2017年考研数学所有知识点合集(概率论-高数-线代)(打印版)
- 格式:pdf
- 大小:4.62 MB
- 文档页数:65
考研数学线性代数必考的知识点考研数学线性代数必考的知识点漫长的学习生涯中,大家最熟悉的就是知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。
还在苦恼没有知识点总结吗?以下是店铺帮大家整理的考研数学线性代数必考的知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
考研数学线性代数必考的知识点篇1考研数学线性代数必考的重点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。
行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。
相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节。
向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。
复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。
三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。
其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。
四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。
考研数学概率以大纲为本夯实基础从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。
概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。
其它知识点考小题,如随机事件与概率,数字特征等。
从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。
第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。
2017考研已经拉开序幕,很多考生不知道如何选择适合自己的考研复习资料。
中公考研辅导老师为考生准备了考研数学方面的建议,希望可以助考生一臂之力。
同时中公考研特为广大学子推出考研集训营、专业课辅导、精品网课、vip1对1等课程,针对每一个科目要点进行深入的指导分析,欢迎各位考生了解咨询。
中公考研小编建议2017考研的同学,在复习备考的初期阶段总结整理考研数学概率论部分的重要知识点,这样将有助于考生快速提高复习效率,下面就是小编整理的相关内容,供考生参考。
1、随机事件和概率它的重点内容主要是事件的关系和运算,古典概型和几何概型,加法公式、减法公式、乘法公式、全概公式和贝叶斯公式。
主要是以客观题的形式考查。
今年的考研数学中,数一和数三的一个选择题就考到了事件的关系和概率的问题。
2、一维随机变量及其分布这是每年必考的,有单独直接考查,也经常与二维随机变量相结合去考查。
重点内容是常见分布,主要是以客观题的形式考查。
而今年数一和数三都是以大题的形式考到了常见分布——二项分布和n 重伯努利试验的问题。
3、二维随机变量重点内容是二维随机变量的概率分布(概率密度)、边缘概率、条件概率和独立性及二维正态分布的性质。
二维离散型随机变量的概率分布的建立,主要是结合古典概率进行考查。
二维连续型随机变量的边缘概率密度和条件概率密度的计算,很多考生计算存在误区,一定要注意。
而今年数一和数三只考到了二维正态分布的一个性质,还是一个填空题。
4、随机变量的数字特征每年必考,主要和其他知识点相结合来考查,一般是一道客观题和一道解答题中的一问,所以要重点复习。
我们要掌握相应的公式进行计算即可,今年数一和数三的一个大题的第二小问考到了随机变量的数字特征,而且还是结合高等数学的无穷级数求和函数来考的,难度稍大。
5、数理统计的基本概念此部分主要考两个题型,第一个是判定统计量的分布,第二个常考题型是求统计量的数字特征。
常以客观题的形式进行考查。
2017考研数学复习知识点汇总一、高数高等数学是考研数学的重中之重,所占分值较大,需要复习的内容也比较多。
主要包括八方面内容:1.函数、极限与连续。
主要考查分段函数极限或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。
2.一元函数微分学。
主要考查导数与微分的求解;隐函数求导;分段函数和绝对值函数可导性;洛比达法则求不定式极限;函数极值;方程的根;证明函数不等式;罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理及辅助函数的构造;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形,求曲线渐近线。
3.一元函数积分学。
主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明题;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。
4.向量代数和空间解析几何。
主要考查求向量的数量积、向量积及混合积;求直线方程和平面方程;平面与直线间关系及夹角的判定;旋转面方程。
5.多元函数微分学。
主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;二元、三元函数的方向导数和梯度;曲面和空间曲线的切平面和法线;多元函数极值或条件极值在几何、物理与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。
6.多元函数的积分学。
这部分是数学一的内容,主要包括二、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线和曲面积分计算;第二型(对坐标)曲线积分计算、格林公式、斯托克斯公式;第二型(对坐标)曲面积分计算、高斯公式;梯度、散度、旋度的综合计算;重积分和线面积分应用;求面积,体积,重量,重心,引力,变力作功等。
7.无穷级数。
主要考查级数的收敛、发散、绝对收敛和条件收敛;幂级数的收敛半径和收敛域;幂级数的和函数或数项级数的和;函数展开为幂级数(包括写出收敛域)或傅立叶级数;由傅立叶级数确定其在某点的和(通常要用狄里克雷定理)。
本人考研整理的数学概率论知识点,word 版,可编辑、添加、打印。
祝大家学有所得。
第一章随机事件概率随机试验:满足以下三个条件的试验:(1)可重复;(2)知道所有可能;(3)结果不可预知。
样本点:每一个可能的结果叫做一个样本点。
样本空间:全体样本点的集合,记为Ω。
随机事件:随机试验中每一个可能出现的结果,叫做随机事件。
基本事件:试验中不可再分的事件。
不可能事件:不可能发生的事件。
必然事件:必定要发生的事件。
复合事件:由两个或两个以上的事件构成的事件。
事件的关系与运算:事件的关系定义文氏图A B⊂:包含关系:事件B发生必然导致事件A发生,则称事件A包含事件B。
事件相等:A=B 事件A,B 相互包含,就称事件A,B相等。
互斥事件:AB=∅不可能同时发生的事件对立事件:若AB=∅且=0A B,称事件A,B对立事件。
两者之一必然发生,但又不可能同时发生的事件。
事件的并:A B事件A,B中至少有一个发生,称事件A B发生。
事件的差:A-B 事件A发生且B不发生,事件的交:A B AB=事件A,B同时发生,称事件AB发生。
概率:事件发生可能性大小的描述。
条件概率:设A,B 是两个基本事件,且P(A)>0,则:()()()P AB P B A P A =称为事件A 发生的条件下事件B 发生的条件概率。
事件的独立性:如果两事件A,B 满足:()()()P AB P A P B =,则称A 与B 独立。
A,B 独立 ⇔ ()()P A B P A =⇔()()P B A P B A =独立和互斥的关系:()0,()0P A P B >>时,独立一定不互斥,互斥一定不独立。
对于三个以上的事件:相互独立 ⇒ 两两独立, 两两独立退不出相互独立。
取反运算不改变事件的独立性:,A B 相互独立⇔,A B 相互独立⇔,A B 相互独立。
概率的基本性质: 非零性:0()1P A ≤≤ 归一性:()1iP A =∑:()1()1()P A B P A B P AB =-=-古典概率满足: (1),试验的样本空间的元素只有有限个; (2),每个样本点出现的可能性相等: 古典概型事件A 的计算公式:()k P A n=n---样本点数,k---事件A 包含的样本点数。
2017考研数学一之高等数学复习重点来源:智阅网高等数学是考研数学一中,必考的内容。
所以,我们在复习的时候,一定要重视高等数学部分的复习。
下面,就让我们熟悉一下高等数学的复习重点有哪些。
高数第一章不定式的极限,考生要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、两个重要极限、洛必达法则等等,还要总结求极限过程中常用到的转化、化简的方法。
对函数的连续性的探讨也是考试的重点,这要求考生要充分理解函数连续的定义和掌握判断连续性的方法。
对于导数和微分,其实重点不是给一个函数求导数,而是导数的定义,也就是抽象函数的可导性,理清连续、可导、可微之间的关系,分清一元与多元的异同。
对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,在求积分的过程中,一定要注意积分的对称性,利用分段积分去掉绝对值把积分求出来。
中值定理一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。
对于微分部分,隐函数的求导,复合函数的偏导数等是考试的重点。
二重积分的计算,当然数学一里面还包括了三重积分,掌握积分区域具有可加性、二重积分对称性的应用、二重积分直角坐标和极坐标的变换、二重积分转换成累次积分计算这些知识点。
另外还有曲线和曲面积分,这是数一必考的重点内容。
一阶微分方程,掌握几个教材中的几种类型的求解就可以了。
还有无穷级数,要掌握判别敛散性、幂级数的展开和求和常用的方法和技巧。
于是,我们再做做汤家风老师的2017《考研数学绝对考场最后八套题》(数学一),巩固我们对于高等数学等内容的掌握。
想买这本书的同学,还可以去智阅网上看看,最近智阅网上,有很多购书优惠,买得越多,折扣越多。
考研大学的数学知识点总结
一、数学分析
1. 函数的极限与连续
2. 函数的导数与微分
3. 不定积分与定积分
4. 微分方程
5. 级数
6. 多元函数微分学
二、线性代数
1. 行列式与矩阵
2. 线性方程组
3. 矩阵的特征值与特征向量
4. 空间解析几何
5. 线性空间
三、概率统计
1. 随机变量与概率分布
2. 多个随机变量的概率分布
3. 统计推断
4. 假设检验
5. 相关与回归分析
四、离散数学
1. 集合与逻辑
2. 图论
3. 树与树的应用
4. 排列组合
5. 代数系统
五、常微分方程
1. 一阶常微分方程的基础理论
2. 高阶常微分方程与常系数齐次线性微分方程
3. 变系数线性微分方程
4. 高阶线性常系数齐次线性微分方程
5. 常微分方程的应用
六、数学建模
1. 数学建模的基本概念
2. 数学建模的基本方法
3. 实际问题的数学建模
4. 建立模型的思路与方法
5. 数学建模的应用
七、复变函数
1. 复数的基本概念
2. 复变函数的基本概念
3. 复变函数的解析性
4. 几何意义与应用
5. 复变函数的应用
以上是考研大学数学知识点的总结。
希望能对大家的学习有所帮助。
数学考研常用知识点归纳数学是考研中非常重要的科目之一,涵盖了高等数学、线性代数、概率论与数理统计等多个领域。
以下是一些数学考研中常用的知识点归纳:1. 高等数学:- 极限:数列极限、函数极限、无穷小量阶的比较。
- 导数与微分:基本导数公式、高阶导数、隐函数与参数方程的导数。
- 微分中值定理:罗尔定理、拉格朗日中值定理、柯西中值定理。
- 积分:不定积分、定积分、换元积分法、分部积分法、反常积分。
- 级数:正项级数的收敛性、幂级数、泰勒级数展开。
- 多元函数微分:偏导数、全微分、多元函数的极值问题。
- 重积分与曲线积分、曲面积分:二重积分、三重积分、第一类曲线积分、第二类曲线积分、第一类曲面积分、第二类曲面积分。
2. 线性代数:- 矩阵:矩阵的运算、矩阵的秩、矩阵的特征值与特征向量。
- 线性空间:向量空间的概念、基与维数、线性相关与线性无关。
- 线性变换:线性变换的定义、矩阵表示、核与像。
- 特征值问题:特征多项式、特征值与特征向量的求解。
- 正交性:正交矩阵、正交变换、正交投影。
- 二次型:二次型的矩阵表示、标准形、惯性指数。
3. 概率论与数理统计:- 随机事件与概率:事件的概率、条件概率、全概率公式、贝叶斯公式。
- 随机变量及其分布:离散型随机变量、连续型随机变量、分布函数、概率密度函数。
- 多维随机变量:联合分布、边缘分布、条件分布、独立性。
- 数理统计:样本与总体、样本均值、样本方差、大数定律、中心极限定理。
- 参数估计:点估计、区间估计、最小二乘估计。
- 假设检验:假设检验的基本原理、常见检验方法、p值。
4. 常考题型与解题技巧:- 选择题:注意选项之间的逻辑关系,利用排除法。
- 填空题:注意题目要求的格式,合理猜测可能的数值。
- 计算题:注意计算过程的准确性,避免粗心大意。
- 证明题:理解定理的证明过程,掌握证明题的常见思路。
结束语:数学考研的知识点繁多,但只要系统地复习,掌握基本概念、基本原理和基本方法,通过大量的练习来提高解题能力,就能够在考试中取得好成绩。
考研数学每章总结知识点一、集合与函数1. 集合的基本概念1)集合的含义:集合是由一定的确定的对象组成的总体。
2)元素:属于集合的对象。
3)集合的表示法:列举法、描述法。
4)集合间的关系:包含关系、相等关系、互斥关系。
2. 集合的运算1)并集、交集、差集、补集的概念及运算法则。
2)集合运算律:分配律、结合律、交换律、对偶律。
3. 函数的概念1)函数的含义:每个自变量对应唯一的因变量。
2)定义域、值域、映射关系。
3)函数的表示法:解析式表示、图形表示、映射图表示。
4. 函数的性质1)奇偶性、周期性、单调性、有界性、分段性。
2)反函数的存在与性质。
3)初等函数:幂函数、指数函数、对数函数、三角函数。
二、极限1. 数列极限1)定义:当数列中的项”无限走”时,就引出了极限的概念。
2)数列收敛与发散的判定。
3)数列极限的性质:保号性、夹逼定理、介值性。
2. 函数极限1)定义:当自变量趋于某一点时,函数值的”极限”。
2)函数极限存在与无穷极限。
3)无穷小量与无穷大量。
3. 极限运算法则1)函数极限的四则运算法则。
2)复合函数、柯西收敛准则。
4. 极限存在的条件1)夹逼准则:当函数夹在两个趋于同一个极限的函数中间时,可以得到极限。
2)子数列性质。
3)介值性:利用介值性证明函数的极限。
三、连续1. 连续的概念1)点连续:在函数定义域内任一点处的连续性。
2)间断点:函数在某点处不连续。
3)连续函数的性质:介值定理、零点定理。
2. 连续函数的运算1)和、差、积、商的连续性。
2)复合函数的连续性。
3. 函数的限制1)边界点、左极限、右极限的概念。
2)函数的间断点的分类。
4. 连续函数的应用1)罗尔中值定理、拉格朗日中值定理。
2)柯西中值定理、费马引理。
四、导数1. 导数的概念1)导数的定义:函数在某点处的”无穷小增量与自变量增量”的比值。
2)导数的几何意义。
2. 导数的计算1)基本导数公式。
2)常用的一些导数运算法则。
2017年考研数学大纲(数学一)研究生数学一考试科目:高等数学(同济)、线性代数(同济)、概率论与数理统计(浙大)考研考试形式和试卷结构一、试卷满分及考试时间:试卷满分为150分,考试时间为180分钟.二、答题方式:答题方式为闭卷、笔试.三、试卷内容结构:高等教学约56%;线性代数约22%;概率论与数理统计约22%.四、试卷题型结构:单选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立;数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则;单调有界准则和夹逼准则两个重要极限;函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质。
考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容:原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容:向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容:多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容:二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容:常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容:常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:和.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容:行列式的概念和基本性质行列式按行(列)展开定理考试要求:1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容:向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容:线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法。
考研数学概率论全面复习知识点合集祝各位学子一研为定,金榜题名!●随机事件与概率●概率论基本概念●随机试验●样本空间(集合)、样本点●随机事件:样本空间的子集●事件间的关系●包含:A发发生一定导致B发生,则B包含A●相等:A=B,A包含B,B包含A●互斥:AB不可能同时发生,A∩B=∅●对立一定互斥,互斥不一定对立●事件的运算●并:A、B至少发生一个●交:A、B同时发生●差:A-B,A发生B不发生●对立事件:A不发生●德摩根律,A-B=A-AB=AB’差变交●概率●公理化定义●非负性●规范性●可列可加性(互不相容时)●性质●P(A-B) = P(A) - P(AB)●若A⊂B,则P(A)≤P(B)●P(A⋃B)=P(A)+P(B)-P(AB)●P(A⋃B⋃C)=P(A)+P(B)+P(C)−P(AB)−P(AC)−P(BC)+P(ABC),推广●Boole不等式: (Union Bound) (非互不相容的事件集) 两种方法证明●古典概型●特点:样本空间的元素只有有限个; 每个样本点发生的可能性相同●定义:P(A)=A包含样本点数/Ω包含样本点数=(|A|)/(|Ω|)●典型例题●男n女m,围成一圈,女生互不相邻的概率?●抽签原理●随机取数(乘积能被10整除):分解成两个事件的交——至少一个偶数,至少一个5●取铆钉:利用互斥性●几何概型●特点:样本空间无限性;等可能性●定义:P(A)=A的几何测度/Ω的几何测度=(μ(A))/(μ(Ω))●典型例题●约会问题:0<=x, y<=60, |x-y| <= 15, 面积●蒲丰投针●条件概率●定义:P(A│B)=P(AB)/P(B)●本质:缩减的样本空间●乘法公式:●P(AB)=P(A)P(B|A),P(AB)=P(B)P(A|B),●推广到多个事件:若P(A1A2⋯A(n−1) )>0,则P(A1A2⋯An )=P(A1 )P(A2│A1 )⋯P(An |A1A2⋯A(n−1))●全概率公式(求结果发生的概率(即求P(B)))●应用:推迟决定原则●贝叶斯公式:(已知事件B发生,求B由第i个原因引起的概率(即求P(Ai |B)))●应用:患肝癌概率,三囚犯问题,三门问题●独立性: P(AB) = P(A)P(B)●性质:P(B|A) = P(B), 概率为0或1的事件与任意事件独立,A,A'与B,B'都相互独立●独立与互不相容的关系:(P(A)、P(B)均大于0)若A、B相互独立,则不可能互不相容; 若A、B互不相容,则不可能相互独立(P(A)P(B) > 0)●n个事件的独立性:n个事件独立 =>其中任意k个事件独立,反之不成立●分组独立性:●独立事件至少发生一次的概率:●应用:系统可靠性,矩阵乘法验证●离散型随机变量●随机变量●定义:把Ω中的每一个样本点ω与一个实数X(ω)相对应,称实值函数X:Ω→R为随机变量,随机变量在某范围的取值表示随机事件●Y = g(X)的分布:合并相同项●二维离散型随机变量(X, Y)●联合分布律:pij=P(X=xi,Y=yj )(列表)●边缘分布律:P{X = xi} = Pi·, P(Y = yj) = P·j●两个离散型随机变量的独立性:对所有x, y, P(X=x,Y=y)=P(X=x)P(Y=y), 则X, Y独立●推广:多个离散型随机变量的独立性:对任意取值的x1, ..., xn, P(X1=x1, ..., Xn = xn) = P(X1 =x1)...P(Xn = xn) (只要一个公式)●期望●定义●有4个盒子,编号为1,2,3,4。
2017考研数学概率论与数理统计考试重点2017考研数学概率论与数理统计考试重点当下已经是11月末了,从现在到考研前我们一定要看一遍概率论与数理统计的基本内容,并且达到熟悉重要概念的程度。
十一月下旬及考研前,大家要把主要的时间、精力投入到历年的真题中,而且要达到熟练掌握的程度,并且大家要通过马不停蹄地做模拟试题对概率统计的知识进行查漏补缺,同时复习基础阶段的内容,突出重点,反复看易出现问题的内容,真正的做到温故而知新。
下面我们来看下概率统计的考试重点内容:第一章事件与概率,三大概率公式是需要大家完全理解和掌握的! 第二章一维随机变量及其分布,这章的重点分为两个部分,一是一维随机变量的分布:分布函数、分布律、密度函数;二是八个重要分布,其中五个离散型、三个连续型。
大家注意,这章容易出小题,。
第三章二维随机变量及其分布,重点内容主要包含两个部分,一是二维随机变量的分布:联合分布、边缘分布、条件分布;二是二维随机变量函数的分布。
2011年二维离散型随机变量的分布律就是以解答题的形式出现的,2010年二维连续型随机变量的联合分布、边缘分布、条件分布也是以解答题的形式考查大家的。
因此同学们必须重点关注这一章解答题!第四章随机变量的数字特征,这章主要掌握随机变量的期望、方差、协方差、相关系数的定义和性质。
注意三、四章是概率统计的重中之重,需要大家特别关照!另外比较重要的是部分是第六、七章。
第六章数理统计,这部分掌握正态总体的三个抽样分布及八大统计量即可。
第七章参数估计,重点是矩估计与最大似然估计。
本章一般以解答题的形式出现,尤其是数学一的试卷上,这类题目的解答题出现的概率非常大。
2009年矩估计与最大似然估计同时以解答题的形式出现,2010年考过估计的无偏性。
因此参加数学一考试的同学需要注意下估计的无偏性、有效性和一致性,但是参加数学三考试的同学就不需要理会这部分的内容了。
现在是考研复习冲刺的最后阶段,希望考生可以有目的的去复习,争取在最后的时间里取得最大的效果。
2017考研数学各章节考点汇总考研数学一有高等数学、线性代数、概率论与数理统计三部分内容。
下面就为各位考生预测一下考研数学一的高等数学、线性代数、概率论与数理统计三部分中有哪些可能考察的知识点。
一、高等数学考点函数、极限、连续:(1)无穷小量、无穷小量的比较方法、用等价无穷小量求极限;(2)函数连续性、判别函数间断点的类型;(3)闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)。
一元函数微分学:(1)罗尔定理、拉格朗日中值定理、泰勒定理、柯西中值定理;(2)用洛必达法则求未定式极限;(3)用导数判断函数的单调性和求函数极值、最大值和最小值;(4)求函数图形的拐点及水平、铅直和斜渐近线;(5)计算曲率和曲率半径。
一元函数积分学:(1)求变上限积分函数的导数、牛顿-莱布尼兹公式;(2)计算反常积分;(3)用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。
向量代数和空间解析几何:(1)求平面方程和直线方程;(2)求简单的柱面和旋转曲面的方程。
多元函数微分学:(1)求多元复合函数一阶、二阶偏导数;(2)求多元隐函数的偏导数;(3)求空间曲线的切线和法平面及曲面的切平面和法线的方程;(4)求简单多元函数的最大值和最小值。
多元函数积分学:(1)计算二重积分、三重积分;(2)计算两类曲线积分、曲面积分;(3)格林公式、高斯公式;(4)用重积分、曲线积分、曲面积分求一些几何量和物理量。
无穷级数:(1)任意项级数绝对收敛与条件收敛;(2)函数项级数的收敛域及和函数;(3)幂级数的收敛半径、收敛区间及收敛域;(4)常用函数的麦克劳林展开式。
常微分方程:(1)变量可分离的微分方程及一阶线性微分方程;(2)二阶常系数齐次线性微分方程;(3)用微分方程解决一些简单的应用问题。
二、线性代数考点(1)行列式的常见求法;(2)用伴随矩阵求逆矩阵,用初等变换求矩阵的秩和逆矩阵;(3)求向量组的秩、矩阵的秩与其行(列)向量组的秩之间的关系、求过渡矩阵、正交矩阵;(4)非齐次线性方程组解的结构及通解;(5)求矩阵的特征值和特征向量、将矩阵化为相似对角矩阵;(6)用正交变换化二次型为标准形。
2017考研数学考前必看知识点总结汇总2017考研数学:考前必看知识点汇总考研数学一直都是考生考研最头疼的一个科目,一大推公式需要记住,还得会在做题时灵活运用。
专家为了考生能够高效的学习考研数学,特此罗列了以下考点,希望大家都能考出好成绩。
第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分值定理(重点)(罗尔、拉格朗日、柯西)3、积分值定理4、泰勒值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。
第一章概率论的基本概念第五章ﻩ大数定律及中心极限定理伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,Xn,…相互独立并服从同一分布,且E(X k)=μ,D(Xk)=σ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(Xk)=σ k2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤xp.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.自由度为n的χ2分布:记χ2~χ2(n),222212nXXX+++=χ,其中X1,X2,…,Xn是来自总体N(0,1)的样本.E(χ2 )=n,D(χ2 )=2n.χ12+χ22~χ2(n1+n2).⎪⎩⎪⎨⎧>Γ=--其他,,)2(21)(2122yexnyfynn.~近似的min Q1 M Q3 max第七章ﻩ参数估计正态总体均值、方差的置信区间与单侧置信限(置信水平为)1122。
一. 随机事件和概率 1、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1, 2° P(Ω) =13° 对于两两互不相容的事件1A ,2A ,…有∑∞=∞=⎟=⎟⎠⎞⎜⎜⎝⎛11)(i i i i A P A P Υ常称为可列(完全)可加性。
则称P(A)为事件A 的概率。
(2)古典概型(等可能概型)1° {}n ωωωΛ21,=Ω,2° nP P P n 1)()()(21===ωωωΛ。
设任一事件A ,它是由m ωωωΛ21,组成的,则有P(A)={})()()(21m ωωωΥΛΥΥ=)()()(21m P P P ωωω+++Λn m =基本事件总数所包含的基本事件数A = 2、五大公式(加法、减法、乘法、全概、贝叶斯)(1)加法公式P(A+B)=P(A)+P(B)-P(AB)当P(AB)=0时,P(A+B)=P(A)+P(B)(2)减法公式 P(A-B)=P(A)-P(AB)当B ⊂A 时,P(A-B)=P(A)-P(B) 当A=Ω时,P(B )=1- P(B)(3)条件概率和乘法公式定义 设A、B 是两个事件,且P(A)>0,则称)()(A P AB P 为事件A 发生条件下,事件B 发生的条件概率,记为=)/(A B P )()(A P AB P 。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
(4)全概公式设事件n B B B ,,1,2Λ满足 1°nB B B ,,1,2Λ两两互不相容,),,2,1(0)(n i B P i Λ=>,2°Υni iB A 1=⊂,则有)|()()|()()|()()(2211n n B A P B P B A P B P B A P B P A P +++=Λ。
此公式即为全概率公式。
(5)贝叶斯公式设事件1B ,2B ,…,n B 及A 满足1° 1B ,2B ,…,n B 两两互不相容,)(Bi P >0,=i 1,2,…,n ,2° Υni iB A 1=⊂,0)(>A P ,则∑==nj j ji i i B A P BP B A P B P A B P 1)/()()/()()/(,i=1,2,…n。
此公式即为贝叶斯公式。
)(i B P ,(1=i ,2,…,n ),通常叫先验概率。
)/(A B P i ,(1=i ,2,…,n ),通常称为后验概率。
如果我们把A 当作观察的“结果”,而1B ,2B ,…,n B 理解为“原因”,则贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
3、事件的独立性和伯努利试验(1)两个事件的独立性设事件A 、B 满足)()()(B P A P AB P =,则称事件A 、B 是相互独立的(这个性质不是想当然成立的)。
若事件A 、B 相互独立,且0)(>A P ,则有)()()()()()()|(B P A P B P A P A P AB P A B P ===所以这与我们所理解的独立性是一致的。
若事件A 、B 相互独立,则可得到A 与B 、A 与B 、A 与B 也都相互独立。
(证明)由定义,我们可知必然事件Ω和不可能事件Ø与任何事件都相互独立。
(证明)同时,Ø与任何事件都互斥。
(2)多个事件的独立性 设ABC 是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足P(ABC)=P(A)P(B)P(C) 那么A、B、C 相互独立。
对于n 个事件类似。
两两互斥→互相互斥。
两两独立→互相独立?(3)伯努利试验定义 我们作了n 次试验,且满足每次试验只有两种可能结果,A 发生或A 不发生; n 次试验是重复进行的,即A 发生的概率每次均一样; 每次试验是独立的,即每次试验A 发生与否与其他次试验A 发生与否是互不影响的。
这种试验称为伯努利概型,或称为n 重伯努利试验。
用p 表示每次试验A 发生的概率,则A 发生的概率为q p =−1,用)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率,二. 随机变量及其分布 1、随机变量的分布函数(1)离散型随机变量的分布率设离散型随机变量X 的可能取值为X k (k=1,2,…)且取各个值的概率,即事件(X=X k )的概率为P(X=x k )=p k ,k=1,2,…, 则称上式为离散型随机变量X 的概率分布或分布律。
有时也用分布列的形式给出:ΛΛΛΛ,,,,,,,,|)(2121k k k p p p x x x x X P X =。
显然分布律应满足下列条件: (1)0≥k p ,Λ,2,1=k ,(2)∑∞==11k kp。
(2)分布函数对于非离散型随机变量,通常有0)(==x X P ,不可能用分布率表达。
例如日光灯管的寿命X ,0)(0==x X P 。
所以我们考虑用X 落在某个区间],(b a 内的概率表示。
定义 设X 为随机变量,x 是任意实数,则函数)()(x X P x F ≤=称为随机变量X 的分布函数。
)()()(a F b F b X a P −=≤< 可以得到X 落入区间],(b a 的概率。
也就是说,分布函数完整地描述了随机变量X 随机取值的统计规律性。
分布函数)(x F 是一个普通的函数,它表示随机变量落入区间(– ∞,x]内的概率。
)(x F 的图形是阶梯图形,Λ,,21x x 是第一类间断点,随机变量X 在k x 处的概率就是)(x F 在k x 处的跃度。
分布函数具有如下性质:1° ,1)(0≤≤x F +∞<<∞−x ;2° )(x F 是单调不减的函数,即21x x <时,有≤)(1x F )(2x F ;3°)(lim )(==−∞−∞→x F F x ,1)(lim )(==+∞+∞→x F F x ;4° )()0(x F x F =+,即)(x F 是右连续的; 5° )0()()(−−==x F x F x X P 。
(3)连续型随机变量的密度函数定义 设)(x F 是随机变量X 的分布函数,若存在非负函数)(x f ,对任意实数x ,有∫∞−=xdxx f x F )()(,则称X 为连续型随机变量。
)(x f 称为X 的概率密度函数或密度函数,简称概率密度。
)(x f 的图形是一条曲线,称为密度(分布)曲线。
由上式可知,连续型随机变量的分布函数)(x F 是连续函数。
所以,)()()()()()(1221212121x F x F x X x P x X x P x X x P x X x P −=<<=<≤=≤<=≤≤密度函数具有下面4个性质:1° 0)(≥x f 。
2°∫+∞∞−=1)(dx x f 。
1)()(==+∞∫+∞∞−dx x f F 的几何意义;在横轴上面、密度曲线下面的全部面积等于1。
如果一个函数)(x f 满足1°、2°,则它一定是某个随机变量的密度函数。
3° )(21x X x P ≤<=)()(12x F x F −=∫21)(x x dx x f 。
4° 若)(x f 在x 处连续,则有)()(x f x F =′。
dxx f dx x X x P )()(≈+≤<它在连续型随机变量理论中所起的作用与k k p x X P ==)(在离散型随机变量理论中所起的作用相类似。
)(),(,独立性古典概型,五大公式,A P A E →→Ω→ω )()()()(x X P x F x X X ≤=→≤→ωω对于连续型随机变量X ,虽然有0)(==x X P ,但事件)(x X =并非是不可能事件Ø。
∫+=+≤<≤=hx xdxx f h x X x P x X P )()()(令0→h ,则右端为零,而概率0)(≥=x X P ,故得0)(==x X P 。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
2、常见分布①0-1分布P(X=1)=p, P(X=0)=q②二项分布在n 重贝努里试验中,设事件A 发生的概率为p 。
事件A 发生的次数是随机变量,设为X ,则X 可能取值为n ,,2,1,0Λ。
kn k kn n q p k P k X P C −===)()(, 其中n k p p q ,,2,1,0,10,1Λ=<<−=,则称随机变量X 服从参数为n ,p 的二项分布。
记为),(~p n B X 。
nk n k k nn n n n p q p q p npq q k X P XC C ,,,,,,|)(2221ΛΛ−−−=容易验证,满足离散型分布率的条件。
当1=n 时,kkqp k X P −==1)(,1.0=k ,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。
③泊松分布设随机变量X 的分布律为λλ−==e k k X P k!)(,0>λ,Λ2,1,0=k ,则称随机变量X 服从参数为λ的泊松分布,记为)(~λπX 或者P(λ)。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
④超几何分布),min(,2,1,0,)(n M l l k C C C k X P nNkn MN k M ==•==−−Λ 随机变量X 服从参数为n,N,M 的超几何分布。
⑤几何分布Λ,3,2,1,)(1===−k p q k X P k ,其中p≥0,q=1-p。
随机变量X 服从参数为p 的几何分布。
⑥均匀分布设随机变量X 的值只落在[a,b]内,其密度函数)(x f 在[a,b]上为常数k,即⎩⎨⎧=,0,)(k x f 其他,其中k=ab −1, 则称随机变量X 在[a,b]上服从均匀分布,记为X~U(a,b)。
分布函数为0, x<a ,,a b a x −− a ≤x≤b a ≤x≤b∫∞−==xdx x f x F )()(当a≤x 1<x 2≤b 时,X 落在区间(21,x x )内的概率为P(∫∫−==<<21211)()21x x x x ab dx x f x X x a b x x dx −−=12。
⑦指数分布设随机变量X 的密度函数为其中0>λ,则称随机变量X 服从参数为λ的指数分布。