(完整)我国铁路简支梁桥的类型及发展趋势
- 格式:doc
- 大小:30.00 KB
- 文档页数:10
中国公铁两用桥主桥结构体系分析与展望随着中国交通基础设施建设的不断进步,公铁两用桥的建设越来越多。
公铁两用桥,顾名思义,是指一座桥同时具有公路和铁路功能,为了满足不同需求和减少资源浪费,这种桥梁结构成为了一种新的设计趋势。
本文将围绕中国公铁两用桥主桥结构体系进行分析与展望,从桥梁结构的发展历程、设计原则、技术特点以及未来发展趋势等方面进行探讨。
一、发展历程公铁两用桥的发展历程大致可分为三个阶段。
第一阶段是桥梁单一功能阶段,即公路桥和铁路桥相互独立。
这一阶段,公路桥和铁路桥在设计和施工上相对独立,无法实现资源和空间的有效利用。
第二阶段是桥梁功能整合阶段,即公路和铁路设计在同一桥体内实现。
这一阶段,公路和铁路的设计整合在同一桥体中,实现了资源和空间的共享,但由于受到技术和安全的限制,公铁两用桥的建设并不多。
第三阶段是多元素复合功能桥梁阶段,即公铁两用桥的多元素复合功能实现。
这一阶段,公铁两用桥在构造方式、桥面结构、支座布置等方面不断进行技术创新,实现了更为灵活多样的功能需求。
二、设计原则公铁两用桥的设计原则主要包括结构合理、安全可靠、经济节约、功能灵活等。
结构合理是指桥梁在设计和施工中,要充分考虑公路和铁路的功能需求,并保证桥梁结构合理稳定。
安全可靠是指桥梁在使用过程中,要满足公路和铁路的安全标准,确保交通运输的安全。
经济节约是指桥梁在建设和维护过程中,要尽量减少资源消耗,降低成本。
功能灵活是指桥梁要能够满足不同运输需求,具有一定的灵活性和多功能性。
三、技术特点公铁两用桥的主桥结构体系具有以下技术特点:1. 结构多样化:公铁两用桥可以采用不同的结构形式,包括梁式桥、拱桥、悬索桥等,以满足不同的跨径和荷载要求。
2. 功能灵活:公铁两用桥可以通过不同的设计方案,实现公路和铁路的功能分离或共享,满足不同的交通运输需求。
3. 施工技术创新:公铁两用桥在施工过程中,采用了先进的技术手段,如模块化设计、预制构件制作等,提高了施工效率。
我国铁路简支梁桥的类型及发展趋势梁式桥梁式桥是我国一种非常普遍的桥型,它的适用围较为广泛。
它按受力体系大致可以分为:简支梁;悬臂梁;连续梁;T型刚构桥;连续刚构桥等几种形式。
和公路简支梁桥相比,铁路梁桥由于荷载比较大,故配筋大致相同的情况下,铁路桥梁的跨径较小,其粱高也比公路的来的大些。
一般情况几米到几十米到几百米都可以用到这种桥型。
其中铁路简支梁桥是我这篇论文关注的重点。
其中简支梁桥在小跨径的梁桥中使用十分广泛,在一些斜拉桥还有一些拱桥的引桥部分也使用简支梁的形式。
简支梁桥有许多的优点。
施工方便。
它相当于一跨就是一个简支梁,施工起来没有像连续梁桥的施工简支变连续、悬臂施工、或者顶推施工那么复杂,在适当的条件下,简支梁桥主要就是装配式施工,或者整体现浇。
它是静定体系。
静定体系对地基要求不高,在地基比较差的地方特别适合造这种桥梁;其受力比较明确,像温度力、地基不均匀沉降、施加预应力等都不会对其造成很大的次力,对结构的影响是十分小的。
这对我们分析桥梁结构是十分有利的。
在现有的基础上我们的设计水平在简支梁的体系上还是做的十分有把握的,有利于桥梁在全国各地的发展。
如果是一座复杂的桥梁那不知道要多长时间才能完成,而且一般的也不敢做,这有利于我国经济的发展。
但是简支梁桥也有它的局限性,它只适合于小跨径桥梁,因为他的受力特点决定了它在相同跨径的桥型当中其力是最大的,支点的弯矩为零,是不会为其跨中分担负弯矩的(如下图所示)。
所以由于混凝土裂缝的控制,它的跨径不可能很大的。
值得一提的是,但是这并不是所简支梁桥是浪费的,在没有必要造大跨径的地方,那简直梁桥是大有用武之地的。
一、我国铁路简支梁桥的类型从截面形式来看铁路简支梁桥主要有槽型截面、箱型截面、板式桥、肋梁式等几种形式。
(一)简支板式梁桥它的界面形式简单,便于施工在小跨径的桥梁上经常采用这种截面形式。
其适用围常用在4~8米跨径。
它的截面形式又有实心板、矮肋板、空心板等。
中国公铁两用桥主桥结构体系分析与展望1. 引言1.1 背景介绍公铁两用桥是指可以同时承载公路和铁路交通的桥梁工程。
随着我国经济的快速发展和交通运输需求的增加,公铁两用桥逐渐成为解决交通拥堵和提高交通效率的重要选择。
公铁两用桥的建设不仅可以在有限的空间内同时满足公路和铁路的通行需求,还可以节约建设成本和减少对环境的影响。
研究公铁两用桥的结构体系对于促进交通运输发展和城市建设具有重要意义。
目前,我国公铁两用桥的建设已经取得了一定的成就,但仍面临着一些挑战和问题。
在建设公铁两用桥时,如何设计合理的主桥结构体系以确保其稳定性、承载能力和经济性是一个重要问题。
对公铁两用桥的主桥结构体系进行深入分析和研究具有重要意义。
本文将对公铁两用桥的主桥结构体系进行详细分析,并探讨其结构优势、未来发展趋势以及可能面临的挑战和解决方案。
本文还将总结现阶段公铁两用桥建设的经验教训,展望未来公铁两用桥的发展方向,为我国公铁两用桥建设提供参考和借鉴。
1.2 研究意义研究公铁两用桥主桥结构体系的意义在于探索提升交通运输效率、优化资源利用和促进经济发展的途径。
公铁两用桥是一种具有多功能性的交通工程,能够满足不同交通需求,充分利用资源,提高运输效率,缓解城市交通压力。
通过分析公铁两用桥的结构体系,可以为设计和建设更安全、更稳定的桥梁提供技术支持,保障人民生命财产安全。
研究公铁两用桥主桥结构体系还有利于探索新型桥梁建设模式,推动桥梁工程领域的技术创新和发展。
不断提升公铁两用桥主桥结构体系的设计水平,可以有效降低建设和维护成本,提高工程质量,为推动城市交通建设和国家基础设施建设作出贡献。
最重要的是,研究公铁两用桥主桥结构体系可以为我国交通运输系统的不断完善和升级提供技术支撑,推动我国在交通基础设施建设领域的发展。
随着交通需求的日益增长和经济的快速发展,公铁两用桥主桥结构体系的研究具有重要的现实意义和战略意义。
2. 正文2.1 公铁两用桥概述公铁两用桥是一种可以同时承载公路车辆和铁路列车的桥梁结构,其设计和建造旨在提高运输效率和节约建设成本。
中国公铁两用桥主桥结构体系分析与展望公铁两用桥是指公路和铁路两种交通方式共用同一座桥梁的特殊类型桥梁。
在中国,由于公路和铁路的交通需求不断增加,公铁两用桥已经成为一种常见的工程形式,并且在未来还有较大的发展潜力。
公铁两用桥的主桥结构体系主要包括桥梁主体结构和上部结构,其中桥梁主体结构包括桥墩、墩台和桥面梁等部分,上部结构包括道路、轨道和桥面等部分。
主桥结构体系的选择是公铁两用桥设计和施工过程中的重要环节之一,对于桥梁的安全性、经济性和施工性都有着重要的影响。
公铁两用桥的主桥结构体系主要有常规梁式结构、钢箱梁结构和混合结构等几种形式。
常规梁式结构是指桥面梁采用简支梁或连续梁形式,桥梁主体结构采用桩基础和墩台形式。
这种结构体系施工简单,经济实用,适用于跨度较小的公铁两用桥。
钢箱梁结构是指桥面梁采用钢箱梁形式,桥梁主体结构采用钢管桩或混凝土桩形式。
这种结构体系具有结构强度高、自重轻、施工周期短等优点,适用于跨度较大的公铁两用桥。
钢箱梁结构也存在施工难度大、成本较高等缺点。
混合结构是指桥面梁和桥梁主体结构采用不同的材料和形式进行组合。
桥面梁采用钢箱梁形式,桥梁主体结构采用混凝土土钉墙形式。
混合结构可以充分发挥不同材料的优势,并且在经济性和施工性方面具有一定的优势。
展望未来,中国公铁两用桥的主桥结构体系有望进一步发展。
随着公路和铁路交通的不断发展,公铁两用桥需要适应越来越大的交通流量和跨越距离。
未来的公铁两用桥主桥结构体系可能会更加多样化和创新化。
可以采用悬索桥、斜拉桥等大跨度桥梁形式,或者采用新型材料和新工艺进行设计和施工。
还可以结合智能化技术,提高公铁两用桥的安全性和运行效率。
中国公铁两用桥的主桥结构体系在设计和施工中起着至关重要的作用。
随着交通需求的增加,公铁两用桥的主桥结构体系有望进一步发展,为未来的交通建设提供更多的选择和可能性。
我国铁路桥梁的现状和展望项海帆 吴定俊(同济大学土木工程学院 上海 200092)项海帆,男,1935年12月生。
中国工程院院士、教授、博士生导师。
现任同济大学土木工程学院顾问院长、土木工程防灾国家重点实验室主任。
我国著名的桥梁与结构工程专家。
长期从事大跨桥梁与结构抗风、桥梁结构理论与工程控制等方面的科研与教学工作。
摘 要 简要地介绍了我国铁路桥梁的现状和解放以来的发展历程,论述了既有桥梁提速后出现的问题以及解决问题的对策、高速铁路桥梁的特点和设计要求,最后对新世纪铁路桥梁的几个主要发展方向的前景做了评述。
关键词 铁路桥梁 高速铁路 铁路提速 展望1我国铁路桥梁的现状铁路桥梁由于荷载大、动力响应剧烈,与公路桥梁相比,其结构形式创新和跨度发展的速度受到了制约。
在众多的铁路桥梁当中,简支的中小跨度桥梁占有很高的比例,主要型式有:(1)钢筋混凝土简支梁 跨度一般小于20m,1975年铁道部对小跨度的钢筋混凝土桥编制了标准设计,在4~20m跨度范围内编制了8种不同跨度的定型设计。
(2)预应力混凝土简支梁 20世纪50年代初试制的是跨度238mT型截面的PC梁,1957年编制了跨度19 8~27 7m的标准设计,以后又生产了31.7m的T形截面的PC梁,这种跨度梁在目前铁路建设中被广泛的采用。
80年代后,又设计了24m、40m跨度的箱型截面梁。
目前,铁路预应力混凝土简支梁最大跨度为64m。
(3)钢板梁 有上承与下承式2种类型,解放前遗留下来的钢板梁跨度不一,解放后进行定型设计目前常见的有32m和40m两种跨度。
下承式板梁主梁间距大于上承钢板梁,又带有纵横梁结构的桥面系,因此,下承式板梁横向刚度较大,稳定性好。
由于预应力混凝土梁的普遍采用,目前铁路建设中这种型式桥梁很少采用。
(4)简支钢桁梁 有上承式、半穿式和穿式桁梁桥3种。
半穿式桁梁桥其横截面为开口截面,抗扭刚度和横向刚度小,不适合高速行车,主要用于中等跨度的桥梁上,常见的定型设计跨度有40m、44m、4 8m这3种。
中国公铁两用桥主桥结构体系分析与展望中国公铁两用桥是指同时用于公路和铁路交通的桥梁。
在交通发展的背景下,公铁两用桥已经成为现代交通基础设施建设的重要组成部分。
本文将对中国公铁两用桥的主桥结构体系进行分析与展望。
公铁两用桥的主桥结构体系主要包括上部结构、下部结构和桥面系。
上部结构是支撑交通荷载并传递到下部结构的核心部分,常用的上部结构形式有梁式桥、连续梁桥和拱桥等。
梁式桥是最常见的公铁两用桥结构形式,适用于跨度较小的桥梁,具有施工简单、经济实用的特点。
连续梁桥适用于跨度较大的桥梁,可以减少桥墩数量和桥梁变形,提高结构的整体性能。
拱桥是公铁两用桥中较为复杂的上部结构形式,它通过拱状弯曲的构件来承受载荷,具有较好的力学性能和美观性。
下部结构是支撑上部结构并将荷载传递到桥基的组成部分,包括桥台和桥墩。
桥台位于桥梁两端,用于承接上部结构的荷载,并通过桥墩传递到地基。
桥墩位于桥梁跨度之间,起到支撑和分担上部结构荷载的作用。
桥台和桥墩的设计和施工对于保证公铁两用桥的安全和稳定起着重要作用。
在桥台和桥墩的设计中,要考虑公路和铁路两个不同交通载荷的特点,采用合理的结构形式和材料,以保证公铁两用桥的安全性和运行的稳定性。
桥面系是交通载荷直接作用的部分,也是公铁两用桥的重要组成部分。
桥面系的设计主要考虑公路和铁路两种交通模式的要求,包括道路交通和轨道交通的道面设计、排水系统、护栏系统等。
在公路交通方面,桥面系的设计应满足交通流量、载重、减速带等要求;在铁路交通方面,桥面系的设计应满足铁轨几何要求、轨道噪声降低、车辆稳定性等要求。
展望未来,中国公铁两用桥的主桥结构体系将继续优化和创新。
随着交通需求的增加和科技的进步,公铁两用桥的跨度将越来越大,上部结构将越来越复杂,下部结构和桥面系也将更加科学合理。
材料技术和构造技术的发展将为公铁两用桥的设计和施工提供更多的选择。
公铁两用桥的结构体系将通过更加高效的设计和施工方式,为人们提供更安全、便捷和可靠的公路和铁路交通服务。
中国公铁两用桥主桥结构体系分析与展望中国公铁两用桥是一种特殊的桥梁形式,既能够承载铁路交通,又能够用于公路交通。
公铁两用桥的主桥结构体系与单一用途桥梁相比存在一些差异,本文将对中国公铁两用桥的主桥结构体系进行分析与展望。
中国公铁两用桥主要由上部结构和下部结构两部分组成。
上部结构是桥梁的承载部分,用于承载行车荷载,并将荷载转移到下部结构上。
下部结构是桥墩和桥台,起到支撑上部结构的作用。
下面分别从上部结构和下部结构两个方面对中国公铁两用桥主桥的结构体系进行分析。
上部结构是公铁两用桥的重要组成部分,其主要特点是既需要满足铁路交通的高速、重载要求,又需要满足公路交通的安全、舒适性要求。
公铁两用桥的上部结构往往要求有较大的矩形截面面积,以承受更大的荷载。
上部结构还需要满足舒适性要求,减小噪音和振动对交通和周围环境的影响。
在设计上需要考虑采用抗震、减振等技术手段来提高上部结构的性能。
目前,公铁两用桥的上部结构常采用钢箱梁或混凝土箱梁。
钢箱梁具有自重轻、强度高、施工方便的优点,适用于跨径较大的公铁两用桥。
而混凝土箱梁由于其良好的耐久性和较强的抗震能力,适用于跨径较小的公铁两用桥。
近年来,预应力混凝土箱梁和组合梁等新型结构体系也在公铁两用桥上得到了广泛应用,以提高桥梁的承载能力和使用寿命。
下部结构是公铁两用桥的支撑部分,承受上部结构传递下来的荷载,并将荷载分散到地基上。
下部结构包括桥墩和桥台两部分。
桥墩位于桥面上,起到支撑梁体的作用;桥台位于桥墩上,连接不同桥墩和梁体,起到稳定整个桥梁结构的作用。
中国公铁两用桥的下部结构设计主要考虑以下几个方面:一是桥墩的形式和布置,桥墩的形式有圆形、方形、多边形等,布置有线形、体式等多种方式。
二是桥台的结构形式,桥台的结构形式有叠合式、组合式、箱梁式等。
三是地基处理,包括桩基、扩基、软基处理等。
四是抗震设计,根据地震烈度进行抗震设防。
五是防水设计,对桥梁的防水要求进行设计。
未来,随着跨江大桥和高速铁路网的不断发展,中国公铁两用桥的需求将会不断增加。
我国公路桥梁的类型及发展趋势探析摘要本文从板式桥、梁式桥、钢筋混凝立拱桥、斜拉桥等多种桥型出发,探讨我国公路桥梁的类型及未来发展趋势,希望能为我国的桥梁设计人员提供一些帮助。
关键词道路桥梁公路建设发展情况中图分类号:U44文献标识码:A1 板式桥板式桥一般构造相对不那么复杂、受离相对比较明显,可以采用预应力混凝土和钢筋混凝土结构,实心空心兼可。
可以适应各种形状的桥型。
如弯度较大的桥型、有一定斜度的桥型和有一些坡度的桥型等。
这种桥型通常会被应用于城市或乡村的普通公路、级别较高的公路和城市规划的桥梁建设中。
板式桥在未来高速公路桥梁上的发展情况分析:采用高标号混凝土,为了确保桥梁比较好的使用效果应尽量采用预应力混凝土结构;预应力钢材一般采用钢绞线。
板桥跨径约达到二十五米,当下我国有建成三十五米至四十米跨径的桥梁。
2 斜拉桥综观我国丰富多彩的桥梁形态,在大跨径桥梁中斜拉桥比较流行。
当下,我国已经建成(或正在建设)的斜拉桥约三十多座,居世界第三位,仅次于德国和日本。
斜拉桥的钢索一般采用自锚体系。
近些年来,我国的斜拉桥中开始出现自锚和部分自锚两者相结的桥型,地锚体系能够将悬索桥的地锚特点融入于斜拉桥中,使斜拉桥的跨径设计能够与当地的复杂地形相适应,形式更为灵活多样,成本也大大降低了。
斜拉桥的未来发展情况分析:斜拉桥的结构类型将会多样化、轻型化;跨径会超过1000m,此外,研究的重点将会放在斜拉桥的动力问题、索力的调整以及对施工过程的监督、观测和控制。
3 梁式桥梁式桥也是公路桥梁中应用比较广泛的一种桥型。
一般有以下两种分类方法:一是从结构体系来看,大致可以这样划分:悬臂梁式桥、简支梁式桥、T型刚构桥、连续刚构桥等。
二是从截面型式来看,大致可以这样划分:槽型梁式桥、T型梁式桥、衍架梁式桥等。
梁式桥的种类及未来发展情况分析:(1)简支T型梁桥。
根据有关部门给出的数据统计显示,T型梁桥在我国的普及率最多。
上世纪五、六十年代左右,我国着手建造了许多该型桥。
摘要关键词目录我国桥梁的现状与发展趋势前言改革开放之前,我国的经济、政治各方面都处于落后时期,桥梁工程方面也就没有太大的突破。
改革开放以来,随着经济的发展,综合国力的增强,我国公路建设事业迅猛发展,作为公路建设重要组成部分的桥梁建设也得到相应发展,特别是近十年来,我国大跨径桥梁的建设进入了一个最辉煌的时期。
一般公路和高等级公路上的中、小桥、立交桥,形式多样,实用效果不断提高,跨越大江(河)、海峡(湾)的超大桥梁建设也相继修建,为公路运输提供了安全、舒适的服务。
随着建筑材料、设备、建筑技术的较快发展,特别是电子计算技术的广泛应用,为广大工程技术人员提供了快捷、高精度的计算分析手段,我国广大的桥梁工程师和工作者,不断推进我国公路桥梁建设事业的发展。
1 我国桥梁的发展历程1.1 古代桥梁的发展1.1.1 萌芽阶段(以西周、春秋为主,包括此前的历史时代)中国最早的桥梁可以追溯到原始社会时期,有独木桥和数根圆木组成的木梁桥,此为中国桥梁的雏形,进入周朝,已建有梁桥和浮桥。
1972年,在春秋时期齐国的京城山东临淄的考古挖掘中,首次发现了梁桥的遗址和桥台遗迹,两处桥梁的跨径均在8 m左右。
1.1.2 初步发展阶段战国时期,单跨和多跨的木、石梁桥已普遍在黄河流域及其他地区建造。
坐落在咸阳故城附近的渭水三桥,在古代是很有名的。
三桥包括中渭桥、东渭桥和西渭桥,都是多跨木梁木柱桥。
进入秦汉后,建筑材料的丰富化使得以砖石结构为主体的拱结构出现。
进入东汉末期,梁桥,浮桥,索桥,拱桥四大基本桥型已全部形成。
1.1.3 辉煌阶段这一阶段包括了两晋到宋朝时期。
这一时期涌现出许多名桥。
隋代石匠李春首创的敞肩式石拱桥——赵州桥,该桥在隋大业初年为李春所创建,是一座卒腹式的圆弧形石拱桥,净跨37 m,宽9 m,拱矢高度7.23 m,在拱圈两肩各设有2个跨度不等的腹拱,这样既能减轻桥身自重、节省材料,又便于排洪、增加美观,赵州桥的设计构思和工艺的精巧,在我国古桥是首屈一指。
浅谈我国道路桥梁的发展现状及其发展趋势标题:浅谈我国道路桥梁的发展现状及其发展趋势引言概述:道路桥梁是国家交通基础设施的重要组成部分,对于国家经济发展和人民生活起着至关重要的作用。
随着我国经济的快速发展,道路桥梁建设也得到了极大的重视和投入。
本文将从我国道路桥梁的发展现状和发展趋势两个方面进行探讨。
一、发展现状1.1 道路桥梁总体建设规模不断扩大我国道路桥梁建设规模不断扩大,建成了一大批高速公路、城市快速路和特大桥等,大大提高了交通运输效率。
1.2 技术水平不断提升我国道路桥梁建设采用了先进的设计、施工和管理技术,桥梁结构更加安全可靠,寿命更长。
1.3 智能化管理不断推进智能化管理技术在道路桥梁领域得到广泛应用,实现了桥梁的远程监控和维护,提高了桥梁的运行效率和安全性。
二、发展趋势2.1 加强桥梁维护和保养随着桥梁寿命的不断增长,加强桥梁维护和保养将成为未来的重点,延长桥梁的使用寿命。
2.2 推动桥梁智能化发展智能化管理技术将在未来得到更广泛的应用,实现桥梁的自动监测和预警,提高桥梁的安全性和运行效率。
2.3 倡导绿色环保建设未来道路桥梁建设将更加注重环保和可持续发展,采用绿色材料和技术,减少对环境的影响。
三、加强桥梁安全管理3.1 完善桥梁安全监测系统加强桥梁的安全监测系统建设,及时发现和处理桥梁的安全隐患,确保桥梁的安全运行。
3.2 加强桥梁应急救援能力建立健全桥梁的应急救援机制,提高对桥梁事故的应对能力,保障人民生命财产安全。
3.3 提升桥梁管理人员素质加强桥梁管理人员的培训和教育,提升其专业水平和责任意识,确保桥梁的安全管理工作得到有效落实。
四、推动桥梁科技创新4.1 加强桥梁科研力量加大对桥梁科研机构和人才的支持力度,推动桥梁科技创新,提高桥梁建设的技术水平和质量。
4.2 推广新型桥梁材料和技术推广新型桥梁材料和技术,如高性能混凝土、预应力技术等,提高桥梁的抗震性和耐久性。
4.3 发展智能化桥梁建设推动智能化桥梁建设,实现桥梁的自动化施工和监测,提高桥梁建设的效率和质量。
中国公铁两用桥主桥结构体系分析与展望一、中国公铁两用桥的发展现状公铁两用桥是指一座桥梁上同时通行公路和铁路。
它是为了节约造价、土地和资源,减少对环境的影响,提高桥梁的利用率而设计的。
公铁两用桥的建设,对于我国来说具有十分重要的意义。
在我国,由于基础设施的不断完善和交通需求的增长,公铁两用桥已经成为了桥梁建设的一种趋势。
目前,中国的公铁两用桥主要集中在一些交通密集的地区,如大城市、交通枢纽等。
这些地方的交通需求巨大,而土地资源有限,因此公铁两用桥的建设就显得尤为重要。
在这些地区,公铁两用桥可以大大缓解交通压力,提高桥梁的利用效率,同时也可以节约资源和土地。
二、中国公铁两用桥的主要结构体系1.梁式结构梁式结构是公铁两用桥常见的结构形式之一,它的特点是横梁与纵梁交叉组合,构成了桥梁的主要部分。
梁式结构的公铁两用桥具有结构简单、施工方便、维护成本低等优点,因此在我国得到了广泛的应用。
2.桁架结构桁架结构是另一种常见的公铁两用桥结构形式。
它的特点是使用桁架式的结构梁,可以有效地承受大跨度和大荷载。
桁架结构的公铁两用桥具有承载能力强、结构稳定等优点,因此在一些大跨度的公铁两用桥中得到了广泛的应用。
三、未来的发展方向随着我国交通运输的不断发展和需求的不断增加,公铁两用桥将会成为未来的桥梁建设的重点。
在未来,公铁两用桥的发展方向主要有以下几个方面:1.更加注重设计和施工技术的创新随着科技的不断发展,桥梁建设的设计和施工技术也在不断提高。
未来的公铁两用桥建设将更加注重设计和施工技术的创新,以提高桥梁结构的安全性和稳定性。
2.更加注重环保和节能随着环保和节能意识的不断增强,未来的公铁两用桥建设也将更加注重环保和节能。
在建设过程中,将采用更加环保和节能的材料和工艺,以减少对环境的影响。
3.更加注重桥梁的维护和管理未来的公铁两用桥建设将更加注重桥梁的维护和管理。
随着桥梁使用年限的增加,桥梁的维护和管理显得尤为重要。
未来将会加强桥梁的定期检测和维护,以保证桥梁的安全使用。
中国公铁两用桥主桥结构体系分析与展望中国公铁两用桥作为交通基础设施的一种重要形式,是公路与铁路交通的重要节点,具有重要的战略意义。
目前中国公铁两用桥的建设仍处于初级阶段,存在一些问题和挑战。
本文将对中国公铁两用桥的主桥结构体系进行分析,并对未来发展进行展望。
中国公铁两用桥的主桥结构体系主要包括上部结构、下部结构和基础结构。
上部结构是公铁两用桥最重要的部分,主要是桥面、桥面系、桥墩和桥梁等。
桥面是公铁两用桥的通行表面,主要承载车辆和列车的荷载,并向下传递给下部结构。
桥面系是桥面承载力的支撑和传递系统,包括横梁、竖杆和斜杆等,用于分散和传递荷载,保证结构的稳定和安全。
桥墩是横跨河流或道路的支撑柱子,一般采用混凝土或钢结构,承受来自桥面的荷载,并将荷载传递给桥梁或基础结构。
桥梁是横跨河流或道路的主要承重结构,一般采用钢结构或混凝土结构,具有足够的强度和刚度,以承受荷载和抗震能力。
基础结构是公铁两用桥的建立和稳固的基础,主要由桥基、桩基和地基等组成。
桥基是横跨河流或道路的基础结构,一般采用混凝土或钢结构,能够承受来自下部结构的荷载,并将荷载传递给桩基和地基。
桩基是桥基的一种基础形式,主要通过桩基和地基间的相互作用,将荷载传递到地基。
地基是桥基和桩基所在的土层或岩层,主要用于承受和分散荷载,同时提供稳定的基础支撑。
展望未来,中国公铁两用桥的发展将面临一些挑战和机遇。
随着交通需求的增加和城市化进程的加快,公铁两用桥的建设将得到进一步推动,对主桥结构体系的要求也将更加严格。
随着科技的进步和工程技术的创新,公铁两用桥的建设将更加高效、安全和环保。
随着公铁两用桥的普及和推广,相关技术和标准将得到进一步完善和规范,为公铁两用桥的发展提供更好的保障。
中国公铁两用桥的主桥结构体系包括上部结构、下部结构和基础结构,其构成和功能都具有重要的意义。
未来,中国公铁两用桥的发展将面临一些挑战和机遇,需要进一步加强科技创新和规范管理,以推动公铁两用桥的健康发展。
中国公铁两用桥主桥结构体系分析与展望一、公铁两用桥的特点公铁两用桥是指在同一桥面上同时通行公路和铁路的桥梁工程,它具有以下特点:1.结构复杂:公铁两用桥需要同时满足公路和铁路的要求,因此其结构设计十分复杂,需要考虑双重荷载的影响。
2.综合效益高:公铁两用桥可以充分利用交通资源,减少土地占用和资源浪费,具有很高的综合效益。
3.工程难度大:由于公铁两用桥需要考虑到交通流量的叠加和冲击效应,因此工程难度很大,对设计和施工要求很高。
4.经济效益显著:与分别建设公路桥和铁路桥相比,公铁两用桥的建设成本更低,运营费用更经济。
因此在大跨度桥梁工程中更具有优势。
二、公铁两用桥主桥结构体系分析公铁两用桥的主桥结构体系主要包括梁桥、拱桥和悬索桥三种形式,下面将对这三种主桥结构体系进行分析。
1.梁桥梁桥是公铁两用桥中应用最为广泛的一种形式,它主要由上部结构和下部结构组成,上部结构通常采用横梁和纵梁组成的桥面结构,下部结构一般为桥墩或桥台。
梁桥主要有简支梁桥、连续梁桥和预应力混凝土梁桥等形式,适用于跨径较小的公铁两用桥。
2.拱桥拱桥是一种古老而又经典的桥梁结构形式,它具有很好的受力特性和美观性,因此在公铁两用桥中也有着重要的应用。
拱桥主要由拱肋和拱墩组成,可以分为等截面拱桥、变截面拱桥和悬臂拱桥等形式,适用于跨径较大的公铁两用桥。
三、展望未来发展趋势在未来,随着科学技术的不断进步和桥梁工程理论的不断发展,公铁两用桥的建设将会迎来新的发展趋势。
1.新材料的应用:随着复合材料和新型钢材的不断发展,将会有更多的新材料应用到公铁两用桥的建设中,从而提高公铁两用桥的抗震性能和使用寿命。
2.智能化技术的引入:随着智能化技术的不断成熟,公铁两用桥将会更加智能化,能够实现桥梁结构的实时监测和预警,从而保障公铁两用桥的安全运行。
3.绿色环保的考虑:未来的公铁两用桥将更加注重绿色环保,会在材料选择、设计施工和运营管理等方面更加注重环保和节能。
铁路桥梁的技术发展趋势国民经济的快速发展与科技水平的提高,以及国内市场对铁路运输日益高涨的巨大需求,对铁路建设提出了更高要求。
国家和铁道部高瞻远瞩,超前规划,广大铁路建设者肩负重任,锐意进取,使我国铁路从落后到先进,实现了跨越式发展。
铁路桥梁呈现出以下技术发展趋势:一、铁路运输向货运重载、客运高速两个方向发展,对铁路桥梁提出了不同的技术要求。
二、为减小桥梁对河道通航、泄洪及河床冲刷的影响,桥梁跨度越来越大。
三、设计理论和研究水平的进步催生了新的桥梁结构形式。
桥式采用拱、梁、斜拉、悬索的组合结构体系,形成大跨多孔连续长桥和适应大跨、重载、高速的新结构。
四、建桥材料向轻质、高强、耐久方面发展。
我国近年来建造的铁路桥梁已成功应用了Q345、Q370、Q420 等强度高、冲击韧性和可焊性好的优质钢材,并正在研制Q520 钢材。
日本和美国大量采用耐候钢作为建桥材料,其重要优点是抗腐蚀能力较强。
混凝土性能不断提高,国内已开展了对C80 混凝土及水下C50 混凝土的研究应用。
轻质混凝土的研究也取得进展,比重约1.9t/m3的轻质混凝土在挪威已被大量使用。
五、桥梁建造技术出现多元化。
例如,水电和房建工程中的地下连续墙技术已被应用于桥梁基础施工;借鉴深海钻井平台技术,促进了负压式筒形基础的发展;中铁大桥局集团有限公司采用气囊法将大型围堰下河的灵感则来自于造船行业的有关技术。
六、桥梁结构将实现标准化与工厂化生产。
随着对环境及耕地的保护不断深入,以及由于高速铁路对地基沉降和线路平顺性的高要求,桥梁在线路中所占的比例越来越大,不仅要将上部结构中梁体和轨道板的预制生产实现标准化和工厂化,墩身和承台也有可能作为定型产品进行标准化生产,在工厂预制后运到现场拼装。
七、桥梁施工专用装备将得到进一步发展和完善。
除了目前已在梁场中广泛使用的各种制、运、架设备之外,其它各种专用装备也将得到更大发展和应用。
如大吨位吊船、大功率钻机、设备的自动控制技术等。
中国公铁两用桥主桥结构体系分析与展望
公铁两用桥的结构体系主要有悬索桥、斜拉桥和钢箱梁桥等。
其中,悬索桥和斜拉桥
属于悬拱桥结构体系,主要采用索、梁、塔三个构件进行组装。
悬索桥和斜拉桥桥面大且高,适合跨越特别深的峡谷或海湾等地形地貌,具有更大的跨度和更好的承载能力,可以
支撑重载的公路和铁路行车。
同时,悬索桥和斜拉桥的线形美观,给人以视觉冲击的观感,成为许多城市建设中的“地标性建筑”。
钢箱梁桥属于框架梁结构体系,主要采用钢箱梁、墩、墩台等构件进行组装。
相比于
悬索桥和斜拉桥,钢箱梁桥体积较小,造价较低,设计灵活性强,并且可以用于较小跨度
的公铁两用桥建设,适用于城市交通建设和公路铁路间的短距离连接。
未来,随着公铁两用桥的应用越来越广泛,桥梁设计、施工和管理也将面临更多的挑战。
在设计方面,需要根据地理环境和流量等条件合理优化桥梁结构,保证其承载能力和
安全性;在施工方面,需要使用先进的技术手段和工程设备,提高施工效率和品质;在管
理方面,需要建立完善的桥梁运维体系,实现对桥梁状况的全程监控和保养维护。
总之,随着公铁两用桥建设的不断推进,其结构体系也将不断拓展和优化。
未来,公
铁两用桥将成为城市交通建设和公路铁路连接的重要支撑,为人们出行和生活带来更加便
捷的体验。
浅谈我国梁式桥的发展梁式桥是以受弯为主的主梁作为主要承重构件的桥梁。
主梁可以是实腹梁或者是桁架梁(空腹梁)。
实腹梁外形简单,制作、安装、维修都较方便,因此广泛用于中、小跨径桥梁。
但实腹梁在材料利用上不够经济。
桁架梁中组成桁架的各杆件基本只承受轴向力,可以较好地利用杆件材料强度,但桁架梁的构造复杂、制造费工,多用于较大跨径桥梁。
桁架梁一般用钢材制作,也可用预应力混凝土或钢筋混凝土制作,但用的较少。
过去也曾用木材制作桁架梁,因耐久性差,现很少使用。
实腹梁主要用钢筋混凝土、预应力混凝土制作,也可以用钢材做成钢钣梁或钢箱梁。
实腹梁桥的最早形式是用原木做成的木梁桥和用石材做成的石板桥。
由于天然材料本身的尺寸、性能、资源等原因,木桥现在已基本上不采用,石板桥也只用作小跨人行桥。
梁式桥种类很多,也是公路桥梁中最常用的桥型,其跨越能力可从20m直到300m之间。
公路桥梁常用的梁式桥形式有:按结构体系分为:简支梁、T型刚构、悬臂梁、连续梁、连续刚构等。
按截面型式分为:T型梁、箱型梁(或槽型梁)、衍架梁等。
梁式桥跨径大小是技术水平的重要指标,一定程度上反映一个国家的工业、交通、桥梁设计和施工各方面的成就。
现从以下几种常用的结构形式介绍梁式桥在公路桥梁上的使用和发展趋势。
(一)简支T型梁桥T型梁桥在我国公路上修建最多,早在50、60年代,我国就建造了许多T型梁桥,这种桥型对改善我国公路交通起到了重要作用。
80年代以来,我国公路上修建了几座具有代表性的预应力混凝上简支T型梁桥(或桥面连续),如河南的郑州、开封黄河公路桥,浙江省的飞云江大桥等,其跨径达到62m,吊装重220t。
T形梁采用钢筋混凝土结构的已经很少了,从16m到50m跨径,都是采用预制拼装后张法预应力混凝土T形梁。
预应力体系采用钢绞线群锚,在工地预制,吊装架设。
其发展趋势为:采用高强、低松弛钢绞线群锚:混凝土标号40~60号;T形梁的翼缘板加宽,25m 是合适的;吊装重量增加;为了减少接缝,改善行车,采用工型梁,现浇梁端横梁湿接头和桥面,在桥面现浇混凝土中布置负弯矩钢束,形成比桥面连续更进一步的“准连续”结构。
我国铁路简支梁桥的类型及发展趋势梁式桥梁式桥是我国一种非常普遍的桥型,它的适用范围较为广泛。
它按受力体系大致可以分为:简支梁;悬臂梁;连续梁;T型刚构桥;连续刚构桥等几种形式。
和公路简支梁桥相比,铁路梁桥由于荷载比较大,故配筋大致相同的情况下,铁路桥梁的跨径较小,其粱高也比公路的来的大些.一般情况几米到几十米到几百米都可以用到这种桥型。
其中铁路简支梁桥是我这篇论文关注的重点。
其中简支梁桥在小跨径的梁桥中使用十分广泛,在一些斜拉桥还有一些拱桥的引桥部分也使用简支梁的形式.简支梁桥有许多的优点.施工方便。
它相当于一跨就是一个简支梁,施工起来没有像连续梁桥的施工简支变连续、悬臂施工、或者顶推施工那么复杂,在适当的条件下,简支梁桥主要就是装配式施工,或者整体现浇。
它是静定体系。
静定体系对地基要求不高,在地基比较差的地方特别适合造这种桥梁;其受力比较明确,像温度力、地基不均匀沉降、施加预应力等都不会对其造成很大的次内力,对结构的影响是十分小的.这对我们分析桥梁结构是十分有利的.在现有的基础上我们的设计水平在简支梁的体系上还是做的十分有把握的,有利于桥梁在全国各地的发展.如果是一座复杂的桥梁那不知道要多长时间才能完成,而且一般的设计院也不敢做,这有利于我国经济的发展。
但是简支梁桥也有它的局限性,它只适合于小跨径桥梁,因为他的受力特点决定了它在相同跨径的桥型当中其内力是最大的,支点的弯矩为零,是不会为其跨中分担负弯矩的(如下图所示)。
所以由于混凝土裂缝的控制,它的跨径不可能很大的。
值得一提的是,但是这并不是所简支梁桥是浪费的,在没有必要造大跨径的地方,那简直梁桥是大有用武之地的。
一、我国铁路简支梁桥的类型从截面形式来看铁路简支梁桥主要有槽型截面、箱型截面、板式桥、肋梁式等几种形式。
(一)简支板式梁桥它的界面形式简单,便于施工在小跨径的桥梁上经常采用这种截面形式。
其适用范围常用在4~8米跨径.它的截面形式又有实心板、矮肋板、空心板等.如果使用预应力,可以达到16m.板式桥跨结构由于板低支撑面很宽,每片都不会发生侧向倾覆,因而两片梁之间不需要任何联系。
整体式矩形实心板具有形式简单、施工方便、建筑高度小、结构整体性刚度大灯优点.从受力的角度来说,截面用料不经济,自重大,所以只在小跨径的板桥中使用。
跨径太大则不适合,因为这样它的自重也会很大,则其很大一部分的抗力都被自身的重量吃掉了。
其中空心板桥的跨径相对而言可以做的比较大些。
如果是实心板桥,其施工方法主要整体现浇。
如果是空心板桥可以是预制的,它对起重机的要求不会那么高.它的施工稍微要复杂一点,无论是现浇还是预制都需要将其孔道留出来,所以增加了施工的难度。
但是其受力比实心的板桥更加合理,故在实际的桥梁中使用空心板桥比使用实心板桥要广。
当然这是我个人的臆想吧.但是我觉得无论从受力的角度还是节约材料的角度来说都应该采取这形式的板桥。
当然有可能会从整个工程的造价或者施工单位的水平来综合比较吧.(二)T形截面梁桥其实铁路桥梁当中还有其他类型的肋式桥梁,比如说工字型截面、I形截面等,只是简支T 梁桥使用的更多一些,故我选取其中的一种即简支T梁桥来加以说明.对于跨径比较大的,经上分析部适合板式结构,就连空心结构也不能满足设计要求时,这是我们可以采用T形截面形式.这种形式是把一个矩形的截面两边非受压区的面积去除,这样只要腹板部分满足构造要求,能够放得下我们所需要拜访的预应力钢筋或者普通钢筋就可以了,而上翼缘则从分利用混凝土良好的抗压性能受压,这样很符合我们简支梁的受力特点,也可以节约材料,对于我们构建节约型社会是十分有利的.所以目前简支T形梁桥还是一种比较广泛的桥梁结构形式.在我国众多中小型桥梁里都用到这一截面形式.其跨径一般情况下大于20米,目前可到65米。
这些数据可能是公路桥的吧。
简支T形梁桥可以采用满堂现浇的方法来制作。
但是简支T形梁桥跟多的还是装配式施工,采用结构吊装的办法来施工。
我们在制作T型梁桥的时候可以在工厂制作.我们的桥一般情况较宽,我们可以将其横向留缝,当我们吊装完毕后,我们可以采用企口角将其连接或者采用现浇段的形式将其连接,可能现浇其整体形较好。
简支T形梁桥的发展依赖于基本材料指标,如使用高强轻质混凝土,高强预应力,预应力工艺、大吨位的张拉设备,大型安装设备。
上课的时候听凌老师说我国铁路装配式桥梁,有一个十分独特的特点,就是它的截断长度都是8m的倍数。
他也是从便于施工、加快施工进度的角度来说的.这样也可以提高预制化水平。
(三)槽型截面梁桥在轨道交通中,槽型截面形式的简支梁桥使用非常广泛.因为它有着自身独特的特点:(1)建筑高度低:直接行驶车辆的槽形梁道床板厚度(即建筑高度),一般为0。
35~0。
50m,较一般的轨道箱梁或T形梁降低约1.5m(以30m跨为例)。
应用槽形梁对降低车站及区间建筑高度效果显著。
(2)降噪效果好: 轨道交通车辆行驶于槽形梁时,其轮轨走行系统噪声受到两侧主梁上翼缘及腹板的阻隔,在一定程度上减少了车辆噪声对周围环境的影响.(3)断面空间利用率高: 结构受力需要的主梁上翼缘可兼做检修及旅客紧急疏散通道,在车站内部可以作为站台宽度使用,下部空间可布置通信、信号、电力电缆等管线。
(4)行车安全:两侧主梁可防止脱轨车辆倾覆下落,给行车安全提供了可靠的保证。
(5)外观美观、视觉效果好:槽形梁不但本身梁体外型优美,而且主梁上翼缘和腹板遮挡了外观较差的桥面系及车辆走行系统.(6)开口断面,施工起来比较方便。
如果使用箱型截面则里面的模板安装、拆放等都比开口断面的复杂。
轨道交通桥梁中:法国的里尔建造了双线跨度为50m的槽形梁,巴黎的13号线在塞纳河上建造了跨度为85m、腹板为矩形、双层底板的预应力槽形梁,目前还在使用。
表明我们槽型截面形式的耐久性还是可以的。
在铁路桥上,我国目前已建成3座槽形梁桥。
北京铁路枢纽双桥编组站,京秦线跨越京承线,二孔跨度为24m的单线槽形梁;京承线双怀段怀柔车站附近,跨越京丰公路,一孔跨度为20m的双线槽形梁桥;浙赣复线江西弋阳葛水河,跨度为25m+40m+25m的单线铁路连续槽形梁.其实我们日常工作生活中,就有很多的槽型截面形式:地铁车站.我们可以十分明显的体会到上述有点在地铁中的体现。
由于槽型截面有上述诸多优点,在未来的应用前景还是十分广泛的.比如说原来上海的地铁原来基本上是箱型截面,在其两个腹板的地方行驶双向地铁,但是现在想三号线等基本上都是采用槽型截面,个人感觉这种断面就是人性化的断面,在大城市中,地铁离居住区那么近,而采用这种断面可以减小噪音,那么对于提高市民的生活质量是大有好处的.(四)箱型截面简支梁桥众所周知,在阶段施工当中我们可以采用简支T梁这种形式,特别是在连续梁、悬臂梁等承受正负弯矩时多采用这种截面,因为它的上下底板可以承受较大的压力,与我们的手里十分的吻合。
还有在悬臂施工中为了减小施工中的内力,也要求我们减小梁体的自重,我们也经常采取这种形式。
我问了一个研究生,他说这种截面形式的抗振性能也是比较好的.在简支梁桥中,我们又是采取中形式,可以采用整体现浇的办法,或者在工厂预制好了之后运到施工现场.但是个人感觉如果将箱梁做成一个整体的话对起重机的要求一定很大,故又时我们可以采取小箱梁形式,他有箱梁的优点,抗弯能力得到保障,可且其整体性也还是可以的,所以我们采取小箱梁的形式.个人感觉箱型截面可以更好的利用他的空间.如果箱型截面高度足够大的话,那么我们可以充分利用箱子里面的空间.我们可以再箱子里面行驶汽车或者火车,而在箱子的顶部行驶汽车或者火车。
这即所谓的双层桥面布置,在其他界面形式当中是很少能找不到这种桥面布置形式。
这对于我们节约工程造价,减少桥梁占用的空间(特别是在城市当中)将会取得十分大的经济效益和社会效益。
在城市当中可是寸土寸金的呀。
我个人感觉只要桥梁的受力可行的话我们就可以采用这种截面形式,其还有一大优点就是风对行使在箱子里面的车子的影响比较小,这对于我们在风较大的时候的车辆抗风是十分有好处的。
但是对于利用箱型截面里面的空间,我们要处理好在支座地方设置的横隔板问题,我不知道这种问题现在没有解决掉,但是我个人还是持有上述观点,即使我们现在还没有解决掉这个问题,我相信随着科技水平的提高,我们一定可以实现这一目标的。
(五)简支钢桁架桥为了进一步减小由于桥跨自重引起的内力,我们可以在挖空的基础上将桥进一步挖空,这种形式的桥梁,一般情况用混凝土是不行的了,应为混凝土的抗拉性能不是很好,所以一般采用钢材。
这种类型我们把它叫做简支钢桁架桥。
这种结构具有结构形式简单,装拆都比较方便,现在的预制化水平比较高,在一些中小型桥梁中应用十分广泛。
我国铁路桥梁当中简支钢桁架桥他的长度基本都是8m的倍数,这样便于装配化施工,加快施工的进度,节约施工的工期.(六)京沪高铁我觉得讲到中国铁路简支梁的话,就不得不谈到高铁了。
这次中国投资了那么多的钱放在基础设施建设上面,其实有很大的一部分就是投资在高铁上面。
所以我觉得有比较对京沪高铁做一点小小的介绍。
2008年4月18日9时05分,温家宝总理在京沪高速铁路开工典礼上宣布,历经十几年讨论、总投资2209。
4亿元的京沪高速铁路全线开工,并为京沪高速铁路奠基。
铁道部预计在2012年完成,到时候、人们乘坐京沪高速列车,从北京到上海只要5小时.京沪高速铁路是《中长期铁路网规划》中投资规模最大、技术含量最高的一项工程,也是我国第一条具有世界先进水平的高速铁路,正线全长约1318公里,与既有京沪铁路的走向大体并行,全线为新建双线,设计时速350公里,初期运营时速300公里,最高车速度可达380公里。
共设置21个客运车站。
计划2011年年底投入运营,争取2011年6月建成通车。
桥梁长度约1140km,占正线长度86。
5%;全线铺设无砟正线约1268公里,占线路长度的96.2%.有砟轨道正线约50公里,占线路长度的3。
8%。
全线用地总计5000km2(不包括北京南站、北京动车段、大胜关桥及相关工程)。
京沪铁路京沪高速铁路全线实现道口的全立交和线路的全封闭。
既方便沿线群众、车辆通行,又可确保高速列车运行安全。
全线优先采用以桥代路方式,最大限度节约东部地区十分宝贵的土地资源。
京沪高铁的建设对于我们桥梁建设提出了更高的要求,由于我们的高速铁路,速度比较快,那么对于行车的舒适性提出了更高的要求。
对地基的沉降的控制要求也是比较高的.可能较少采用简支梁的形式,但是还是有些桥梁使用到了,比如说从丹阳——昆山试验段,全长164km。
常州-—昆山软土分布较广,除少数特殊跨度外,大量采用32m箱梁结构。
这种桥型对于地基的要求是比较低的。
说老实话,对于京沪的了解我真的还不是很多,就是从老师那里了解一点.(七)从其他的角度来看待我国铁路桥梁的形式从施工工艺来看,我们可以将简支T梁桥分为整体现浇施工和吊装施工,这点其实在桥面T 梁中多多少少也提到过.现浇施工可能整体型可以得到很好的保障,但是由于施工条件的限制,还有施工人员的专业素质等因素的存在,导致我们的现浇简支梁的质量得不到很好的保证。