面积、孔径分布◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。
每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。
那么吸附曲线在低压端偏Y轴则说明材料与氮有较强作用力(I型,II型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈?型;低压端偏X轴说明与材料作用力弱(三型,Ⅴ型)。
中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。
BJH方法就是基于这一段得出的孔径数据;高压段可粗略地看出粒子堆积程度,如?型中如最后上扬,则粒子未必均匀。
平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。
◆几个常数1.液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm2.标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL3.STP每mL氮气分子铺成单分子层占用面积4.354平方米例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距)◆以SBA-15分子筛的吸附等温线为例加以说明此等温线属IUPAC 分类中的IV型,H1滞后环。
从图中可看出,在低压段吸附量平缓增加,此时N2 分子以单层到多层吸附在介孔的内表面,对有序介孔材料用BET方法计算比表面积时取相对压力p/p0 = 0.10~0.29比较适合。
关于氮气等温吸脱附计算比表面积、孔径分布的若干说明我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。
经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。
◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。
每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。
那么吸附曲线在:低压端偏Y轴则说明材料与氮有较强作用力(І型,ІІ型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈І型;低压端偏X轴说明与材料作用力弱(ІІІ型,Ⅴ型)。
中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。
BJH方法就是基于这一段得出的孔径数据;高压段可粗略地看出粒子堆积程度,如І型中如最后上扬,则粒子未必均匀。
平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。
◆几个常数※液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm※标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL※STP每mL氮气分子铺成单分子层占用面积4.354平方米例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距)◆以SBA-15分子筛的吸附等温线为例加以说明此等温线属IUPAC 分类中的IV型,H1滞后环。
氮气等温吸脱附计算比★★注意★★我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。
经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。
◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。
每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。
那么吸附曲线在:低压端偏Y轴则说明材料与氮有较强作用力(І型,ІІ型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈І型;低压端偏X轴说明与材料作用力弱(ІІІ型,Ⅴ型)。
中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。
BJH方法就是基于这一段得出的孔径数据;高压段可粗略地看出粒子堆积程度,如І型中如最后上扬,则粒子未必均匀。
平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。
◆几个常数※液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm※标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL※STP每mL氮气分子铺成单分子层占用面积4.354平方米例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距)◆以SBA-15分子筛的吸附等温线为例加以说明此等温线属IUPAC 分类中的IV型,H1滞后环。
目的:是让大家对氮气等温吸脱附有一个基本的理解和概念,不会讲太多源头理论,内容不多,力求简明实用。
本人有幸接触吸脱附知识的理论和实践,做个总结一是长久以来的心愿,二则更希望能和大家共同学习、探讨和提高。
由于内容是自己的总结和认识,很可能会有部分错误,希望大家能给予建议、批评和指导,好对内容做进一步的完善。
★★注意★★我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。
经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。
◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。
每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。
那么吸附曲线在:低压端偏Y轴则说明材料与氮有较强作用力(І型,ІІ型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈І型;低压端偏X轴说明与材料作用力弱(ІІІ型,Ⅴ型)。
中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。
BJH方法就是基于这一段得出的孔径数据;高压段可粗略地看出粒子堆积程度,如І型中如最后上扬,则粒子未必均匀。
平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。
◆几个常数※液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm※标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL※STP每mL氮气分子铺成单分子层占用面积4.354平方米例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距)◆以SBA-15分子筛的吸附等温线为例加以说明此等温线属IUPAC 分类中的IV型,H1滞后环。
不知道你说的是哪五个图一般来说滞后环是中孔材料的特征氮气在孔内的模型一般选择是球形,圆柱形或者是狭缝型,具体的视材料特征而定。
BJH是中孔材料的孔径分布计算公式,微孔的可以选择HK模型,目前比较先进的模型是NLDFT和MC法(比较精确,而且不局限于中孔材料的孔径分布)作者:aust_jheI 型等温线在较低的相对压力下吸附量迅速上升,达到一定相对压力后吸附出现饱和值,似于Langmuir 型吸附等温线。
只有在非孔性或者大孔吸附剂上,该饱和值相当于在吸附剂表面上形成单分子层吸附,但这种情况很少见大多数情况下,I 型等温线往往反映的是微孔吸附剂(分子筛、微孔活性炭)上的微孔填充现象,饱和吸附值等于微孔的填充体积。
可逆的化学吸附也应该是这种吸附等温线。
II 型等温线反映非孔性或者大孔吸附剂上典型的物理吸附过程,这是BET 公式最常说明的对象。
等温线拐点通常出现于单层吸附附近。
随相对压力增加,多层吸附逐步形成,达到饱和蒸汽压时,吸附层无穷多,导致试验难以测定准确的极限平衡吸附值。
III 型等温线十分少见。
吸附气体量随组分分压增加而上升。
曲线下凹是因为吸附质分子间的相互作用比吸附质与吸附剂之间的强,第一层的吸附热比吸附质的液化热小,以致吸附初期吸附质较难于吸附。
随吸附过程的进行,吸附出现自加速现象,吸附层数不受限制。
BET 公式C 值小于2 时,可以描述III 型等温线。
IV 型等温线与II 型等温线类似,但曲线后一段再次凸起,且中间段可能出现吸附回滞环,其对应的是多孔吸附剂出现毛细凝聚的体系。
在中等相对压力下,由于毛细凝聚的发生IV 型等温线较II 型等温线上升得更快。
中孔毛细凝聚填满后,如果吸附剂还有大孔径的孔或者吸附质分子相互作用强,可能继续吸附形成多分子层,吸附等温线继续上升。
V 型等温线与III 型等温线类似,但达到饱和蒸汽压时吸附层数有限,吸附量趋于一极限值。
由于发生毛细凝聚,在中等的相对压力等温线上升较快,并伴有回滞环。
氮气吸附法在测定材料比表面积和孑L径分布方面的应用原理【摘要】氮气吸附法是一种常用的表征材料比表面积和孔径分布的方法。
本文首先介绍了氮气吸附法的工作原理,然后分别讨论了材料比表面积和孔径分布的测定原理。
接着详细探讨了氮气吸附法在比表面积和孔径分布测定中的应用,强调了它的重要性。
结论部分指出了氮气吸附法在材料表面积和孔径分布测定中的重要性,并对未来的发展进行了展望。
本文对氮气吸附法在材料研究领域具有重要的指导意义,为进一步研究提供了参考。
【关键词】氮气吸附法、比表面积、孔径分布、材料测定、重要性、展望、研究背景、研究意义、工作原理。
1. 引言1.1 研究背景氮气吸附法通过在一定温度下将氮气吸附至材料表面,利用气体分子在不同介孔中的吸附特性,来计算材料的比表面积和孔径分布。
该方法简单易操作,且能够准确快速地测定材料的表面积和孔隙结构,因此在材料研究领域得到了广泛的应用。
本文将探讨氮气吸附法在测定材料比表面积和孔径分布方面的应用原理,以期为材料研究提供新的测定方法和理论依据。
1.2 研究意义氮气吸附法在测定材料比表面积和孔径分布方面的应用具有重要的研究意义。
在材料科学领域,比表面积和孔径分布是评价材料性能和应用潜力的重要参数之一。
通过氮气吸附法可以快速准确地测定材料的比表面积和孔径分布,为材料研究和应用提供重要的参考数据。
氮气吸附法在表征材料方面具有广泛的适用性,可以应用于各种类型的材料,包括纳米材料、多孔材料和催化剂等。
通过氮气吸附法的应用,可以深入了解材料的结构特征和表面性质,为材料设计和改进提供科学依据。
研究氮气吸附法在材料比表面积和孔径分布测定中的应用原理具有重要的理论和应用价值,对于推动材料科学研究和技术发展具有重要意义。
2. 正文2.1 氮气吸附法的工作原理氮气吸附法是一种常用的表征材料比表面积和孔径分布的方法。
其基本原理是利用氮气在不同压力下对样品表面的吸附量进行测定,从而推导出样品的比表面积和孔径分布信息。
金属粉末比表面积的测定氮吸附法金属粉末比表面积的测定氮吸附法___________________________________金属粉末比表面积(BET)是一种测定固体表面积的重要方法,它可以用来测量和分析金属粉末的表面性质。
氮吸附法(N2 adsorption)是金属粉末比表面积测定的一种常用方法。
## 一、氮吸附原理氮吸附原理是基于物质的表面积与气体的吸附率成反比的原理。
当气体流过表面时,气体分子会以一定的速率吸附在物质表面上,从而减少气体流量,因此可以通过测量气体流量的变化来测定物质表面积。
在氮吸附法中,金属粉末样品会被放入一个特殊的装置中,然后在装置中加入一定数量的氮气,并且控制氮气的流速,当氮气经过金属粉末样品时,部分氮气会被金属粉末样品吸附,从而减少氮气的流量,然后通过测量变化后的氮气流量来计算金属粉末样品的表面积。
## 二、操作步骤1. 将金属粉末样品放入装置中,并将装置安装在一台负责测试的机器上。
2. 调节机器上的参数,设定氮气吸入速度为一定值,然后开始测试。
3. 在进行测试过程中,会不断监测氮气流量,当流量达到一定值时,表明氮气已经完全吸附,此时可以停止测试。
4. 测试完成后,可以通过计算得出金属粉末样品的比表面积。
## 三、优势与不足氮吸附法是一种快速、准确的测定金属粉末比表面积的方法,它能够快速准确地测定金属粉末样品的表面性质。
此外,氮吸附法也具有适用范围广、成本低、操作方便的优势。
但是,氮吸附法也存在一些不足之处。
例如,如果样品中含有其他成分,可能会影响测试结果的准确性。
此外,由于这种方法只能用于测试固体物质的表面性质,因此不能用于测试液体或气体的表面性质。
## 四、应用由于其准确性、快速性和低成本,氮吸附法在金属粉末比表面积测定方面应用广泛。
例如,它可以用来测试金属粉末样品的表面形态、表面能、表面化学反应性能、表面张力、表面强度、表面活性剂性能以及其他表面特性。
此外,还可以用来分析金属粉末样品在不同条件下的表面形态变化情况,以及对样品进行加工或合成时对其形态、性能及其他特性的影响。