超全道路工程平面线型设计
- 格式:doc
- 大小:115.00 KB
- 文档页数:13
超全道路工程平面线型设计在道路工程平面线型设计中,合理的线型设计是确保道路既能满足交通功能需求,又能提供良好的行车舒适性和安全性的关键。
下面将介绍超全道路工程平面线型设计的一些重要原则和技巧。
首先,平面线型设计需要考虑交通功能的要求。
交通功能包括几个方面,包括车辆行驶速度、交通流量、交通组织等。
根据不同的道路等级和功能需求,设计师需要确定适当的车道数量、车道宽度、车道高度、交叉口布局等。
其次,平面线型设计需要考虑行车舒适性。
为了提供良好的行车舒适性,设计师需要合理设置纵横坡。
纵坡是指道路的纵向倾斜度,横坡是指道路的横向倾斜度。
纵坡的设计应遵循路况、车速和排水要求,通过合理的纵坡设计可以提高车辆的燃油经济性和行驶平稳性。
横坡的设计应符合车辆的侧向稳定性和行车平稳性要求。
再次,平面线型设计需要考虑交通安全性。
为了保证道路的交通安全性,设计师需要合理设置交叉口、人行横道、超车道、减速带等交通设施。
交叉口的设计应遵循交通流量、可视条件和行人需求等要求。
人行横道的设置应合理考虑行人的安全性和便利性。
超车道的设置应根据交通流量和行车需求确定。
减速带的设置可以提高车辆的行驶安全性。
最后,平面线型设计还需要考虑环境因素。
为了保护环境和提高道路的美观度,设计师需要合理设置绿化带、隔离带、路灯等。
绿化带的设置可以改善道路的空气质量和减少噪音污染。
隔离带的设置可以增加车辆的行车安全性。
路灯的设置可以提高夜间行车的安全性。
总结起来,超全道路工程平面线型设计需要考虑交通功能要求、行车舒适性、交通安全性和环境因素。
设计师需要合理设置车道数量、宽度和高度,确定合适的纵横坡设计,设置交通设施和环境设施,以提供一个安全、舒适、高效的道路交通环境。
道路平面设计,图文并茂,赶紧收藏!一、道路设计的基本步骤1、道路是三维空间的实体,路线是道路中线的空间位置路线平面:路线在水平方向的投影路线的纵断面:沿道路中线竖直剖切再行展开中线上任意一点法向切面是道路在该点的横断面2、道路设计过程中,先确定平面的线形,再进行纵断面和横断面设计平面线形由直线、圆曲线、缓和曲线三个要素组成3、线性设计公路平面线形设计直线—缓和曲线—圆曲线—缓和曲线—直线城市道路平面线形设计直线—圆曲线—直线4、道路平面线形要素行驶中汽车的导向轮与车身纵轴之间的关系→汽车行驶轨迹角度为零→曲率为零→直线角度为常数→曲率为常数→圆曲线角度为变数→曲率为变数→缓和曲线现代道路平面线形正是由上述三种基本线形构成的,称为平面线形三要素。
二、直线1、优点线形直捷,布设方便,行车视距良好,行车平稳2、缺点不能适应地形变化,不便于避让障碍,直线过长容易使驾驶员产生麻痹而放松警惕,发生行车事故,夜间行车时,对向行车灯光眩目不利安全(一)直线运用1、直线的最大长度在城镇及附近或其它景色有变化的地点,大于20V是可以接受的,在景色单调的地点最好控在在20V以内2、直线的最小长度当V≥60km/h时,同向曲线的直线最小长度为6V,反向曲线的最小长度不小于2V3、注意的问题长直线或长下坡尽头的平曲线,必须采取设置标志、增加路面抗滑能力等安全措施长直线上坡不宜过长,直线上的纵坡一般应小于3%长直线应与大半径凹曲线配合为宜(二)采用长直线线形应注意的问题1、长直线宜与大半径凹竖曲线组合使用2、避免“断背曲线”三、圆曲线1、优点布设方便,能很好地适应地形,避让障碍,与地形配合得当可获得圆滑、舒顺、美观的路线,又能降低工程造价使行车景观不断变化,使驾驶员保持适度的警惕,增加行车安全性,也可起到诱导行车视线的作用2、注意的问题半径不可过小而影响行车安全(一)圆曲线的平面布设1、圆曲线上技术代号JD—交点(转角点)ZY—直圆(圆曲线起点)QZ—曲中(圆曲线中点)YZ—圆直(圆曲线终点)(二)圆曲线的几何要素及主点桩号里程计算1、几何要素2、曲线主点桩号里程计算3、曲线主点桩计算校核(三)圆曲线半径1、汽车在圆曲线路段行驶时会产生离心力F2、曲线半径指标(四)横向力系数μ的取值1、意义横向力系数表示单位车重所受到的横向力(离心力)其值越大对行车越不利2、取值大小的决定因素行车安全:确保行车不产生横向滑移操作方便、行车经济行车平稳、舒适3、取值一般取为控制值(五)公路圆曲线最小半径1、三种平曲线最小半径一般最小半径:通常情况下推荐采用的最小半径值极限最小半径能保证按设计速度行驶的车辆安全行驶的最小半径不设超高最小半径当路线的半径大到一定值时,即使汽车在曲线的外侧时,也能获得足够的安全性和很好的舒适性四、缓和曲线1、定义在直线与圆曲线、圆曲线与圆曲线之间设置的曲率连续变化的曲线2、特点易于适应地形,能很好地与汽车行驶轨迹相适应,使线形连续、美观,但缓和曲线计算、布设较繁琐(一)缓和曲线的性质路线设计符合汽车转弯时的行驶轨迹,插入缓和曲线,使整条曲线的曲率形成一个连续变化的过程。
Ch3 道路平面线形设计【本章主要内容】§3-1 平面线形概述§3-2 直线§3-3 圆曲线§3-4 缓和曲线(3h)§3-5 平面线形的组合与衔接§3-6 行车视距§3-7 道路平面设计成果【本章学习要求】掌握平面线型的基本组成要素:直线、圆曲线、缓和曲线的设计标准、影响因素及确定方法、要素计算;行车视距的种类及保证;平面设计的设计成果;了解平面线型的组合设计。
本章重点:缓和曲线设计与计算、平面设计注意事项,难点:缓和曲线。
§3-1 道路平面线形概述基本要求:掌握平面线形的概念,平面线形三要素,了解汽车行驶轨迹对道路线形的要求。
重点:平面线形的概念。
难点:平面线形三要素。
1 平面线形的概念平面线形—道路中线在平面上的水平投影,反映道路的走向。
2 平面线形三要素2.1 汽车行驶轨迹大量的观测和研究表明,行驶中的汽车,其导向抡旋转面与车身纵轴之间的关系对应的行驶轨迹为:1) 角度为0时,汽车的行驶轨迹为直线;2) 角度不变时,汽车的行驶轨迹为圆曲线;3) 角度匀速变化时,汽车的行驶轨迹为缓和曲线。
行驶中的汽车,其轨迹在几何性质上有以下特征:1)轨迹是连续和圆滑的;2)曲率是连续的;3)曲率的变化是连续的。
直线一圆曲线一直线符合第(1)条规律直一缓一圆一缓一直符合第(1)、(2)条规律整条高次抛物线可能符合全部规律,但计算困难,测设麻烦。
2.2平面线形要素直线、圆曲线、缓和曲线称为平面线形的三要素。
§3-2 直线基本要求:了解直线的使用特点和适用条件;掌握直线的设计标准及计算。
重点:直线的设计标准。
难点:路线方位角、转角的计算。
1 直线的特点1.1 以最短的矩离连接两目的地;1.2 线形简单,容易测绘;1.3 长直线,行车安全性差;1.4 山区、丘陵区难与地形与周围环境协调。
2 设计标准2.1直线最大长度1)限制理由2)直线最大长度:20V。
道路工程平面线性设计方案一、前言随着城市化的加速发展和交通需求的增加,道路交通建设成为了城市建设的重要组成部分。
道路工程平面线性设计是一个巨大的系统工程,它涉及到道路的线型设计、路基设计、绿化设计、交通标线和交通信号等方面的内容。
本文将主要介绍道路工程平面线性设计的相关内容,力求为城市道路交通建设提供参考。
二、道路工程平面线性设计概述道路工程平面线性设计是指根据道路的功能等级、交通量、速度要求、地形及地质条件等,结合环保、城市规划等因素,设计道路路线、横断面及路基及相关附件。
其目标是使得道路具有适当的线型、横断面及路基,适应城市发展和交通需求,提高道路的运输能力、安全性和舒适性。
道路线性设计包括道路的纵向线型设计和横向线型设计,其基本内容包括道路线型框架选择、长度与坡度的设计、曲线半径的选择、红线标定等。
而道路横断面设计则包括了路基宽度、坡度、路面净宽、路基宽度等方面。
三、道路线型框架选择线型框架是指一条道路在水平、垂直和平面几何中的组成结构。
道路的线型框架选择直接关系到道路的运输能力、安全性和舒适性。
根据《公路工程设计规范》(GB50153-2008)的要求,一般应优先选择直线、水平曲线和缓和曲线组成的线型框架。
四、长度与坡度的设计道路纵向线型设计中,长度与坡度的设计是一个至关重要的环节。
根据道路设计的长度与坡度要求,可确定车辆的行驶速度和通过能力,提高道路的运输能力和通过能力。
在设计中应合理设置匝道和超高,使交通能够流畅通过。
五、曲线半径的选择曲线半径是指道路中弯曲部位的曲率半径,对道路的安全性和舒适性有着重要影响。
通常情况下,曲线半径越大,车辆行驶的舒适性就越好,而曲线半径越小,则车辆的转弯半径更小、速度更慢。
六、红线标定红线标定是指根据地形、规划、环保等因素的要求,将地界内的用地界定出来的线。
红线标定对道路的线型设计具有重要影响。
其确定应充分考虑周边环境的变化,合理设置红线,使得道路线型设计更加合理。
一、道路平面线型概述一、路线道路:路基、路面、桥梁、涵洞、隧道和沿线设施构成的三维实体。
路线:是指道路中线的空间位置。
平面图:路线在水平面上的投影。
纵断面图:沿道路中线的竖向剖面图,再行展开。
横断面图:道路中线上任意一点的法向切面。
路线设计:确定路线空间位置和各部分几何尺寸。
分解成三步:路线平面设计:研究道路的基本走向及线形的过程。
路线纵断面设计:研究道路纵坡及坡长的过程。
路线横断面设计:研究路基断面形状与组成的过程。
二、汽车行驶轨迹与道路平面线形(一)汽车行驶轨迹二、直线一、直线的特点1.优点:①距离短,直捷,通视条件好。
②汽车行驶受力简单,方向明确,驾驶操作简易。
③便于测设。
2.缺点①线形难于与地形相协调②过长的直线易使驾驶人感到单调、疲倦,难以目测车间距离。
③易超速二. 最大直线长度问题:《标准》规定:直线的最大与最小长度应有所限制。
德国:20V(m)。
美国:3mile(4.38km)我国:暂无强制规定景观有变化≧20V;<3KM景观单调≦ 20V公路线形设计不是在平面线形上尽量多采用直线,或者是必须由连续的曲线所构成,而是必须采用与自然地形相协调的线形。
采用长的直线应注意的问题:公路线形应与地形相适应,与景观相协调,直线的最大长度应有所限制,当采用长的直线线形时,为弥补景观单调的缺陷,应结合具体情况采取相应的技术措施。
(1)直线上纵坡不宜过大,易导致高速度。
(2)长直线尽头的平曲线,设置标志、增加路面抗滑性能(3)直线应与大半径凹竖曲线组合,视觉缓和。
(4)植树或设置一定建筑物、雕塑等改善景观。
三、直线的最小长度直线的长度:前一个曲线终点到下一个曲线起点之间的距离。
YZ(ZH)-ZH(ZY) 之间的距离点击☞工程资料免费下载1.同向曲线间的直线最小长度同向曲线:指两个转向相同的相邻曲线之间连以直线而形成的平面曲线《规范》:当V≥60km时,Lmin≧6V;当V≤40km时,参考执行直线短,易产生是反向曲线的错觉,再短,易将两个曲线看成是一个曲线-断背曲线–操作失误-事故2.反向曲线间的直线最小长度反向曲线:指两个转向相反的相邻曲线之间连以直线而形成的平面曲线《规范》规定: V≥60km时:不小于2V。
--考虑超高加宽的需要。
设置缓和曲线时,可构成S形曲线;V≤40km时:参考执行三、汽车行驶的横向稳定性与圆曲线半径1.汽车在平曲线上行驶时力的平衡受力分析:横向力X——失稳竖向力Y——稳定离心力作用点:汽车重心,方向:水平背离圆心。
离心力F与汽车重力G分解:X--平行于路面的横向力Y--垂直于路面的竖向力,由于路面横向倾角α一般很小,则sinα≈tgα=ih,cosα≈1,其中ih称为横向超高坡度,采用横向力系数来衡量稳定性程度,其意义为单位车重的横向力,即(注:u越大,行车越不稳定)2.横向倾覆条件分析横向倾覆:汽车在平曲线上行驶时,由于横向力的作用,使汽车绕外侧车轮触地点产生向外横向倾覆。
临界条件:倾覆力矩=稳定力矩。
横向倾覆平衡条件分析:倾覆力矩:X·hg稳定力矩:3.横向滑移条件分析横向滑移:平曲线上,因横向力的存在,汽车可能产生横向滑移。
产生条件:横向力大于轮胎与路面的横向附着力。
极限平衡条件:横向滑移稳定条件:4.横向稳定性的保证横向稳定性主要取决于:μ的大小。
汽车重心较低,一般b≈2hg,而h<0.5,即汽车在平曲线上行驶时,先滑移,后倾覆。
保证不产生横向滑移,即可保证横向稳定性。
保证横向稳定性的条件:侧翻示例:四、圆曲线道路不论转角大小均应设平曲线来实现路线方向的改变一、圆曲线的特点点击☞工程资料免费下载①圆曲线半径R=常数,曲率1/R=常数,易测设计算。
②对地形、地物、环境的适应能力强。
③多占用车道宽。
④视距条件差(R小时)-路堑遮挡二、圆曲线半径(一)计算公式与因素根据汽车行驶在曲线上力的平衡式计算曲线半径:当设超高时:式中:V——计算行车速度,(km/h);μ——横向力系数;ih——超高横坡度;i1——路面横坡度。
不设超高时:1.横向力系数μ对行车的影响及其值的确定:(1)危及行车安全汽车轮胎不在路面上滑移,要求:与车速、路面种类及状态、轮胎状态等有关;干燥路面: 0.40~0.80,潮湿路面: 0.25~0.40。
结冰和积雪:<0.2,冰面:0.06(不加防滑链)。
(2)增加驾驶操纵的困难在横向力作用下,轮胎会产生横向变形,使轮胎的中间平面与轮迹前进方向形成一个横向偏移角;影响操控性。
(3)增加燃料消耗和轮胎磨损μ使车辆的燃油消耗和轮胎磨损增加。
(4)旅行不舒适μ值的增大,乘车舒适感恶化。
当μ〈0.10时,不感到有曲线存在,很平稳;当μ= 0.15时,稍感到有曲线存在,尚平稳;当μ= 0.20时,己感到有曲线存在,稍感不稳定;当μ= O.35时,感到有曲线存在,不稳定;当μ= 0.40时,有倾车的危险感,非常不稳定,美国AASHTO认为:V≤70km/h时μ=0.16,V=80km/h时μ= 0.12。
μ的舒适界限,由0.10到0.16随行车速度而变化,设计中对高、低速路可取不同的数值。
2.关于最大超高:离心力可设“超高”来“缓解”,但也不能超高太大,可能有停驶车辆,因此式中:ihmax——允许的超高值——一年四季中路面最小的横向摩阻系数《标准》规定:高速公路、一级公路:不应大于10%,其它各级公路:不应大于8%。
在积雪冰冻地区:不宜大于6%。
(二)最小半径的计算最小半径的实质:①横向力u≦摩阻力φh,②乘车人感觉良好。
根据不同取值半径分为:1.极限最小2.一般最小3.不设超高最小1.极限最小半径是各级公路采用最大超高imax和允许的最大横向摩阻系数下保证安全行车的最小允许半径。
ihmax=8%,φh=0.1-0.172.一般最小半径是各级公路采用允许超高ih和横向摩阻φh下保证安全行车的最小允许半径。
ih=6-8%,φh=0.05-0.063.不设超高的最小半径圆曲线半径大于一定数值时,可以不设置超高,而允许设置等于直线路段路拱的反超高。
ih=-0.015,φh=0.035-0.040;ih=-0.025,φh=0.040-0.0504.最小半径指标的应用最小半径指标4.最小半径指标的应用(1)在不得已情况下方可使用极限最小半径;(2)当地形条件许可时,应尽量采用大于一般最小半径的值;(3)有条件时,最好采用不设超高的最小半径。
(4)选用曲线半径时,应注意前后线形的协调,不应突然采用小半径曲线;(5)长直线或线形较好路段,不能采用极限最小半径。
(6)从地形条件好的区段进入地形条件较差区段时,线形技术指标应逐渐过渡,防止突变。
(三)圆曲线最大半径选用圆曲线半径时,在与地形等条件相适应的前提下应尽量采用大半径。
但半径大到一定程度时:1.判断上的错误反而带来不良后果,2.增加无谓计算和测量上的麻烦。
《规范》规定圆曲线的最大半在不宜超过10000 m。
(四)圆曲线最小长度Lmin>3v(m/s)---三秒行车五、缓和曲线一、缓和曲线的作用与性质(一)缓和曲线的作用1.曲率连续变化,便于车辆行驶2.离心加速度逐渐变化,旅客感觉舒适3.超高横坡度逐渐变化,行车更加平稳4.与圆曲线配合得当,增加线形美观(二)缓和曲线的性质二、回旋线作为缓和曲线回旋曲线、三次抛物线和双纽线线形比较:回旋曲线、三次抛物线和双纽线在极角较小(5°~6°)时,几乎没有差别。
随着极角的增加,三次抛物线的长度比双纽线的长度增加的较快,而双纽线的长度又比回旋线的长度增加得快些。
回旋线的半径减小得最快,而三次抛物线则减小的最慢。
从保证汽车平顺过渡的角度看,三种曲线都可以作为缓和曲线。
此外,也有使用n次(n≥3)抛物线、正弦形曲线、多圆弧曲线作为缓和曲线的。
但世界各国使用回旋曲线居多,我国《标准》推荐的缓和曲线也是回旋线。
满足乘车舒适感的缓和曲线最小长度:我国公路计算规范一般建议as≤0.62.超高渐变率适中由于缓和曲线上设有超高缓和段,如果缓和段太短,则会因路面急剧地由双坡变为单坡而形成一种扭曲的面,对行车和路容均不利。
《规范》规定了适中的超高渐变率,由此可导出计算缓和段最小长度的公式:式中:B——旋转轴至行车道(设路缘带时为路缘带)外侧边缘的宽度;Δi——超高坡度与路拱坡度代数差(%);p ——超高渐变率,即旋转轴线与行车道外侧边缘线之间的相对坡度。
3.行驶时间不过短缓和曲线不管其参数如何,都不可使车辆在缓和曲线上的行驶时间过短而使司机驾驶操纵过于匆忙。
一般认为汽车在缓和曲线上的行驶时间至少应有3s《标准》按行驶时间不小于3s的要求制定了各级公路缓和曲线最小长度。
(二)回旋曲线参数的确定在一般情况下,特别是当圆曲线半径较大时,车速较高时,应该使用更长的缓和曲线。
回旋线参数表达式: A2 = R·Ls从视觉条件要求确定A:考察司机的视觉,当回旋曲线很短,其回旋线切线角(或称缓和曲线角)β在3°左右时,曲线极不明显,在视觉上容易被忽略。
回旋线过长β大于29°时,圆曲线与回旋线不能很好协调。
适宜的缓和曲线角是β=3°~29°。
由β0=3°~29°推导出合适的A值:将β0=3°和β0=29°分别代入上式,则A的取值范围为:(三)缓和曲线的省略在直线和圆曲线间设置缓和曲线后,圆曲线产生了内移,其位移值为p,在Ls一定的情况下,p与圆曲线半径成反比,当R大到一定程度时,p值将会很小。
这时缓和曲线的设置与否,线形上已经没有多大差异。
一般认为当p≤0.10时,即可忽略缓和曲线。
如按3s行程计算缓和曲线长度时,若取p=0.10,则不设缓和曲线的临界半径为:(三)缓和曲线的省略由上表可知,设缓和曲线的临界半径比不设超高的最小半径小。
考虑到缓和曲线还有完成超高和加宽的作用,应按超高控制。
《标准》规定:当公路的平曲线半径小于不设超高的最小半径时,应设缓和曲线。
四级公路可不设缓和曲线。
《规范》规定可不设缓和曲线的情况:(1)在直线和圆曲线间,当圆曲线半径大于或等于《标准》规定的“不设超高的最小半径”时;(2)半径不同的同向圆曲线间,当小圆半径大于或等于“不设超高的最小半径”时;(3)小圆半径大于表7.4.2中所列半径,且符合下列条件之一时:小圆曲线按规定设置相当于最小缓和曲线长度的回旋线时,其大圆与小圆的内移值之差不超过0.1m设计速度≥80km/h时,大圆半径与小圆半径之比小于1.5设计速度< 80km/h时,大圆半径与小圆半径之比小于2直线计算:四、圆曲线几何元素:五、曲线主点里程桩号计算:计算基点为交点里程桩号,记为JD,ZY=JD-TYZ=ZY+LQZ=ZY+L/2JD=QZ+J/2六、回旋线回旋线的应用范围:缓和曲线起点:回旋线的起点,l=0,r=∞;缓和曲线终点:回旋线某一点,l=Ls,r=R。