p 2
,
0
)
x
p 2
二次项,右 边是一次项.
小结:
距 离
y
F x22py l o x (p>0)
( 0,
p 2
)
y
p 2
(1)一次项 定轴,系数正 负定方向;
y l
o F
x
x22py (p>0)
( 0,
p 2
)
y
p 2
(2)焦点与 方程同号,准 线与方程异号.
例1. 已知抛物线的标准方程是 y26x, 求它的 焦点坐标和准线方程;
则定点 F( p, o),由抛物线定义得:
y
H p
M(x,y)
o
Fx
l
(x p)2 y2 x
化简得:y 2
2
px
p
2
(
p
0)
二、标准方程的推导
方案二:以定点 F 为原点,过点F 垂直于L 的直线为 x 轴
建立直角坐标系,设定点F到直线 l的距离为p,动点 M (x, y)
则定点 F(0, 0) ,直线l的方程 x p,由抛物线的定义
【题后反思】:
求抛物线的焦点坐标或准 线方程,先把抛物线方程 化为标准方程。
例2 .已知抛物线的焦点是 F(0,-2), 求它 的标准方程.
【题后反思】:
求抛物线的标准方程, 一般先定位,再定量。
练习2、根据下列条件写出抛物线的标准方程:
(1)焦点F(3,0)
(2)准线方程是 x 1 4
(3)焦点到准线的距离是2
﹒ ﹒ ﹒ ﹒ y
ox