高等数学考研大总结系列之一预备知识
- 格式:doc
- 大小:1.21 MB
- 文档页数:17
考研数学复习中的重点知识汇总考研数学是众多考生在考研路上的一座大山,要想成功翻越,必须对重点知识有清晰的把握和深入的理解。
以下是为大家梳理的考研数学复习中的重点知识。
一、高等数学1、函数、极限与连续函数的概念、性质(奇偶性、单调性、周期性、有界性等)是基础。
极限的计算方法(四则运算、等价无穷小替换、洛必达法则、泰勒公式等)是重点,需要熟练掌握。
连续的概念、间断点的类型及判断方法也要清楚。
2、一元函数微分学导数的定义、几何意义、基本公式及求导法则要牢记。
利用导数研究函数的单调性、极值与最值是常考题型。
中值定理(罗尔定理、拉格朗日中值定理、柯西中值定理)的应用是难点,需要多做练习。
3、一元函数积分学不定积分与定积分的计算方法(换元法、分部积分法等)要熟练。
定积分的应用(求平面图形的面积、旋转体的体积、弧长等)也是重点。
反常积分的概念和计算需要了解。
4、多元函数微分学多元函数的偏导数、全微分的概念及计算方法是基础。
多元函数的极值与条件极值的求法是重点,要掌握拉格朗日乘数法。
5、多元函数积分学二重积分的计算(直角坐标、极坐标)是常考内容。
三重积分、曲线积分、曲面积分的概念和计算方法也要掌握,重点是利用高斯公式和斯托克斯公式进行计算。
6、无穷级数数项级数的敛散性判别方法(正项级数的比较判别法、比值判别法、根值判别法,交错级数的莱布尼茨判别法)要熟练。
幂级数的收敛半径、收敛区间、和函数的求法是重点,要掌握函数展开成幂级数的方法。
7、常微分方程一阶微分方程(可分离变量方程、齐次方程、一阶线性方程等)的解法要掌握。
二阶常系数线性微分方程的解法是重点,要记住特征方程和通解的形式。
二、线性代数1、行列式行列式的性质和计算方法是基础,重点是利用行列式的性质化简行列式并计算其值。
2、矩阵矩阵的运算(加法、乘法、数乘、转置等)要熟练。
矩阵的秩的概念和求法是重点。
逆矩阵的概念、性质和求法也是常考内容。
3、向量向量组的线性相关性的判断方法是重点,要掌握线性表出、极大线性无关组的概念和求法。
考研随身知识点总结一、高等数学1. 数列与级数(*1) 等差数列:通项公式An=A1+(n-1)d,前n项和Sn=(A1+An)n/2(*2) 等比数列:通项公式An=A1*q^(n-1),前n项和Sn=A1*(q^n-1)/(q-1)(*3) 收敛级数:若∑(an)收敛,则an趋于0。
计算收敛级数时,要考虑首项、末项、公比等因素。
(*4) 泰勒级数:函数f(x)在点x=a处的泰勒级数展开式为f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+…+f⁽ⁿ⁾(a)(x-a)^n/n!+o((x-a)^n),其中o((x-a)^n)是n次小量。
2. 微分与积分(*1) 微分:导数f'(x)=limΔx→0(f(x+Δx)-f(x))/Δx(*2) 积分:定义积分J(Δx)=f(x)Δx,当Δx趋于0时,J(Δx)极限存在时,积分∫f(x)dx 存在。
(*3) 常见函数的导数与积分a) 指数函数:f(x)=e^x,f'(x)=e^x,∫e^xdx=e^x+Cb) 对数函数:f(x)=ln(x),f'(x)=1/x,∫(1/x)dx=ln|x|+Cc) 三角函数:f(x)=sin(x),f'(x)=cos(x),∫cos(x)dx=sin(x)+C3. 空间解析几何(*1) 直线的方程:a) 一般式方程:Ax+By+Cz+D=0b) 对称式方程:(x-x₀)/l=(y-y₀)/m=(z-z₀)/n(*2) 平面的方程:a) 一般式方程:Ax+By+Cz+D=0b) 三点式方程:[x-x₁,y-y₁,z-z₁]·[x₂-x₁,y₂-y₁,z₂-z₁]=0(*3) 空间曲面的方程a) 椭球面:x²/a²+y²/b²+z²/c²=1b) 椭圆锥面:x²/a²+y²/b²-z²/c²=1c) 双叶双曲面:x²/a²-y²/b²-z²/c²=1d) 单叶双曲面:x²/a²-y²/b²+z²/c²=1二、线性代数1. 矩阵(*1) 矩阵的基本概念:行数、列数、转置矩阵、单位矩阵、零矩阵等。
考研数学必备高等数学知识点总结高等数学作为考研数学科目的一部分,是考生们需要重点复习的内容之一。
在考研数学中,高等数学占据了相当大的比重,因此对高等数学知识点的掌握和理解是考生们成功的关键。
本文将对考研数学中必备的高等数学知识点进行总结,以帮助考生们更好地备考。
1. 极限与连续1.1 极限的定义及性质极限是高等数学中的核心概念之一,它描述了函数或者数列的趋近行为。
在考研数学中,需要掌握极限的定义以及一系列的性质,如极限的四则运算法则、夹逼准则等。
1.2 连续函数连续函数是高等数学中的重要概念,它描述了函数在某一点的连续性。
在考研数学中,需要理解连续函数的定义以及一些常见连续函数的性质,如初等函数的连续性、连续函数的运算法则等。
2. 导数与微分2.1 导数的定义及性质导数是描述函数在某一点的变化率,它是高等数学中的重要概念之一。
在考研数学中,需要掌握导数的定义以及一系列的性质,如导数的四则运算法则、链式法则等。
2.2 微分与微分近似微分是导数的几何意义,它描述了函数在某一点的切线斜率。
在考研数学中,需要理解微分的定义及其与导数的关系,同时还需要了解微分近似的方法,如线性近似、切线法等。
3. 不定积分与定积分3.1 不定积分的求法不定积分是函数的原函数,它描述了函数在一定区间上的变化情况。
在考研数学中,需要掌握常见函数的不定积分求法,如初等函数的不定积分、分部积分法、换元积分法等。
3.2 定积分的计算与应用定积分是函数在一定区间上的累积变化量,它描述了函数在该区间上的总体变化情况。
在考研数学中,需要理解定积分的定义以及一些计算方法,如定积分的基本性质、定积分的几何意义等。
同时还需要掌握定积分在几何、物理等方面的应用,如面积计算、质量、重心等的计算。
4. 二重积分与三重积分4.1 二重积分的计算与应用二重积分是函数在二维区域上的累积变化量,它描述了函数在该区域上的总体变化情况。
在考研数学中,需要掌握二重积分的计算方法,如二重积分的基本性质、二重积分的换序等。
数学一考研必备知识点总结数学一考研是考研数学的一个科目,它的题目和知识点覆盖范围很广,包括高等数学、线性代数、概率统计和数学分析等内容。
在备考数学一考研的过程中,掌握一定的知识点是非常重要的。
本文将对数学一考研的必备知识点进行总结,希望能对考生们有所帮助。
一、高等数学高等数学是考研数学一的重要基础知识,包括微积分、常微分方程、多元微积分等内容。
学生在备考数学一考研的时候,需要掌握以下几个方面的知识点:1.1 微积分微积分是高等数学的基础,包括极限、导数、积分、微分方程和无穷级数等内容。
在备考数学一考研的过程中,学生需要掌握微积分的基本概念、性质和运算方法,以及常用函数的导数和积分公式。
1.2 常微分方程常微分方程是微积分的一个重要应用,包括一阶常微分方程、高阶常微分方程、线性常微分方程和非线性常微分方程等内容。
在备考数学一考研的过程中,学生需要掌握常微分方程的基本概念、解法和应用,特别是一阶线性常微分方程和二阶线性常微分方程的解法。
1.3 多元微积分多元微积分是微积分的一个重要拓展,包括重积分、曲线积分、曲面积分和梯度、散度和旋度等内容。
在备考数学一考研的过程中,学生需要掌握多元微积分的基本概念、性质和运算方法,以及常用的重积分和曲线积分公式。
二、线性代数线性代数是考研数学一的另一个重要基础知识,包括向量空间、线性方程组、矩阵和特征值等内容。
学生在备考数学一考研的时候,需要掌握以下几个方面的知识点:2.1 向量空间向量空间是线性代数的基础,包括向量的概念、线性相关和线性无关、基和维数、子空间和直和等内容。
在备考数学一考研的过程中,学生需要掌握向量空间的基本概念和性质,以及子空间和直和的相关定理和应用。
2.2 线性方程组线性方程组是线性代数的一个重要应用,包括齐次线性方程组和非齐次线性方程组、解的结构和解的存在唯一性等内容。
在备考数学一考研的过程中,学生需要掌握线性方程组的基本概念、解的性质和解的求法,特别是线性方程组的解的结构和解的存在唯一性的定理和应用。
高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。
这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。
如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。
一般用横坐标表示自变量,纵坐标表示因变量。
预备知识轻松学一、函数基础知识1.函数的概念设数集R D ⊂,则称映射R D f →:为定义在D 上的函数,通常简记为D x x f y ∈=),(,其中x 称为自变量,y 称为因变量,D 称为定义域,{}D x x f y y D f ∈==),(|)(称为值域,f 称为对应法则。
2.函数的性质(1)单调性任取21x x <,有)()(21x f x f <,则函数)(x f 单调递增;任取21x x <,有)()(21x f x f >,则函数)(x f 单调递减。
(2)周期性若)()(x f T x f =+,则()f x 是以T 为周期的周期函数。
(3)奇偶性设函数()f x 的定义域D 关于原点对称.如果对其定义域D 内的任意一点x ,都有()()f x f x -=(或()()f x f x -=-),则称()f x 是一个偶函数(或奇函数)。
(4)有界性若M x f ≤)(,则函数有上界;若m x f ≥)(,则函数有下界;若0>M,对于I x ∈∀,有⇒≤M x f )(函数有界。
3.复合函数和反函数(1)复合函数设函数)(u f y =的定义域为f D ,函数)(x g u =的定义域为g D ,且其值域f g D D g ⊂)(,则由下式确定的函数[]g D x x g f y ∈=,)(称由函数)(x g u =与函数)(u f y =构成的复合函数,它的定义域为g D ,变量u 称为中间变量。
(2)反函数设函数)(:D f D f →是单射,则它存在逆映射D D f f →-)(:1,称此映射1-f 为函数f 的反函数,即:对每个)(D f y ∈,有唯一的D x ∈,使得y x f =)(,于是有)(1y f x -=.由于习惯上自变量用x 表示,因变量用y 表示,所以D x x f y ∈=),(的反函数也常记为)(),(1D f x x f y ∈=-.二、常用函数1.基本初等函数幂函数,指数函数,对数函数,三角函数与反三角函数称为基本初等函数.以下为几个常见的基本初等函数的图像及性质:名称及表达式定义域图形(举例)特性幂函数y x α=随α而不同,但在(0,)+∞中都有意义经过点(1,1);在第一象限内当0>α时,为增函数;当0<α时,为减函数指数函数xy a =(0,1)a a >≠(,)-∞+∞图象在x 轴上方,过点(0,1).当01a <<时,为减函数;当1a >时,为增函数对数函数log a y x=(0,1)a a >≠(0,)+∞图像在y 轴的右侧;过点(1,0);当01a <<时,为减函数;当1a >时为增函数三角函数正弦函数sin y x=(,)-∞+∞以2π为周期;奇函数,图形关于原点对称;在两直线1y =与1y =-之间,即1sin 1x -≤≤余弦函数cos y x=(,)-∞+∞以2π为周期;偶函数,图形关于y 轴对称;在两直线1y =与1y =-之间,即1cos 1x -≤≤正切函数tan y x=(21)2x k π≠+(0,1,2,)k =±±⋅⋅⋅以π为周期;奇函数;在区间,22ππ⎡⎤-⎢⎥⎣⎦上是增函数;值域为R反三角函数反正弦函数arcsin y x=[1,1]-单调增加;奇函数;值域:,22ππ⎡⎤-⎢⎥⎣⎦反余弦函数arccos y x=[1,1]-单调减少;值域:[0,]π反正切函数arctan y x=(,)-∞+∞单调增加;奇函数;值域:,22ππ⎛⎫-⎪⎝⎭2.初等函数由常数和基本初等函数经过有限次的四则运算以及有限次的复合步骤所构成并可用一个式子表示的函数,称为初等函数.3.分段函数12(),()(),g x x I f x h x x I ∈⎧=⎨∈⎩;(1)符号函数:1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩;(2)绝对值函数:(),()0()(),()0f x f x f x f x f x ≥⎧=⎨-<⎩;(3)取整函数:[()]f x :不超过()f x 的最大整数值;(4)最值函数:{}(),()()max (),()(),()()f x f x g x f x g x g x f x g x ≥⎧=⎨<⎩;{}(),()()min (),()(),()()g x f x g x f x g x f x f x g x ≥⎧=⎨<⎩.三、常用公式1.代数(1)幂函数公式1(0)aa x x x-=≠,a b a bx x x +⋅=,()a k ak x x =,a b a b x x =.(2)对数公式ln ln ln (0),(0)x x v v u e e x x u e u ==>=>ln ln ln()a b ab +=,ln ln lnaa b b-=,ln ln k a k a =,其中0,0a b >>.(3)一元二次方程(2(0)y ax bx c a =++≠)图像:若0a >,开口向上;若0a <,开口向下;对称轴为2bx a-=。
考研高数知识点总结一、导数与微分导数是研究函数局部性质的重要工具,是高数中一个极其重要的概念。
导数的定义是函数的变化率,它反映了函数在某一点的局部性质。
导数的大小表示函数在某一点的斜率,而导数的正负则表示函数在某一点的单调性。
导数的计算包括求导公式、复合函数的导数、隐函数的导数等。
微分是导数的线性近似,它在近似计算中有重要作用。
微分的定义是函数改变量的线性部分,它反映了函数在某一点的局部变化率。
微分的大小表示函数在某一点的斜率的变化率,而微分的正负则表示函数在某一点的单调性的变化。
微分的计算也包括求微分公式、复合函数的微分、隐函数的微分等。
二、中值定理与不定积分中值定理是微分学中的基本定理,它表明在闭区间上的连续函数至少有一个值等于其最大值和最小值之间的某个值。
这个定理有许多重要的推论,例如拉格朗日中值定理和柯西中值定理。
不定积分是微积分的一个重要部分,它是求一个函数的原函数或反导数的过程。
不定积分的结果是一个函数族,这些函数的导数等于被积函数。
不定积分的计算包括运用积分公式、换元积分法、分部积分法等方法。
三、定积分与定积分的几何意义定积分是微积分的一个重要部分,它是求一个函数在某个区间上的总值的过程。
定积分的几何意义是求一个曲线与坐标轴围成的图形的面积。
定积分的计算包括运用积分公式、换元积分法、分部积分法等方法。
四、级数与反常积分级数是无穷序列的和,它可以分为收敛级数和发散级数。
收敛级数的和是一个有限的数,而发散级数的和是无穷大。
级数的计算包括求和公式、幂级数展开等。
反常积分是瑕积分和反常积分的总称,它们是处理不连续函数或具有奇点的函数的重要工具。
反常积分的计算包括运用积分公式、换元积分法等方法。
以上是考研高数知识点的大致总结。
高数是一门非常深奥的学科,需要我们在学习的过程中不断深入理解并多加练习。
希望这篇文章能对大家的学习有所帮助。
高数知识点总结高等数学是大学数学教育的基础课程,对于很多理工科专业来说,它的重要性不言而喻。
高中数学高等数学预备知识在我们从高中数学迈向高等数学的学习之旅中,掌握一些预备知识是至关重要的。
这就像是在建造高楼大厦之前,要先打好坚实的基础。
首先,让我们来谈谈函数的概念。
在高中数学中,我们已经对函数有了初步的认识,知道函数是一种将一个集合中的元素映射到另一个集合中元素的规则。
但在高等数学中,对函数的理解会更加深入和广泛。
我们会遇到各种类型的函数,比如分段函数、复合函数、隐函数等等。
掌握函数的性质,如单调性、奇偶性、周期性,对于后续的学习非常关键。
接着是极限的思想。
这是高等数学中一个极其重要的概念。
想象一下,当一个变量无限接近某个值时,函数的取值会趋近于一个确定的值,这就是极限。
通过极限,我们能够更好地理解函数的变化趋势。
比如,当 x 趋近于某个数时,函数 f(x) 的极限值是多少。
这不仅有助于我们研究函数的连续性,也是后续学习导数、积分等知识的基础。
导数也是高等数学中的核心概念之一。
它可以理解为函数在某一点的变化率。
通俗地说,如果一个函数表示了某个运动的规律,那么导数就告诉我们在某个时刻运动的速度。
导数的计算方法和应用非常广泛,通过求导,我们可以找到函数的极值点、判断函数的单调性等。
再来说说积分。
积分与导数是相反的运算。
如果导数是求变化率,那么积分就是求函数曲线下的面积。
积分在物理学、工程学等领域有着广泛的应用,比如计算物体的位移、计算不规则图形的面积等。
而数列和级数则是另一个重要的预备知识。
数列是按照一定顺序排列的数,而级数则是数列的和。
通过研究数列的收敛性和级数的敛散性,我们可以深入理解无限的概念。
在学习这些预备知识的过程中,数学思维的培养也是不可或缺的。
我们要学会从具体问题中抽象出数学模型,运用逻辑推理和数学方法来解决问题。
同时,要注重练习,通过大量的习题来巩固所学的知识和方法。
另外,高等数学的学习往往需要我们具备更强的自主学习能力和探索精神。
遇到问题时,不能仅仅满足于表面的理解,要深入思考,举一反三。
第一章 数学预备知识本章讲述若干数学预备知识,包括导数及其应用、静态优化、积分、微分方程、差分方程以及相位图分析等内容。
这些预备性的数学知识对于学习高级宏观经济学是必须的,但是在微观经济学、数理经济学、时间序列分析、高等数学等课程中有详细的讨论,在这里我们只是将与我们后面的学习有关的知识要点罗列在一起并在必要时做出一定的经济解释。
这里的数学知识只是与动态优化相关的部分,对于学习高级宏观经济学必须的其他数学知识并未涉及,特别是时间序列、概率论等知识。
第一节 导数及其应用一、导数有函数()f q π=,导数就是111()()limlim q q q f q q f q d dqq qππ∆→∞∆→∞+∆-∆==∆∆。
导数的经济含义是:边际量、q 变动一单位时π变动的大小、q 对π的变动速率。
二、常用求导公式(1)f b =为常数,0df dbdx dx ==; (2)b 为常数,(())d bf x dfb bf dx dx'==; (3)b 为常数,1bb dx bx dx-=; (4)1(ln )x x'=; (5)()ln x x a a a '=; (6)()x x e e '=; (7)()f g f g '''+=+;(8)()fg f gfg '''=+; (9)2()f f gfg g g ''-'=;(10)链式法则:(),()y f x x g z dy dy dxdz dx dz===【例题1-1】:求下面各题的导数。
(1)32 3y x y x '=⇒= (2)34 3y x y x --'=⇒=-(3)23 25621212(25)z y y x dz d z dy y y x dx dy dx ==+'=⋅=⨯==+(4)()()ax ax ax de de d ax e a dx d ax dx =⋅=⋅练习:求导数[]ln()d ax dx、[]ln ()d x t dt、2(ln )d x dx三、二阶导数二阶导数表示边际量的变化速率,可用如下方式表示:22(),,()d y d dy f x dx dx dx''四、微分22(),[]()y f x dy f dx d f dx d dy d y dx f dx dx f dxdx'=='''''==== 导数是微商。
考研高数总结知识点归纳考研高数是许多考研学子必须面对的科目,其内容广泛,知识点众多。
以下是对考研高数知识点的总结归纳:一、函数、极限与连续性- 函数的概念、性质和分类。
- 极限的定义、性质和求法。
- 无穷小的比较和无穷大的概念。
- 函数的连续性定义和判断方法。
二、一元函数微分学- 导数的定义、几何意义和物理意义。
- 基本初等函数的导数公式。
- 高阶导数和复合函数的求导法则。
- 隐函数、参数方程和相关变化率问题。
- 微分中值定理和洛必达法则。
- 函数的单调性、极值和最值问题。
- 曲线的凹凸性和拐点问题。
三、一元函数积分学- 不定积分和定积分的定义、性质和计算方法。
- 换元积分法和分部积分法。
- 有理函数的积分和三角函数的积分。
- 定积分在几何和物理中的应用。
- 反常积分和广义积分的概念。
四、多元函数微分学- 多元函数的极限和连续性。
- 偏导数和全微分的概念。
- 多元函数的极值和条件极值问题。
- 多元函数的泰勒展开和多元函数的微分中值定理。
五、多元函数积分学- 二重积分和三重积分的定义和计算方法。
- 曲线积分和曲面积分的定义和计算方法。
- 格林公式、高斯公式和斯托克斯公式。
- 多元函数积分在物理学中的应用。
六、无穷级数- 常数项级数的收敛性和发散性判断。
- 幂级数和泰勒级数。
- 函数展开成幂级数的方法。
- 傅里叶级数和傅里叶变换。
七、常微分方程- 一阶微分方程的求解方法,包括可分离变量方程、一阶线性微分方程等。
- 高阶微分方程的求解方法,包括常系数线性微分方程和欧拉方程。
- 微分方程的物理背景和实际应用。
结束语:考研高数的知识点繁多,但只要系统地复习,掌握好每一个概念和方法,就能够在考试中取得好成绩。
希望以上的归纳能够帮助到正在准备考研的同学们,祝大家考研顺利,取得理想的成绩。
考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。
高等数学预备知识的教材在学习高等数学之前,我们需要掌握一些预备知识,这些知识将为我们打下坚实的基础,使我们能够更好地理解高等数学的概念和原理。
本文将介绍一些适合作为高等数学预备知识教材的内容。
一、初等数学回顾在学习高等数学之前,回顾初等数学的知识是必不可少的。
初等数学的内容包括数的性质、代数运算、方程与不等式、函数与图像、三角函数等。
通过回顾初等数学的知识,我们可以温故而知新,巩固基础。
1.1 数的性质数的性质是数学的基础,包括自然数、整数、有理数、无理数、实数的定义与性质。
在高等数学中,我们常常会涉及到这些数学概念,因此对这些概念的理解至关重要。
1.2 代数运算代数运算包括加、减、乘、除等运算,以及指数、对数、排列组合等运算法则。
通过学习代数运算,我们可以更好地理解高等数学中的代数表达式与方程。
1.3 方程与不等式方程与不等式是高等数学的核心内容。
通过学习方程与不等式,我们可以熟悉各种类型的方程与不等式,以及求解它们的方法与技巧。
1.4 函数与图像函数与图像是高等数学的基础。
通过学习函数与图像,我们可以了解函数的定义与性质,描绘函数的图像,以及对函数进行变换与组合等操作。
1.5 三角函数三角函数是高等数学中不可或缺的一部分。
通过学习三角函数,我们可以了解三角函数的定义与性质,掌握三角函数的运算法则,以及解决与三角函数相关的问题。
二、微积分预备知识微积分是高等数学的重要分支,对于学习微积分,一些预备知识是必要的。
2.1 极限极限是微积分的基础概念之一。
通过学习极限,我们可以了解极限的定义与性质,熟悉常用的极限运算法则,以及掌握计算极限的方法。
2.2 导数与微分导数与微分是微积分的重要内容。
通过学习导数与微分,我们可以了解导数的定义与性质,熟悉导数的计算方法,以及掌握微分的应用。
2.3 积分积分是微积分的另一个重要内容。
通过学习积分,我们可以了解积分的定义与性质,熟悉常用的积分运算法则,以及掌握计算积分的方法。
考研高等数学复习要点考研高等数学复习要点(篇1)一、备考资料高等数学(上、下)第六版,同济大学数学系编高等数学习题全解指南(与上配套)工程数学-线性代数第五版,同济大学数学系编线性代数附册学习辅导与习题全解(与上配套)概率论与数理统计第四版,浙江大学盛骤概率论与数理统计习题全解指南(与上配套)考研数学复习全书考研数学复习全书分阶习题同步训练(与上配套)数学基础过关660题数学历年真题权威解析线性代数辅导讲义我用的都是最基础最核心的资料,没有买其它花哨的辅导书。
可能我整个备考规划中最明智的一个安排就是把大部分时间分配给了数学。
我想即使在一般情况下这也是个真理,应该把最多的时间花在最能拉开分数的科目上。
对一般人来说,在同等的付出下,数学拉开20分比英语拉开20分的可能性要大得多。
二、备考经验就备考经验来说,其实比起学习别人的经验,我认为大家更应该去努力养成自己良好的学习习惯。
就考研来说,我认为把你和别人区分开来的并不是一本二本三本,也不是你准备的时间有多长多短,而是你自己的学习态度和学习习惯。
这才是贯穿始终的东西。
1、钻研精神看书做题必须明白每一步是为什么,不懂得问题可以请教大神研友,实在不明白可以在旁边标注,也许下一轮复习再看时就想通了。
这样看书的确会很慢,但是学得很扎实。
后期做题时必会感激自己前期这样扎实的学习。
2、尽量独立做题包括第一轮看教材时,书上的例题也先盖住答案自己做。
包括教材的章节习题和复习全书的例题等等,切勿看完题目就看答案,给自己留时间思考。
拿出做不出来誓死不看答案的决心,和一些数学大神交流后我发现这是他们的共性,既然是大神们的共性,那必然有可取之处,就像我发现身边诸多英语口语很棒的大神都爱看美剧,于是想练口语的我自然就要多看美剧。
一些小伙伴像看小说一样全书,扫过题目和答案一页页翻过,貌似效率很高。
但看完之后把书拿开,会做的题目又有几道呢?不排除个别大神有特立独行的学习方式,但我认为对大多数人来说,拿出笔和纸,盖住答案先自己做题,做完拿自己的答案和例题答案比对,虽说看似低效,但做一道题就掌握一道题目其实是最高效的。
高等数学考研复习资料,最全篇,适合于一遍,二遍复习研究细节,祝你考研数学春风得意马,突破130分大关!目录一、函数与极限21、集合的概念22、常量与变量32、函数43、函数的简单性态44、反函数55、复合函数66、初等函数67、双曲函数及反双曲函数78、数列的极限89、函数的极限910、函数极限的运算规则11一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a∉A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作∅,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
高等数学预备知识(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高等数学 预备知识1.不同三角函数间的关系αααcos sin tan =αααsin cos cot = ααcos 1sec = ααsin 1csc = 1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα2.加法公式(注意“±”与“ ”) βαβαβαsin cos cos sin )sin(±=± βαβαβαsin sin cos cos )cos( =±βαβαβαtan tan 1tan tan )tan( ±=± αββαβαcot cot 1cot cot )cot(±=±3.和差化积2cos2sin2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=- βαβαβαcos cos )sin(tan tan ±=±βαβαβαsin sin )sin(cot cot ±±=±βαβαβαsin cos )cos(cot tan ±=± (注意符号)4.积化和差)]cos()[cos(21sin sin βαβαβα--+-=)]cos()[cos(21cos cos βαβαβα-++=)]sin()[sin(21cos sin βαβαβα-++=5.倍角公式ααααα2tan 1tan 2cos sin 22sin +== ααααααα222222tan 1tan 1sin 211cos 2sin cos 2cos +-=-=-=-= ααα2tan 1tan 22tan -= αααcot 21cos 2cot 2-=6.半角公式 2cos 12sinαα-±= 2cos 12cos αα+±= αααααααcos 1sin sin cos 1cos 1cos 12tan+=-=+-±= αααααααcos 1sin sin cos 1cos 1cos 12cot-=+=-+±= 7.降幂公式 )2cos 1(21sin 2αα-=)2cos 1(21cos 2αα+= 8.反三角函数(1)反三角函数的定义域与主值范围(2)图像(附加)三角函数的图像1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyx1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyx y=tanx3π2ππ2-3π2-π-π2oyxy=cotx3π2ππ22π-π-π2oyx (3)反三角函数的相互关系21arctanarccos2)arcsin(arcsinxxxxx-=-=--=π21arctanarcsin2)arccos(arccosxxxxx-=-=--=ππ21arcsincot23)arctan(arctanxxxarcxx+=-=--=π21arccosarctan 2)cot(cot xx x x arc x arc +=-=--=ππ9.数列 (1)等差数列通项公式:d n a a n )1(1-+= 前n 项和:d n n na n a a S n n 2)1(2)(11-+=+= (2)等比数列通项公式:11-=n n q a a前n 项和:qqa a q q a S n n n --=--=11)1(11 (3)某些数列的和)1(21321+=++++n n n )1(2642+=++++n n n2)12(531n n =-++++)12)(1(613212222++=++++n n n n 23333)321(321n n ++++=++++ 10.乘法与因式分解2222)(b ab a b a +±=± 3223333)(b ab b a a b a ++±=± ))((22b a b a b a +-=- ))((2233b ab a b a b a +±=±))((122321-----+++++-=-n n n n n n n b ab b a b a a b a b a (n 为正整数) ))((122321------+-+-+=-n n n n n n n b ab b a b a a b a b a (n 为偶数) ))((122321-----+--+-+=+n n n n n n n b ab b a b a a b a b a (n 为奇数) 11.不等式(1)有关绝对值的不等式||||||b a b a +≤± ||||||||||b a b a b a +≤-≤-||||||||k b a k b a +++≤±±± ((2)有关三角函数、指数函数、对数函数的不等式)20(tan sin π<<<<x xx x )0(1sin cos π<<<<x xxx)0(1≠+>x x e x )0,1(11≠<-<x x xe x )0(1ln >-≤x x x )0,1(1)1ln(≠<-<--<x x xx x x)0,1(1)1(>>+>+x x x ααα(3)某些重要不等式 ① 222a b ab +≥,221()2ab a b ≤+;②1()2a b +≥12121()n n n a a a a a a n+++≥⋅⋅⋅;(0,0,0,1,2,,i a b a i n ≥≥≥=)③ ||||||||||a b a b a b -≤±≤+,11221122|()()()||||()||||()||||()|n n n n a f x a f x a f x a f x a f x a f x +++≤+++n a a a na a a n n2222121+++≤+++ na a a a a a nn n ++≤2121))(()(121221∑∑∑===≤ni i ni ini i i b a b a (柯西不等式)12.阶乘、排列、组合 (1)阶乘n n ⋅⋅⋅⋅= 321! )12(531!2)!12(!)!12(+⋅⋅⋅⋅=+=+n n n n n (规定)1!0= 0!!0= )2(42!2!)!2(n n n n ⋅⋅⋅== (2)排列)1()2)(1()!(!+---=-=k n n n n k n n A kn123)2)(1(!⋅⋅--=== n n n n A P nn n(3)组合!)!(!!k k n n k A C kn kn-== (kn C 也记作⎪⎪⎭⎫ ⎝⎛k n ) 13.二项式定理与多项式定理二项式定理:∑=-----=+++++=+nk kk n k n nnnn n nn nn nnnnb a C b C abCb aC b a C a C b a 011222110)( 多项式定理:s q p ns q p n k b a s q p n k b a ∑=++=+++!!!!)(14.指数运算nm nmaa a +=⋅ n m n ma aa -= mn n m a a =)( m m mb a ab =)( mm m b a b a =⎪⎭⎫ ⎝⎛ m n n m n ma a a )(== m m a a 1=- )0(10≠=a a 15.对数运算01log =a 1log =a a y x xy a a a log log log +=y x yxa a alog log log -= x b x a b a log log = 对数恒等式:x a x a =log x a x a =log 换底公式:ayy b b a log log log =1log log =⋅a b b a 数学中常见基本初等函数和初等函数:①基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数和常数这6类函数称为基本初等函数。
第一章 预备知识 一, 函数1 函数的定义:⑪传统定义:如果在某变化过程中的两个变量x ,y 并且对于x 在某个范围内的每一个...确定的值,按照某个对应法则f ,y 都有唯一..确定的值与之对应,那么y 就是x 的函数。
⑫近代定义:函数就是由一个非空数集到另一个非空数集的映射。
记:()y x f x f →=:(X ∈A )其中x 称为自变量,y 称为因变量。
()x f 表示函数f 在点x 处的值,A 称为函数的定义域,记为:()f D ;()(){}B A x x f A f ⊆∈=称为函数的值域,记为:()f R 。
解析:两变量之间是否构成函数关系,不在于一个变量引起另一个变量的变化,而在于是否存在对应法则(对函数变量的作用模式)使一个变量在其取值范围内任取一值时,另一个变量总有确定的值与之对应。
函数的本质就是对应关系。
2 函数的三要素:定义域,值域,对应法则。
解析:⑪常见函数定义域的求法:①分式函数分母不能为0。
②)(*2N n x y n ∈=定义域{}0≥x x 。
③)(N n x y n∈=-定义域{}0≠x x 。
④xay l o g =(a>O ,a≠1)定义域{}0>x x 。
⑤x y tan =定义域⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ。
⑥x y cot =定义域{}Z k k x x ∈≠,π。
⑦x y ar csin =定义域{}11≤≤-x x 。
⑧x y arccos =定义域{}11≤≤-x x 。
⑨x y sec =定义域⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ。
⑩x y csc =定义域{}Z k k x x ∈≠,π。
⑴某些实际问题要注意函数的实际意义。
⑵求复杂函数的定义域时要综合考虑取各部分的交集。
⑫在研究函数时要树立定义域优先的原则。
⑬注意定义域与定义区间的区别:对于初等函数定义区间即为它的连续区间,但须小心定义域与定义区间是不同的例如:1cos -=x y 的定义域由)(2Z k k x ∈=π这些孤立的点组成而无定义区间。
(结合幂级数的收敛域和收敛区间) ⑭函数值域的常见求法:①配方法(类二次函数)②判别式法(要求X R ∈)③反函数法(即互换法)。
④均值定理法。
⑤函数的单调性法(一般方法)⑥换元法:㈠代数换元法㈡三角换元法。
⑦复数法(利用复数的模)⑧构造法(构造函数,向量(内积与模积的关系),绝对值不等式(利用其性质,两点间距离公式等。
)⑨形如)0(>+=k xkx y 的对号函数(图象命名)在不能用重要不等式的情况下(等号不成立)可考虑用函数的单调性当x >O 时,单减区间为(]k ,0,单增区间为[)+∞,k 其分界点为()k k 2,至于x <O 的情况可根据奇偶性解决。
3 函数的表示法:⑪具体函数的表示法:①表格法(清晰,直观,精确) ②图象法(形象,明显,易比较) ③解析法,公式法(便于分析与计算)⑫抽象函数的表示方法:①坐标法()y x ,(概括)②叙述法(语言描述具有启发性) 4 函数的性质(定义域范围内,假设性定义):㈠界性:①有界性:如果存在正数M 使得()M x f ≤对任意x∈X都成立,则称函数()x f 有界;若()M x f ≤则()x f 有上界,若()M x f ≥则()x f 有下界。
既有上界又有下界称为有界。
②无界性:对于任给的正数M,总存在X x ∈使得()M x f >则称函数()x f 无界。
即:对任意给定一个正数M都不可能是()x f 的界,但相对于每一部分却是有上或下界的。
㈡单调性:设函数R I f →:,对于任意的...∈21,x x I (代数角度)①如果当1x <2x 时恒有()()21x f x f ≤(或()()21x f x f ≥)则称()x f 在I 上是单调增(减) 函数(单调函数)。
②如果当1x <2x 时恒有()()21x f x f < (或()()21x f x f >)则称()x f 在I 上是严格增(减)函数(严格单调函数)。
解析:与导数的关系:设∈21,x x []b a ,那么()()2121x x x f x f -->0(或<0)⇔()x f 在[]b a ,上是增(减) 函数,几何属性: 增(减) 函数图象上任意两点连线的斜率.........大于(小于)0。
㈢奇偶性:设对于任意的x 属于A 有-x 属于A 如果f 在A 上定义并且对于任意的x 属于A 满足()x f - =()x f -(()()x f x f =-)则称f 是一个定义在A 上的奇(偶)函数。
解析:⑪定义域关于原点对称是奇偶性存在的必要条件。
⑫奇函数的图象关于原点对称, 偶函数的图象关于y 轴对称。
(利用其画图象) ⑬如果()x f 是奇函数,那么()x f 在关于原点对称的区间上的单调性相同,若为偶函数,那么()x f 在关于y 轴对称的区间上的单调性相反。
⑭一般情况,证明定义在R 奇函数时要考虑特殊点()0,0即:()00=f ;此外若函数()x f 满足()()()y f x f y x f +=+,则函数()x f 是奇函数。
⑮可对关系等式进行四则运算即:①奇函数()()0=-+⇔x f x f 或()()1-=-x f x f 。
②偶函数⇔()()0=--x f x f 或()()1=-x f x f ,这样的操作对于某些函数是行之有效的。
⑯奇,偶函数的运算性质:①几个奇函数的代数和为奇函数,几个偶函数的代数和为偶函数。
②几个偶函数的积为偶函数。
奇数个奇函数的积为奇函数;偶数个奇函数的积为偶函数。
③奇函数的导数是偶函数,偶函数的导数是奇函数。
④若()x f 是奇函数则()dt t f x⎰0是偶函数;若()x f 是偶函数则()dt t f x⎰0是奇函数。
㈣周期性:设有函数R A f →:如果存在常数0≠T 使对于任意的x ∈A 有A T x ∈+并且()()x f T x f =+则称f 是定义在A 上的周期函数,并且T是它的一个..周期。
解析:⑪从()()x f T x f =+来看是自变量x 本身(即:单位x )加的常数。
⑫周期函数的周期不止一个,若T 是周期则()Z k kT ∈一定也是周期。
⑬在周期函数()x f 中T 是周期,若x 是定义域内的一个值,则kT x +也属于定义域,因此周期函数的定义域一定是无限集(无界的)。
⑭如果周期函数中存在一个最小的正数就把这个最小的正数叫做最小正周期(或基本周期),但并不是每个周期函数都有最小正周期,如常数函数。
⑮周期函数的定义域不一定是实数集R .如x y tan =。
⑯若T 是()x f 的周期则()b ax f +(R b a ∈≠,0)其周期为aT。
⑰如果函数是几个周期函数的和且仍为周期函数此函数的周期为:分子是几个周期的分子的最小公倍数,分母是几个周期的分母的最大公约数。
⑱如何求出周期T :对定义中()x f =()T x f +变形为()x f -()T x f +=0或()T x f +-()x f =0将T 看作末知量求解.若解出的T 依赖于自变量x 或0则()x f 不是周期函数。
若可以求出不依赖于x 的非零常数解(一般都不唯一)其中最小的正数解......就是所求的周期。
⑲若()x f 的周期是T 则()x f /的周期也是T 。
5 常用的几类函数关系:⑪反函数:假设函数y=()x f 作为映射()()f R f D f →:我们将f 的逆映射1-f叫做y =()x f 的反函数.解析:⑪单调性:原函数与反函数在其相对应的定义域内具有相同的单调性。
⑫奇偶性:原函数是奇函数则其反函数是奇函数,原函数是偶函数则一般不存在反函数。
⑬互换法:原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。
⑭对称性:原函数与反函数的图象关于直线x y =对称。
⑮还原性:设原函数的定义域为A,值域为B,则:①()[]()B x x x f f ∈=-1②()[]()A x x x f f∈=-1⑯连续性:如果函数()x f 在区间上严格单调且连续,那么它的反函数也在对应的区间上严格单调且连续。
⑰反函数存在定理:严格单调的函数存在反函数。
(一一映射的函数)⑫复合函数:假设函数()u f y =的定义域为()f D ,值域为()f R ,而函数()x g u =的定义域为()g D 值域为()()f D g R ⊆则对任意的x∈()g D 通过()x g u =有唯一..的 ()()f D g R u ⊆∈再通过()u f y =又有唯一..的y ∈()f R ,这样对任意x∈()g D 通过u有唯一..的y∈()f R 与之对应,因此我们称这个函数为()u f y =与()x g u =的复合函数。
记作:()()()[]()g D x x g f x g f y ∈=,: 并称u为中间变量,其中称()x g u =为内层函数,()u f y =外层函数。
解析:⑪单调性:内层函数与外层函数的增减性相同时,整个复合函数为增函数。
内层函数与外层函数的增减性相异时整个复合函数为减函数。
⑫奇偶性::内层函数与外层函数同为奇函数时,整个复合函数才为奇函数,其余全部为偶函数。
⑬显隐函数:①显函数:我们把用仅含自变量x的解析式()x f 直接表示出来的函数()x f y =称为显函数。
②隐函数:如果x与y的对应关系是由方程()0,=y x F 给出的,则称y是x的隐函数。
⑭分段函数:在自变量不同变化范围内对应法则用不同的式子来表示的函数。
有些分段函数并不一定要分段,分段只是为了更加明确而已。
6 常用函数及其性质⑪第一类:初等函数(由基本初等函数经过有限次四则运算或有限次复合运算所得到的函数):①常数函数:C y =。
无增减性,无最小正周期,平行于x轴的水平直线。
②线性函数(一次函数):b kx y +=。
k为斜率,b为纵截距。
③二次函数:)0(2≠++=a c bx ax y (标准型)a b ac a b x a y 44222-+⎪⎭⎫ ⎝⎛+=(顶点坐标型。
其顶点坐标:⎪⎪⎭⎫⎝⎛--a b ac a b 44,22)()()21x x x x a y --=(横轴截距型。
21,x x 横轴交点且()ac b ax x 4221-=∆∆=)。
重要特性:ⅰ。
()()()a f f f 20211=--+ ⅱ。
建立一次函数与二次函数之间的关系:21211,212122--+=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛+=x x x x x 。
ⅲ。
根据图象研究其根的分布。
④绝对值函数:x y =,其图象为第一,二象限角分线。