实验2:PID的整定(实验报告)
- 格式:docx
- 大小:219.79 KB
- 文档页数:4
《自动控制原理》自动控制PID实验报告课程名称自动控制原理实验类型:实验项目名称:自动控制PID一、实验目的和要求1、学习并掌握利用MATLAB 编程平台进行控制系统复数域和频率域仿真的方法。
2、通过仿真实验研究并总结PID 控制规律及参数对系统特性影响的规律。
3、实验研究并总结PID 控制规律及参数对系统根轨迹、频率特性影响的规律,并总结系统特定性能指标下根据根轨迹图、频率响应图选择PID 控制规律和参数的规则。
二、实验内容和原理一)任务设计如图所示系统,进行实验及仿真程序,研究在控制器分别采用比例(P)、比例积分(PI)、比例微分(PD)及比例积分微分(PID)控制规律和控制器参数(Kp、Ki、Kd)不同取值时,控制系统根轨迹和阶跃响应的变化,总结pid 控制规律及参数变化对系统性能、系统根轨迹、系统阶跃响应影响的规律。
具体实验容如下:1、比例(P)控制,设计参数Kp 使得系统处于过阻尼、临界阻尼、欠阻尼三种状态,并在根轨迹图上选择三种阻尼情况的Kp 值,同时绘制对应的阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 的变化情况。
总结比例(P)控制的规律。
2、比例积分(PI)控制,设计参数Kp、Ki 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;3)被控对象两个极点的右侧(不进入右半平面)。
分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Ki 的变化情况。
总结比例积分(PI)控制的规律。
3、比例微分(PD)控制,设计参数Kp、Kd 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;66 3)被控对象两个极点的右侧(不进入右半平面)。
分别绘制三种情况下的根轨迹图,在根轨迹图上确定控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Kd 的变化情况。
PID 参数整定实验PID 控制规律:01()()()()t p D Ide t u t K e t e t dt T T dt ⎡⎤=++⎢⎥⎣⎦⎰一、 各控制参数对系统响应的影响1、增大比例系数p K ,一般将加快系统的响应速度,如果是有差系统则有利于减小静差。
但比例系数过大,会加大系统超调,甚至产生振荡,使系统不稳定。
2、增大积分时间I T ,有利于减小超调,使系统稳定性提高,但系统静差的消除将随之减慢。
3、增大微分时间常数D T ,有利于加速系统的响应,使超调量减小,提高系统稳定性,但系统抗干扰能力变差,对扰动过于敏感。
二、PID 参数整定具体方法如下:1、试凑法具体步骤:1) 先投比例,整定比例系数。
先置i T =∞、D T =0,投入纯比例控制器,比例系数p K 由小到大,逐渐增加,观察相应的响应,使系统的过渡过程达到4:1的衰减振荡和较小的静差。
如果系统静差小到允许范围内,系统响应满意,那么只需用比例控制器即可,参数整定完毕; 2) 加入积分,整定积分时间。
如果只用比例控制,系统的静差不能满足设计要求,则需加入积分部分。
整定时,先将比例系数p K 减小10%-20%,以补偿因加入积分作用而引起的系统稳定性下降。
然后由大到小调节I T ,在保持系统响应良好的情况下,使静差得到消除。
这一步可反复进行,以便得到满意的效果; 3) 加入微分,整定微分时间。
经过以上两步调整后,如果系统动态过程仍不能令人满意,可加入微分部分,构成PID 控制器。
整定时D T 由0开始逐渐增大,同时反复调节p K 及I T ,直到获得较为满意的控制效果为止。
2、扩充临界比例法控制度:数字控制系统偏差平方的积分与对应的模拟控制系统偏差平方积分之比,即控制度=2020DAe dt e dt ∞∞⎡⎤⎢⎥⎣⎦⎡⎤⎢⎥⎣⎦⎰⎰控制度表明了数字控制效果相对模拟控制效果的情况,当控制度为1.05时,认为数字控制与模拟控制效果相同。
PID控制器的参数整定(1)PID是比例,积分,微分的缩写.比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。
比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。
积分调节作用:是使系统消除稳态误差,提高无差度。
因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。
积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。
反之Ti大,则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。
积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。
微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。
因此,可以改善系统的动态性能。
在微分时间选择合适情况下,可以减少超调,减少调节时间。
微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。
此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。
微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。
(2) PID具体调节方法①方法一确定控制器参数数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。
在选择数字PID参数之前,首先应该确定控制器结构。
对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。
对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。
一般来说,PI、PID和P控制器应用较多。
对于有滞后的对象,往往都加入微分控制。
选择参数控制器结构确定后,即可开始选择参数。
参数的选择,要根据受控对象的具体特性和对控制系统的性能要求进行。
工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定,等等。
T13. PID自动控制系统参数整定(化工仪表与自动化,指导教师:卢红梅)实验一:一阶单容上水箱对象特性测试实验实验二:上水箱液位PID整定实验一、实验目的1)、通过实验熟悉单回路反馈控制系统的组成和工作原理。
2)、分析分别用P、PI和PID调节时的过程图形曲线。
3)、定性地研究P、PI和PID调节器的参数对系统性能的影响。
4)、通过实验熟悉单回路反馈控制系统的组成和工作原理。
5)、分析分别用P、PI和PID调节时的过程图形曲线。
6)、定性地研究P、PI和PID调节器的参数对系统性能的影响。
二、实验设备THKJ100-1型过程控制实验装置配置:上位机软件、计算机、RS232-485转换器1只、串口线1根、实验连接线。
型参数为串联釜数N三、实验原理实验一原理:阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过控制器或其他操作器,手动改变对象的输入信号(阶跃信号)。
同时,记录对象的输出数据或阶跃响应曲线,然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。
实验二原理:图13.1单回路上水箱液位控制系统图13.1为单回路上水箱液位控制系统,单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。
本系统所要保持的恒定参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。
根据控制框图,这是一个闭环反馈单回路液位控制,采用工业智能仪表控制。
当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。
合适的控制参数,可以带来满意的控制效果。
反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。
因此,当一个单回路系统组成好以后,如何整定好控制器参数是一个很重要的实际问题。
一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。
pid控制实验报告pid控制实验报告篇一:PID控制实验报告实验二数字PID控制计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。
因此连续PID控制算法不能直接使用,需要采用离散化方法。
在计算机PID控制中,使用的是数字PID控制器。
一、位置式PID控制算法按模拟PID控制算法,以一系列的采样时刻点kT代表连续时间t,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID位置式表达式:Tu T ?kpeu=para; J=0.0067;B=0.1; dy=zeros= y= -+ = k*ts; %time中存放着各采样时刻rineu_1=uerror_1=error;%误差信号更新图2-1 Simulink仿真程序其程序运行结果如表2所示。
Matlab输出结果errori = error_1 = 表2 例4程序运行结果三、离散系统的数字PID控制仿真1.Ex5 设被控对象为G?num 仿真程序:ex5.m%PID Controller clear all; close all;篇二:自动控制实验报告六-数字PID控制实验六数字PID控制一、实验目的1.研究PID控制器的参数对系统稳定性及过渡过程的影响。
2.研究采样周期T对系统特性的影响。
3.研究I型系统及系统的稳定误差。
二、实验仪器1.EL-AT-III型自动控制系统实验箱一台 2.计算机一台三、实验内容1.系统结构图如6-1图。
图6-1 系统结构图图中 Gc(s)=Kp(1+Ki/s+Kds) Gh(s)=(1-e)/s Gp1(s)=5/((0.5s+1)(0.1s+1)) Gp2(s)=1/(s(0.1s+1))-TS 2.开环系统(被控制对象)的模拟电路图如图6-2和图6-3,其中图6-2对应GP1(s),图6-3对应Gp2(s)。
图6-2 开环系统结构图1 图6-3开环系统结构图2 3.被控对象GP1(s)为“0型”系统,采用PI控制或PID控制,可使系统变为“I型”系统,被控对象Gp2(s)为“I型”系统,采用PI控制或PID控制可使系统变成“II型”系统。
学生实验报告PID 控制器是一种线性控制器,它根据给定值()t r 与实际输出值()t y 构成控制偏差()t e()()()t y t r t e -=(2.2.1)将偏差的比例()P 、积分()I 和微分()D 通过线性组合构成控制量,对被控对象进行控制,故称PID 控制器。
其控制规律为()()()()⎥⎦⎤⎢⎣⎡++=⎰dt t de T dt t e T t e K t u D tp 011(2.2.2)或写成传递函数的形式()()()⎪⎪⎭⎫ ⎝⎛++==s T s T K s E s U s G D p 111(2.2.3) 式中:p K ——比例系数;I T ——积分时间常数;D T ——微分时间常数。
在控制系统设计和仿真中,也将传递函数写成()()()sK s K s K s K s K K s E s U s G I p D D Ip ++=++==2(2.2.4) 式中:P K ——比例系数;I K ——积分系数;D K ——微分系数。
上式从根轨迹角度看,相当于给系统增加了一个位于原点的极点和两个位置可变的零点。
简单说来,PID 控制器各校正环节的作用如下:A 、比例环节:成比例地反映控制系统的偏差信号()t e ,偏差一旦产生,控制器立即产生控制作用,以减少偏差。
B 、积分环节:主要用于消除稳态误差,提高系统的型别。
积分作用的强弱取决于积分时间常数I T ,I T 越大,积分作用越弱,反之则越强。
C 、微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。
2、 PID 参数的确定方法 (1) 根轨迹法确定PID 参数 PID 的数学模型可化为:()s K s K s K s G IP D ++=2从仿真曲线看出未校正系统震荡不稳定。
设球杆系统PID 校正的结构图为如图2.2.5 示:要求采用凑试法设计PID校正环节,使系统性能指标达到调节时间小于令Kp=2.5,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.1,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.4,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.5,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.6,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:PID参数整定:Time Offset(s) Kp Ki Kd SampleTime sT(s) %5 2.5 0.9 1.5 -1 23 4%学生实验报告从仿真曲线看出未校正系统震荡不稳定。
实验二 数字PID 控制计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。
因此连续PID 控制算法不能直接使用,需要采用离散化方法。
在计算机PID 控制中,使用的是数字PID 控制器。
一、位置式PID 控制算法按模拟PID 控制算法,以一系列的采样时刻点kT 代表连续时间t ,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID 位置式表达式: 式中,D p d I pi T k k T k k ==,,e 为误差信号(即PID 控制器的输入),u 为控制信号(即控制器的输出)。
在仿真过程中,可根据实际情况,对控制器的输出进行限幅。
二、连续系统的数字PID 控制仿真连续系统的数字PID 控制可实现D/A 及A/D 的功能,符合数字实时控制的真实情况,计算机及DSP 的实时PID 控制都属于这种情况。
1.Ex3 设被控对象为一个电机模型传递函数BsJs s G +=21)(,式中J=0.0067,B=0.1。
输入信号为)2sin(5.0t π,采用PD 控制,其中5.0,20==d p k k 。
采用ODE45方法求解连续被控对象方程。
因为Bs Js s U s Y s G +==21)()()(,所以u dt dy B dty d J =+22,另y y y y ==2,1,则⎪⎩⎪⎨⎧+-==/J )*u ((B /J )y y y y 12221 ,因此连续对象微分方程函数ex3f.m 如下 function dy = ex3f(t,y,flag,para)u=para;J=0.0067;B=0.1;dy=zeros(2,1);dy(1) = y(2);dy(2) = -(B/J)*y(2) + (1/J)*u;控制主程序ex3.mclear all;ts=0.001; %采样周期xk=zeros(2,1);%被控对象经A/D转换器的输出信号y的初值e_1=0;%误差e(k-1)初值u_1=0;%控制信号u(k-1)初值for k=1:1:2000 %k为采样步数time(k) = k*ts; %time中存放着各采样时刻rin(k)=0.50*sin(1*2*pi*k*ts); %计算输入信号的采样值para=u_1; % D/AtSpan=[0 ts];[tt,xx]=ode45('ex3f',tSpan,xk,[],para); %ode45解系统微分方程%xx有两列,第一列为tt时刻对应的y,第二列为tt时刻对应的y导数xk = xx(end,:); % A/D,提取xx中最后一行的值,即当前y和y导数yout(k)=xk(1); %xk(1)即为当前系统输出采样值y(k)e(k)=rin(k)-yout(k);%计算当前误差de(k)=(e(k)-e_1)/ts; %计算u(k)中微分项输出u(k)=20.0*e(k)+0.50*de(k);%计算当前u(k)的输出%控制信号限幅if u(k)>10.0u(k)=10.0;endif u(k)<-10.0u(k)=-10.0;end%更新u(k-1)和e(k-1)u_1=u(k);e_1=e(k);endfigure(1);plot(time,rin,'r',time,yout,'b');%输入输出信号图xlabel('time(s)'),ylabel('rin,yout');plot(time,rin-yout,'r');xlabel('time(s)'),ylabel('error');%误差图程序运行结果显示表1所示。
PID控制器的参数整定(1)PID是比例,积分,微分的缩写.比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。
比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。
积分调节作用:是使系统消除稳态误差,提高无差度。
因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。
积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。
反之Ti大,则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。
积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。
微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。
因此,可以改善系统的动态性能。
在微分时间选择合适情况下,可以减少超调,减少调节时间。
微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。
此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。
微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。
(2) PID具体调节方法①方法一确定控制器参数数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。
在选择数字PID参数之前,首先应该确定控制器结构。
对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。
对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。
一般来说,PI、PID和P控制器应用较多。
对于有滞后的对象,往往都加入微分控制。
选择参数控制器结构确定后,即可开始选择参数。
参数的选择,要根据受控对象的具体特性和对控制系统的性能要求进行。
工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定,等等。
实验二:PID的整定
姓名昨日恰似风中雪学号1107*** 专业班级自动化2011级1班
成绩_______ 一、试验目的
通过matlab软件仿真,运用临界比例度法和反应曲线法对系统进行PID 整定。
二、实验设备
PC机(含有matlab软件)。
三、实验内容
练习使用临界比例度法和反应曲线法对系统进行PID整定。
四、实验内容:
1、临界比例度法整定
临界比例度整定步骤:
①设置纯比例,比例度较大,系统稳定;
②施加阶跃,减小比例度,出现等幅振荡,记录此时的临界比例度δk和震荡周期T k;(等幅振荡截图如下)
此时δk=1/30 ;T k=5.41-2.61=2.8
③查表计算,并运行调整(附表如下:)
δT I T D 调节规律
整定参数
参数
P 2δk
PI 2.2δk 0.85T k
PID 1.7δk 0.5T k0.13T k 根据上表计算可得:
PI作用时,K P=13.6 , T I=2.38附图如下:
PID作用时,K P=17.647 , T I=1.4, T D=0.35附图如下:
2、衰减曲线法法整定
衰减曲线整定步骤:
①设置纯比例,比例度较大,系统稳定;
②施加阶跃,减小比例度,出现4:1衰减比的曲线,记录此时的上升时间t p,此时的比例度δs和衰减周期Ts;(4:1衰减比的曲线截图如下)
此时δs=1/3.823 T s=4.24-1.54=2.7
③查表计算,并运行调整(附表如下:)
衰减率ψ调节规律
整定参数
δT I T D
0.75
P δs
PI 1.2δs0.5T s
PID 0.8δs0.3T s0.1T s
根据上表计算可得:
PI作用时,K P=3.14 , T I=1.35附图如下:
PID作用时,K P=4.78 , T I=0.81, T D=0.27 附图如下:
六、实验心得:
通过本次试验,我对调节器参数整定方法有了深入的理解和掌握。
经过试验,进一步理解了运用临界比例度法和反应曲线法来设置PID调节中的各个参数的优越性,这比理论计算更具有工程普遍性和使用性。
通过调试设置各个参数,可以使系统响应达到最优。