有理数的乘方讲义全
- 格式:doc
- 大小:90.50 KB
- 文档页数:8
有理数的加减乘除乘方运算一.加减运算 有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时,和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数减法法则:减去一个数,等于加这个数的相反数. .有理数加法运算律:①加法交换律:两个加数相加,交换加数的位置,和不变.②加法结合律:三个数加,先把前两个数相加,或者先把后两个数相加,和不变.有理数加减混合运算的步骤:①把算式中的减法转化为加法; ②省略加号与括号;③利用运算律及技巧简便计算,求出结果. 加减混合运算技巧:把符号相同的加数相结合; 把和为整数的加数相结合;把分母相同或便于通分的加数相结合; 既有小数又有分数的运算要统一后再结合; 把带分数拆分后再结合; 分组结合; 先拆项后结合. 例题: 1.计算:(1)4+(﹣6); (2)(﹣116)+(-23);()a b a b -=+-a b b a +=+()()a b c a b c ++=++(3)-2-(﹣3.5); (4)|(﹣7)+(﹣2)|-(﹣3);(5)[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5).2.计算:(1)﹣2.4+3.5﹣4.6+3.5; (2)(−478)−(−512)+(−414)−(+3178);(3)−200956−(+200823)−(−401834)+(−112);(4)1+(﹣2)+3+(﹣4)…+2015+(﹣2016)+2017+(﹣2018). 练习: 1.计算:(1)(﹣61)﹣(﹣71)﹣|﹣8|. (2)3﹣[(﹣3)﹣(+12)].(3)2.75﹣(﹣3)﹣(+0.5)+(﹣7).2.计算:(1)﹣3+(﹣4)﹣(﹣5); (2)1+(﹣2)+|﹣2|﹣5;(3)﹣5﹣(+11)+; (4).二. 乘除运算有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同相乘,都得.有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 多个有理数相乘:(1)几个不是的数相乘,负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数,即“奇负偶正”.(2)几个数相乘,如果其中有因数为,那么积等于. 有理数乘法运算律:(1)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.00000ab ba(2)乘法结合律:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.(3)分配律:一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.倒数的概念:乘积是的两个数互为倒数.整除:一个整数a除以一个不为0的整数b,商是整数,而没有余数,则我们说a能被b整除(或说b能整除a).例题:1.计算:(1)(﹣2)×(﹣8);(2)(﹣8)÷(﹣1.25);(3)11÷17×(−411);(4)(−1.5)×45÷(−25)×34.2.计算:()()ab c a bc=()a b c ab ac+=+1(1)37×(﹣45)×712×58; (2)292324÷(﹣112);(3)﹣5×(﹣115)+13×(﹣115)﹣3×(﹣115).练习:1.﹣125×0.42÷(﹣7)2.观察下列解题过程. 计算:(﹣)÷(1﹣﹣).解:原式=(﹣)÷1﹣(﹣)÷﹣(﹣)÷=(﹣)×﹣(﹣)×﹣(﹣)×=﹣+1+ =2你认为以上解题是否正确,若不正确,请写出正确的解题过程.3.计算:(1)(﹣)×(﹣3)÷(﹣1)÷3; (2)(﹣8)÷×(﹣1)÷(﹣9). 三.乘方乘方的概念:求个相同因数的积的运算叫做乘方,乘方的结果叫做幂.(1)一般地,个相同的因数相乘,即,记作,读作“的次方”;(2)在中,叫做底数,叫做指数;(3)当看作的次方的结果时,读作的次幂. 注意:,其底数为,;,其底数为,;,其底数为,; ,其底数为,; ,带分数的乘方运算,一定要先化成假分数后再运算. 一个数可以看作这个数本身的一次方,例如,就是,指数通常省略不写. 正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数.特别的,一个数的二次方,也称为这个数的平方;一个数的三次方,也称为这个数的立方. 科学记数法:把一个大于的数表示成的形式(其中,是正整数). 用科学记数法表示一个位整数,其中的指数是,的指数比整数的位数少. 万,亿 . 例题:n n a n a a a a⋅⋅⋅⋅⋅⋅⋅个n a a n n a a n n a a n a n ()224-=()2-()()()22224-=-⨯-=224-=-2()()222121224-=-⨯=-⨯⨯=-239=749⎛⎫⎪⎝⎭372333977749⎛⎫=⨯= ⎪⎝⎭239=77323339777⨯==221391224⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭51511010n a ⨯110a ≤<n n 101n -101410=810=1.一张纸的厚度为0.09mm(毫米),将这张纸连续对折8次,这时它的厚度是多少?假设连续对折始终是可能的,那么对折15次后,所得的厚度是否可以超过你的身高?先猜猜,然后计算出实际答案.2.若|x−2|+(y−2)2=0,则y x=__________.33.德国科学家贝塞尔推算出天鹅座第61颗暗星距地球102000000000000km,比太阳到地球的距离还远690000倍.(1)用科学记数法表示出暗星到地球的距离;(2)用科学记数法表示出690000这个数;(3)如果光的速度大约是300000km/s,那么你能计算出从暗星发出的光线到地球需要多少秒吗?用科学记数法表示出来.练习:1.计算:﹣0.52+﹣|﹣22﹣4|﹣×.2.计算:﹣22×﹣27×﹣(﹣1)2015.3.﹣23+(﹣3)2﹣32×(﹣2)2.4.﹣22﹣(﹣3)3﹣(﹣2)﹣|﹣3|3.综合练习:1.若|a|=2,b=﹣3,c 是最大的负整数,a+b ﹣c 的值为_______.2.2.5+(﹣214)﹣1.75+(﹣12)=____.3.某外贸企业为参加2016年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为___________.4.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第四次后剩下的绳子的长度是_______ 米;第n 次后剩下的绳子的长度是_______ 米.5.将一张长方形的纸按如图对折,对折时每次折痕与上次的折痕保持平行,第一次对折后可得到1条折痕(图中虚线),第二次对折后可得到3条折痕,第三次对折后得到7条折痕,那么第10次对折后得到的折痕比第9次对折后得到的折痕多_______条.6.计算:(﹣0.5)+|0﹣614|﹣(﹣712)﹣(﹣4.75).7.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,﹣3,+11,﹣6,﹣8,+6,+15. (1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远? (2)养护过程中,最远处离出发点有多远?(3)若汽车行驶每千米耗油量为a 升,求这次养护小组的汽车共耗油多少升? 8.计算下列各式:(1)(﹣14)×(﹣100)×(﹣6)×(0.01); (2)91819×15;(3)﹣100×18﹣0.125×35.5+14.5×(﹣12.5%);(4)(1﹣2)×(2﹣3)×(3﹣4)×(4﹣5)×…(19﹣20).9.已知(x+3)2+|3x+y+m|=0中,y 的平方等于它本身,求m 的值.。
第1章有理数1.5 有理数的乘方学习要求1、理解有理数乘方的意义,会进行有理数的乘方运算,并体会乘方结果的变化.2、掌握科学记数法的形式和要点,能按照要求使用科学记数法.3、掌握有理数混合运算的法则、顺序和运算律,能熟练、合理地进行有理数的加、减、乘、除、乘方的混合的运算.4、进一步巩固有理数的混合运算,在运算中使用简单推理,提高运算能力.知识点一:有理数乘方的意义例1.对乘积(﹣3)×(﹣3)×(﹣3)×(﹣3)记法正确的是()A.﹣34B.(﹣3)4C.﹣(+3)4D.﹣(﹣3)4变式1.(﹣3)2的值是()A.﹣9 B.9 C.﹣6 D.6变式2.把下列各式用幂的形式表示,并说出底数和指数:(1)(﹣3)×(﹣3)×(﹣3);(2).变式3.把下列各幂还原成连乘的形式:(1)(﹣7)4;(2)(﹣a3)5;(3)﹣a6;(4)(x﹣y)3.知识点二:有理数乘方的运算法则例2.计算:(1)(﹣3)4(2)﹣34(3)(4)(5)(﹣1)2011.变式1.计算.(1)53;(2)(﹣3)4;(3);(4);(5)1.52.变式2.计算:(1)﹣(﹣3)3;(2)(﹣)2;(3)(﹣)3.变式3.计算(﹣1)2014+(﹣1)2015的结果是()A.0 B.﹣1 C.﹣2 D.2变式4.简便计算:(﹣9)×(﹣)6×(1)3.变式5.计算:﹣32×(﹣)6×(1﹣)3.知识点三:有理数的混合运算顺序例3.计算:(1)(﹣2)2•(﹣3)2;(2);(3);(4)变式1.计算(1)(﹣3)4﹣(﹣3)3(2)|﹣22﹣3|﹣(﹣9)÷(﹣3)(3)(4)﹣(﹣2)2﹣3÷(﹣1)3+(﹣1)3×(﹣2)4.变式2.计算:(1)64÷(﹣2)4;(2)﹣22×(﹣3)2;(3)(﹣2)3×(﹣3)2;(4).变式3.计算:(1)﹣32﹣(﹣2)2;(2)(﹣10)2+[(﹣4)2﹣(3+32)×2];(3)(﹣1)4+(﹣23)÷×(﹣)3;(4)(﹣2)2010+(﹣2)2011;(5)(﹣0.25)2010×42011.变式4.计算题(1)﹣(﹣2)4(2)(3)(﹣1)2003(4)﹣13﹣3×(﹣1)3(5)﹣23+(﹣3)2(6)﹣32÷(﹣3)2(7)(﹣2)2﹣2+(﹣2)3+23(8)(9)(10)﹣(﹣2)2﹣3÷(﹣1)3+0×(﹣2)3变式5.计算(1);(2);(3).变式6.计算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)﹣0.5﹣(﹣3)+2.75﹣7;(3)(+﹣)×(﹣36);(4)﹣14﹣(﹣5)×+(﹣2)3÷|﹣32+1|知识点四:科学记数法例4.2010年上海世博会即将举行,据有关方面统计,到时总共参与人数将达到4640万人次,其中4640万用科学记数法可表示为()A.0.464×109B.4.64×108C.4.64×107D.46.4×106变式1.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册,将2100000用科学记数法表示为()A.0.21×108B.2.1×106C.2.1×107D.21×106变式2.据报道,北京市今年开工及建设启动的8条轨道交通线路,总投资约82 000 000 000元.将82 000 000 000 用科学记数法表示为()A.0.82×1011 B.8.2×1010C.8.2×109D.82×109变式3.地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11×104B.1.1×104C.1.1×105D.0.11×106变式4.国家体育场“鸟巢”建筑面积258000平方米,将258000用科学记数法表示应为()A.258×103B.2.58×104C.2.58×105D.0.258×106变式5.地球距太阳的距离是150000000km,用科学记数法表示为1.5×10n km,则n的值为()A.6 B.7 C.8 D.9变式6.2014年巴西世界杯在南美洲国家巴西境内12座城市中的12座球场内举行,本届世界杯的冠军将获得3500万美元的奖励,将3500万用科学记数法表示为()A.3.5×106B.3.5×l07C.35×l06D.0.35×l08知识点五:近似数例5.用四舍五入法按要求取近似值:(1)99.5(精确到个位)(2)28343(精确到千位)(3)50673(精确到百位)变式1.下列各个数据中,哪些数是准确数?哪些数是近似数?(1)小琳称得体重为38千克;(2)现在的气温是﹣2℃;(3)1m等于100cm;(4)东风汽车厂2000年生产汽车14 500辆.变式2.下列各题中的数据,哪些是准确数?哪些是近似数?(1)通过第三次全国人口普查得知,山西省人口总数为3297万人;(2)生物圈中,已知绿色植物约有30万种;(3)某校有1148人;(4)由于我国人口众多,人均森林面积只有0.128公顷;(5)这个路口每分钟有3人经过;(6)地球表面积约5.1亿平方千米.变式3.用四舍五入法,按要求对下列各数取近似数:(1)地球上七大洲的总面积约为149480000平方千米(精确到10000000平方千米)(2)某人一天需要饮水1890毫升(精确到1000毫升)(3)人的眼睛可看见的红光的波长为0.000077厘米(精确到0.00001厘米)拓展点一:利用乘方解决实际问题例6.去年某地高新技术产品进出口总额为5287.8万美元,比上年增长30%,如果今年仍按此比例增长,那么今年该地高新技术产品进出口总额可达到多少万美元(结果精确到万位)?变式1.向月球发射无线电波,无线电波到月球并返回地面需2.57s,已知无线电波每秒传播3×105km,求地球和月球之间的距离.(结果保留三个有效数字)拓展点二:确定近似数的精确度例7.指出下列各近似值精确到哪一位.(1)56.3(2)5.630(3)5.63×106(4)5.630万(5)0.017(6)3800.变式1.用四舍五入法对下列各数按括号中的要求取近似值:(1)2.768(精确到百分位);(2)9.403(精确到个位);(3)8.965(精确到0.1);(4)17 289(精确到千位).变式2.下列由四舍五入法得到的近似数,各精确到哪一位?(1)127.32;(2)0.040 7;(3)20.053;(4)230.0千;(5)4.002.变式3.下列近似数各精确到哪一位?(1)3.14(2)0.02010(3)9.86万(4)9.258×104(5)3.9×103(6)3.90×105.变式4.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到千分位)C.0.05(精确到百分位)D.0.0502(精确到0.0001)拓展点三:科学记数法与近似数的综合应用例8.某工人执行爆破任务时,点燃导火索后往100m外的安全地带奔跑的速度为7m/s,已知导火索燃烧的速度为0.11m/s,求:导火索的长度至少多长才能保证安全?(精确到0.1m)变式1.人体中血液的重量约占人体重量的,小丽的体重是40千克,求她体内的血液约重多少千克?(结果保留一位小数)变式2.2013年12月14日21时11分,嫦娥三号成功登陆月球.北京飞控中心通过无线电波控制,将“嫦娥三号”着陆器与巡视器成功分离的画面传回到大屏幕上.已知无线电波传播速度为3×105km/s,无线电波到月球并返回地面用2.57s,求此时月球与地球之间的距离(精确到1000km).变式3.用激光技术测得地球和月球之间的距离为377985654.32米,请按要求分别取得这个数的近似值,并分别写出相应的有效数字.(1)精确到千位;(2)精确到千万位;(3)精确到亿位.变式4.1984年4月8日,我国第一颗地球同步轨道卫星发射成功.所谓地球同步轨道卫星,是指:卫星距离地球的高度约为36 000千米,卫星的运行方向与地球自转方向相同、运行轨道为位于地球赤道平面上圆形轨道、运行周期与地球自转一周的时间相等,即24小时,卫星在轨道上的绕行速度约为每秒千米.(1)现在知道地球的半径约为6 400千米,你能将上面的空填上吗?(2)写出你的计算过程.(结果保留一位小数)拓展点四:用分段法进行有理数的混合运算例9.(﹣0.125)2006×82005=.拓展点五:利用乘方进行大小比较例10.比较大小:3223.变式1.(1)问题:你能比较20042005和20052004的大小吗?为了解决这个问题,首先写出它的一般形式,即比较n n+1和(n+1)n的大小(n是正整数),然后我们从分析n=1,n=2,n=3,…这些简单情况入手,从中发现规律,经过归纳,猜想出结论.通过计算,比较下列各组数的大小(在横线上填写“>”、“<”、“=”号):1221,2332,3443,4554,5665,…(2)从第(1)题的结果经过归纳,可以猜想出n n+1和(n+1)n的大小关系是什么?(3)根据上面的归纳猜想,尝试比较20042005和20052004的大小.变式2.化简并在数轴上分别画出表示下列各数的点,并把各数用“<”号连接起来.(﹣1)2016,+(﹣3.5),﹣(﹣1.5),﹣|﹣2.5|,﹣22拓展点六:近似数真值的取值范围例11.近似数1.50所表示的准确数a的范围是()A.1.55≤a<1.65 B.1.55≤a≤1.64C.1.495≤a<1.505 D.1.495≤a≤1.505变式1.近似数15.60,它表示大于或等于,而小于的数.变式2.近似数1.70所表示的准确数A的范围是.变式3.按要求取近似值:37.49≈(精确到0.1),这个近似数表示大于或等于,而小于的数.拓展点七:偶次方的非负性例12.若|a﹣1|+(b+3)2=0,则b a=()A.﹣3 B.﹣1 C.3 D.1变式1.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6 D.变式2.若x,y为实数,且满足|x﹣3|+(y+3)2=0,则()2016的值是()A.4 B.3 C.2 D.1变式3.若(a+1)2+|b﹣2|=0,求a2000•b3的值.变式4.已知|2x+1|+(y﹣2)2=0,求(xy)2011的值.拓展点八:定义新运算例13.用“☆”、“★”定义新运算:对于任意有理数a、b,都有a☆b=a b和a★b=b a,那么(﹣3☆2)★1=.变式1.现规定一种新的运算“⊙”:a⊙b=a2+b2﹣1,如2⊙3=22+32﹣1=12,则(﹣3)⊙4=.变式2.现定义一种新运算,对任意有理数x,y都有x⊕y=x2﹣y,例如3⊕2=32﹣2=7,则44⊕(﹣81)=.变式3.从三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作C32==3,一般地,从m个元素中选取n个元素组合,记作:C m n=.例:从7个元素中选5个元素,共有C75==21种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有种.变式4.对非负有理数数x“四舍五入”到个位的值记为<x>.例如:<0>=<0.48>=0,<0.64>=<1.493>=1,<18.75>=<19.499>=19,….解决下列问题:(1)<π>=(π为圆周率);(2)如果<2x﹣1>=3,则有理数x有最(填大或小)值,这个值为.变式5.阅读:如果一个非负数x四舍五入到个位后得到非负整数为n,记作“x”=n,例如“0.4”=0,“0.6”=1,“1.7”=2等,显然如果“x”=n,则可得n﹣0.5≤x<n+0.5,反过来如果n﹣0.5≤x<n+0.5,则可得“x”=n.根据以上知识,请解决以下问题:(1)当x为非负数,m为非负整数时,请说明“x+m”=m+“x”;(2)求满足3“x”=4x时,所有非负实数x的值.拓展点九:规律探究问题例14.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为220的末位数字是()A.2 B.4 C.6 D.8变式1.观察下列式子:12﹣02=1+0;22﹣12=2+1=3;32﹣22=3+2=5;…,写出第10项的算式.变式2.阅读材料:求1+2+22+23+24+…+22017首先设S=1+2+22+23+24+ (22017)则2S=2+22+23+24+25+ (22018)②﹣①得S=22018﹣1即1+2+22+23+24+…+22017=22018﹣1以上解法,在数列求和中,我们称之为:“错位相减法”1+3+32+33+34+…+32017=.变式3.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…猜想:13+23+…+n3(n是正整数)=.易错点一:混淆(-a)2与-a2的值例15.﹣43的计算结果是()A.64 B.12 C.﹣12 D.﹣64变式1.下列各组的运算结果相等的是()A.34和43B.(﹣3)5和﹣35C.﹣32和(﹣3)2D.和变式2.下列各组中两个式子的值相等的是()A.32与﹣32B.(﹣2)2与﹣22C.|﹣2|与﹣|+2| D.(﹣2)3与﹣23变式3.下列各数与﹣6相等的()A.|﹣6| B.﹣|﹣6| C.﹣32D.﹣(﹣6)变式4.下列算式中,与(﹣3)2相等的是()A.﹣32B.(﹣3)×2 C.(﹣3)×(﹣3)D.(﹣3)+(﹣3)易错点二:混淆乘方和乘法例16.=;()3=;(﹣)3=;﹣=.易错点三:对科学记数法理解不够例17.将下列用科学记数法表示的数还原(1)2.23×103;(2)3.0×108;(3)6.03×105.变式1.用小数表示下列各数:(1)8.5×10﹣3(2)2.25×10﹣8(3)9.03×10﹣5.变式2.用科学记数法表示的数3.61×108.它的原数是()A.36100000000 B.3610000000 C.361000000 D.36100000变式3.今年1月中旬以来的低温、雨雪、冰冻天气,造成全国多个地区发生不同程度的灾害,直接经济损失已达到了5.379×1010元,将此数据用亿元表示为()A.0.5379亿元B.5.379亿元C.53.79亿元D.537.9亿元变式4.用小数表示3.56×10﹣7为()A.0.000000356 B.0.0000000356C.0.00000000356 D.0.000000000356易错点四:“0”不能随便去掉例18.把35.89543精确到百分位所得到的近似数为。
有理数的乘除与乘方一、课堂目标1.理解有理数的乘除运算法则,会用法则及运算律进行计算.2.理解有理数乘方的概念,会结合有理数的四则运算法则进行混合运算.二、知识引入小学我们学过正数和0之间的四则运算,比如我们会计算 、、、、、 等等这样的算式;进入初中,正负数的引入导致了数系的扩充、因此初中的计算要分为两部分——符号与绝对值——进行讨论,所有的运算都要先定符号、再定数值;当我们遇到正数与负数、负数与0的四则运算,比如 、 等等,该如何定号和定值呢?通过小学的学习我们知道可以理解为(即个相加),所以;也知道可以理解为的相反数;那么完成下面填空:=__________=__________;__________=__________;__________=__________.填完空你发现有理数乘法计算过程中有什么规律吗?三、知识讲解1. 有理数的乘法有理数乘法法则有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与 相乘,都得 .【运算步骤】先确定积的符号,再求积的绝对值、即把两个因数的绝对值相乘;因数中有 则积为 .【推广】多个数相乘时,先确定积的符号:负因数有奇数个则积为负数、负因数有偶数个则积为正数,再求积的绝对值、即把每个因数的绝对值相乘;因数中有 则积为.(简称:奇负偶正)经典例题1(1)(2)(3)(4)计算: .. ..思路梳理知识点:1、2、3、题目练习11..2.计算:.(1)(2)3.填空:..4.()有理数乘法运算律有理数乘法运算律()乘法交换律:.()乘法结合律:.()乘法分配律:.【易错点津】()乘法交换律和乘法结合律是指因数的位置交换、因数的结合,它们都包含自身符号.()运用乘法分配律时,不要漏乘,并要注意符号,如.经典例题2(1)(2)1.计算:..思路梳理知识点:1、2、3、2.运用简便方法计算:.思路梳理知识点:1、2、3、题目练习21.计算:.2.计算: .(1)3.计算:.4..2. 有理数的除法倒数倒数:乘积是的两个数互为倒数.负倒数:乘积是的两个数互为负倒数.【注意】没有倒数和负倒数.【知识拓展】()根据乘法法则中“同号得正”可知互为倒数的两个数符号相同,即正数的倒数是正数,负数的倒数是负数.()倒数是本身的数只有和,没有倒数.()的倒数可以用表示、负倒数可以用表示.经典例题3的倒数是 ,负倒数是 .思路梳理知识点:1、 2、 3、题目练习3(1)(2)(3)(4)1.求倒数:的倒数是 .的倒数是 .的倒数是 .的倒数是 .2.若两数之积为,则这两数互为 ;若两数之商为,则这两数 ;若两数之积为,则这两数互为 ;若两数之商为,则这两数互为 .有理数的除法与小学学过的除法一样,有理数的除法和乘法也是互逆的;。
有理数的乘方(讲义)➢ 课前预习1. 填空:边长为a 的正方形面积可以表示为_____,它的含义是a ×a ;边长为a 的正方体体积可以表示为____,它的含义是______;类似地,我们可以把2×2×2记作______,2×2×2×2记作______; 2×2×…×2×2(n 个2)记作_______.2. 根据第1题的内容,填空:22=______;23=______;24=______;25=______;26=______;27=______;28=______;29=______;210=______.(-2)2=(-2)×(-2)=4;(-3)3=_____________=______;312⎛⎫-⎪⎝⎭=___________________=______. 3. 四则混合运算顺序:先算________,再算________;同级运算,从左向右进行;如果有括号,先算括号里面的.➢ 知识点睛1. 求几个相同因数乘积的运算,叫做乘方,乘方的结果叫做_____,______叫底数,____叫指数,读作_______________).2. 22=____;23=____;24=____;25=____;26=____;27=____;28=____;29=____;210=____.3. 负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0. 4. 科学记数法的定义:__________________________________________________________________________________.5. 有理数混合运算顺序:先________,再________,最后________;同级运算,从左到右进行;如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.➢ 精讲精练1. 在74中,底数是_____,指数是_______;在513⎛⎫- ⎪⎝⎭中,底数是_____,指数是________. 2. 对比(-4)3和-43,下列说法正确的是( )A .它们的底数相同,指数也相同B .它们底数相同,但指数不相同C .它们所表示的意义相同,但运算结果不相同D .虽然它们底数不同,但运算结果相同 3. 下列计算正确的是( )A .4381-=B .2(6)36--=C .23324-=-D .3225125⎛⎫-=- ⎪⎝⎭4. 下列各组数中,值相等的是( )A .23与32B .22-与2(2)-C .2)3(-与2(3)--D .232⨯与2)32(⨯ 5. 在(-1)3,(-1)2,-22,(-3)2这四个数中,最大的数与最小的数的和等于( ) A .6 B .8C .-5D .5 6. 一个数的平方是16,则这个数是( )A .4B .-4C .±4D .87. 若有理数(3)n -的值是正数,则n 必定是( )A .正数B .奇数C .负数D .偶数8. 下列各式一定成立的是( )A .22()a a =-B .33()a a =-C .22a a -=-D .33a a =-9. 计算:(1)2292343⎛⎫-÷⨯- ⎪⎝⎭;(2)322(2)0.54(2)-⨯-÷-;(3)3332(32)⨯--⨯; (4)235(4)48⎡⎤⎛⎫-⨯-+- ⎪⎢⎥⎝⎭⎣⎦;(5)3116(2)(4)8⎛⎫÷---⨯- ⎪⎝⎭;(6)3222011(2)492⎛⎫⨯---÷ ⎪⎝⎭;(7)22141220.532-÷-÷⨯-;(8)42110.5233⎡⎤-+(1-)⨯⨯-(-)⎣⎦;(9)243213(0.25)232⎛⎫⎛⎫-⨯÷-+-÷ ⎪ ⎪⎝⎭⎝⎭;(10)234100(1)(1)(1)(1)(1)-+-+-+-++-….10. 2019年春节联欢晚会在某网站取得了同时在线人数超34 200 000的惊人成绩,创下了全球单平台网络直播记录,将数34 200 000用科学记数法表示为__________.11. 2018年10月23日,港珠澳大桥正式开通,它是中国乃至当今世界规模最大、标准最高、最具挑战性的跨海桥梁工程,被誉为桥梁界的“珠穆朗玛峰”,仅主体工程的主梁钢板用量就达42 000万千克,相当于60座埃菲尔铁塔的重量.这里的数据42 000万千克可用科学记数法表示为___________千克.12. 下列用科学记数法表示的数据,原来各是什么数?(1)我国是世界四大文明古国之一,拥有五千多年的悠久文化与文明史.她位于亚洲东部,太平洋西岸,陆地面积约9.6×106平方千米,9.6×106的原数为__________________. (2)人体中约有2.5×1013个红细胞,则2.5×1013的原数是__________________________.13.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:14.某自行车厂计划一周生产自行车1 400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况:(单位:辆;超产记为正,减产记为负):(1可知,该厂本周实际生产自行车多少辆?(3)产量最多的一天比产量最少的一天多生产自行车多少辆?(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;不足部分每辆扣20元,那么该厂工人这一周的工资总额是多少元?【参考答案】 ➢ 课前预习1. 2a ;3a ;a a a ⨯⨯;32;42;2n2. 4;8;16;32;64;128;256;512;1 024(3)(3)(3)-⨯-⨯-;-27;111222⎛⎫⎛⎫⎛⎫-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;18- 3. 乘除;加减➢ 知识点睛1. 幂;a n ;a ;n ;a 的n 次方(或“a 的n 次幂”)2. 4;8;16;32;64;128;256;512;1 0244. 一般地,一个大于10的数可以表示成10n a ⨯的形式,其中1≤a <10,n 为正整数,这种记数方法叫做科学记数法 5. 乘方;乘除;加减➢ 精讲精练1. 7;4;13-;52. D3. C4. C5. D6. C7. D8. A9. (1)169-; (2)-8; (3)240;(4)-22; (5)122-; (6)314-; (7)718-;(8)136-;(9)132-; (10)0. 10. 3.42×107 11. 4.2×10812. (1)9 600 000;(2)25 000 000 000 000 13. 赚了,赚了2500元.14. (1)213辆;(2)1 408辆;(3)25辆;(4)84 600元.。
《有理数的乘方》知识全解【课标要求】理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).能运用有理数的运算解决简单的问题.【知识结构】有理数乘方的意义及相关概念有理数乘方的符号法则有理数的混合运算【内容解析】1.有理数乘方的意义:求n个相同因数的积的运算,叫做乘方.2.底数、指数、幂:在a n中,a叫做底数,n叫做指数,a n的结果叫幂.3.a n的读法:a n读作“a的n次方”或“a的n次幂”.4.有理数乘方的书写:底数与同行中其它数字一样大小,指数写在底数的右上角,写小些.负数、分数做底数时,负数、分数要带括号.5.有理数乘方的符号法则:负数的奇数次幂是负数,负数的偶数次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.注意:1的任何次幂都是1,(–1)的奇数次幂等于–1,(–1)的偶数次幂等于1.6.用计算器计算乘方时,指数的转换键是“∧”.7.有理数混合运算的运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.加减是第一级运算,乘除是第二级运算,乘方与开方是第三级运算,运算时,先算高级运算,再算低一级的运算.【重点难点】有理数乘方的意义及运算是本节课的教学重点,本小节的另一个重点是依据运算法则和运算顺序进行有理数的混合运算,教师要精选适量的练习以提升学生的运算能力.有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点.可以实施通过补充一些计算问题和提高题,帮助学生突破难点.【教法导引】1.教师教学应该以学生的认知发展水平和已有的经验为基础,根据新课程标准提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的过程,从而使学生在对数学理解的同时,在思维能力、情感态度和价值观等方面得到进步和发展”的理念,力求“自主探索、动手实践、合作交流”成为学生学习的主要方式.在小学已学的正方形面积,正方体体积的基础上进一步探究棋盘、拉面、细胞分裂等实际问题,在师生的互动中生成对乘方的理解.2.在引入例1之前,创设与例题有关的问题,让学生讨论交流,教师鼓励学生积极发言,为学生提供表现的机会,使学生在这个环节中弄清底数与指数之间的相互关系,认识到“a n等于多少的问题”是可以通过转化为乘法运算来实现的,从中体会转化的思想,为引入例题的学习做好铺垫.3.教师要预设学生的易错点,应强调指出.如–32与(–3)2的区别;底数为负数或分数时的书写要明了;“–1”的幂的特征可以进行归纳;及时纠正学生在运算顺序上的错误等.4.课程标准强调“学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程”.教师在进行本节教学时,要放手学生自己去领悟、归纳、熟练.教师放手学生操作,把课堂还给学生,如在寻找“–2,4,–8,16,–32…的规律是千万让学生自主探索.【学法建议】1.“自主探索、动手实践、合作交流”为学生学习的主要方式.2.要认真观察,仔细比较,善于发现,正确归纳.像–42与(–4)2的区别要细细领悟.3.多动手计算,不能盲目依赖计算器.4.正确理解概念.乘方是一种运算,幂是乘方的结果,底数是相乘时的因数,指数是相乘时因数的个数,指数是1就是指只有一个因数,所以一个数可以看作这个数本身的一次方.5.练习时,要紧扣运算顺序与意义、法则,出现负号时千万多加小心.在进行混合运算时,可以采取多种方法来检验自己的运算结果的正确性.对于比较复杂的运算,先笔算,再用计算器进行验证.。
n 为奇数 --1 n 为偶数 11.5 有理数的乘方授课主题 有理数的乘方教学目的 1、理解有理数乘方的意义;掌握有理数乘方运算;2、经历探索有理数乘方的运算,获得解决问题经验;能确定有理数加、减、乘、除、乘方混合运算的顺序;3、会进行有理数的混合运算;培养并提高正确迅速的运算能力;重、难点 有理数乘方的运算:运算顺序的确定和性质符号的处理;有理数的混合运算;教学内容课程导入本节知识点讲解知识点一、有理数的乘方有理数乘方的概念:一般地,n 个相同因数a 相乘,即个n a a a ⋅⋅⋅⋅,记作na ,读作a 的n 次方. 求n 个相同因数的积的运算,叫作乘方,乘方的结果叫做幂。
在na 中,a 叫做底数,n 叫作指数。
当n a 看作a 的n 次方的结果时,也可读作a 的n 次幂。
特别地,一个数也可以看作这数本身的一次方,如5就是5的一次,即155=,指数为1通常省略不写。
注意:①乘方是一种运算(乘法运算的特例),即求n 个相同因数连乘的简便形式;②幂是乘方的结果,它不能单独存在,即没有乘方就无所谓幂;③乘方具有双重含义:既表示一种运算,又表示乘方运算的结果;④书写格式:若底数是负数、分数或含运算关系的式子时,必须要用小括号把底数括起来,以体现底数的整体性。
拓展:底数为—1,0,1,10,0.1的幂的特性:(1)n -= 0n = (n 为正整数) 1n = (n 为整数) 101000n =⋅⋅⋅⋅⋅⋅ (1后面有____个0), 0.1n =0.00…01 (1前面有______个0)巩固练习1、 如果一个有理数的平方等于(-2)2,那么这个有理数等于( )A 、-2B 、2C 、4D 、2或-22、下列各对数中,数值相等的是( )A 、 -32 与 -23B 、-23 与 (-2)3C 、-32 与 (-3)2D 、(-3×2)2与-3×22 3、 =⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫ ⎝⎛-343 ,=-433 ; 4、计算1、(-7)2;2、-72;3、(-43)4; 4、-(-5)3.本知识点小结本节知识点讲解知识点二、有理数的加、减、乘、除及乘方的运算法则有理数的混合运算顺序:先乘方,再乘除,最后加减.同级运算从左到右进行.如有括号,先做括号里的运算,按小括号、中括号、大括号依次进行.方法规律:(1)有理数运算分三级运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第 三级运算。
有理数的乘除【知识点回顾】有理数的分类,有理数的加减法,绝对值与相反数【知识点介绍】 (一)有理数的乘法(1)两数相乘,同号得正,异号得负,绝对值相乘。
任何数与0相乘仍得0.(2)如果两个有理数的乘积为1,那么称其中一个数是另一个数的倒数,也称这两个数互为倒数。
(3)几个不等于0的数相乘,积的符号由负因数的个数决定。
负因数的个数是奇数时,积的符号为_______;负因数的个数是偶数时,积的符号为_______。
积的绝对值等于各个因数的绝对值的_______。
(4)乘法交换律_________________________________________。
乘法结合律_________________________________________。
乘法对加法的分配律_________________________________。
【例题精讲】1.下列算式中,积为正数的是( ) A .(-2)×(+21) B .(-6)×(-2) C .0×(-1) D .(+5)×(-2) 2.下列说法正确的是( )A .异号两数相乘,取绝对值较大的因数的符号B .同号两数相乘,符号不变C .两数相乘,如果积为负数,那么这两个因数异号D .两数相乘,如果积为正数,那么这两个因数都是正数 3、若两个有理数的和与它们的积都是正数,则这两个数( )A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数4、下列说法正确的是( )A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.-1的倒数是-15、如果x2y250+++=,那么(-x)·y=( )A.100 B.-100 C.50 D.-506、两个有理数的积是负数,和是正数,那么这两个有理数是( )A.都是正有理数 B.都是负有理数C.绝对值大的那个有理数是正数,另一个有理数是负数D.绝对值大的那个有理数是负数,另一个有理数是正数7、a、b互为相反数且都不为0,则(a+b一1)×a1b⎛⎫+⎪⎝⎭的值为( )A.0 B.-1 C.1 D.28、若a、b为有理数,请根据下列条件解答问题:(1)若ab>0,a+b>0,则a、b的符号怎样?(2)若ab>0,a+b<0,则a、b的符号怎样?(3)ab<0,a+b>0,a b>,则a、b的符号怎样?9、若a1,a b0=+=,求-ab-2的值。
《有理数的乘方》讲义一、引入同学们,在数学的世界里,我们已经学习了加法、减法、乘法和除法这些基本运算。
今天,咱们要来探索一个新的运算——有理数的乘方。
想象一下,你有一堆相同的小方块,要快速表示出很多很多这样的小方块的总数,单纯用乘法可能会有点麻烦,这时候乘方就派上用场啦!二、什么是有理数的乘方乘方其实就是几个相同因数的简便运算。
比如 2×2×2×2×2,写起来很麻烦对不对?那我们就可以写成2⁵,其中2 叫做底数,5 叫做指数,而整个 2⁵就叫做幂。
简单来说,底数就是那个被重复相乘的数,指数就是表示底数要乘几次。
再举个例子,3×3×3 可以写成 3³,这里 3 是底数,3 是指数。
那有理数又是什么呢?有理数包括整数和分数。
所以有理数的乘方,就是底数是有理数的乘方运算。
三、有理数乘方的运算规则正数的任何次幂都是正数。
比如说 2³= 8,2⁴= 16。
(二)负数的乘方负数的奇次幂是负数,负数的偶次幂是正数。
例如,(-2)³=-8,因为 3 是奇数;而(-2)⁴= 16,因为 4 是偶数。
(三)零的乘方0 的任何正整数次幂都是 0。
但要注意,0 的 0 次幂没有意义哦。
四、乘方运算的优先级在一个算式中,如果既有乘方,又有乘法、除法、加法、减法,那要先算乘方。
比如计算 2 + 3²×4,要先算 3²= 9,然后再算乘法 9×4 = 36,最后算加法 2 + 36 = 38。
五、乘方的实际应用(一)面积和体积的计算比如一个正方形的边长是 3 厘米,那么它的面积就是 3×3 = 3²= 9 平方厘米。
一个正方体的棱长是 2 厘米,它的体积就是 2×2×2 = 2³= 8 立方厘米。
在表示很大或很小的数时,我们经常会用到科学计数法,这也和乘方密切相关。
有理数的乘方引入:棋盘上的数学古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋。
为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。
大臣说:“陛下,就在这个棋盘上放一些米粒吧!第1格放 1 粒米,第 2 格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒⋯,一直到第64格。
”“你真傻!就要这么一点米粒?!”国王哈哈大笑,大臣说:“就怕您的国库里没有这么多米!”设计意图:通过创设故事和问题情境, 吸引学生的注意力,唤起学生的好奇心,激发学生兴趣和主动学习的欲望,营造一个让学生主动思考、探索的氛围。
猜想第64 格的米粒是多少?第 1 格: 1第 2 格: 2第 3 格: 4=2 × 2=22第 4 格: 8=2 ×2 × 2=23第 5 格: 16= 2 ×2 ×2 × 2=2463 个2第64 格=2× 2×······× 2=263【知识点二】乘方的意义乘方:求n 个相同因数a的积的运算叫做乘方na·a·⋯ ·a= a42变式训练读出下列个数,并指出其中的底数和指数1) 在(-9)7中, 底数是 ,指数是 ,读作 , 或读作 指数是 ,读作 , 或读作,指数是 ,读作,指数是 ;指数是 。
【知识点三】 有理数乘方的运算法则: 正数的任何次幂都是正数, 数;例 2】计算 1) (-3 )42) -3443) 3 4) 1.5 3其中 a 是底数, n 是指数。
【例 1】 把下列各数写成乘方的形式(1) (-6 )×(-6 ) ×(-6) 2×2×2×22)22 3322 333)-2) 在 83 中,底数是 343) 在 3 中,底数是 4 4) 在 -2 中,底数是 5)在 5 中, 底数是负数的奇次幂是负数, 负数的偶次幂是正a n 读作 a 的 n 次幂(或 a 的 n 次方)【例3】计算并对比( 3=)2___ = ____ 3_2(-1)2n= ___ (-1)2n-1= _________【知识点四】科学记数法:科学记数法的的定义:我们把大于10的数记成a×10n的形式,其中 a 是整数数位只有一位的数(即1≤a<10),n 是正整数。
有理数的乘方引入:棋盘上的数学古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋。
为了对聪明的大臣表示感,国王答应满足这个大臣的一个要求。
大臣说:“陛下,就在这个棋盘上放一些米粒吧!第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒…,一直到第64格。
”“你真傻!就要这么一点米粒?!”国王哈哈大笑,大臣说:“就怕您的国库里没有这么多米!”设计意图:通过创设故事和问题情境,吸引学生的注意力,唤起学生的好奇心,激发学生兴趣和主动学习的欲望,营造一个让学生主动思考、探索的氛围。
猜想第64格的米粒是多少?第1格: 1第2格: 2第3格: 4=2×2=22第4格: 8=2 ×2 ×2=23第5格: 16= 2 ×2 ×2 ×2=2463个2第64格=2×2×······×2=263【知识点二】乘方的意义乘方:求n个相同因数a的积的运算叫做乘方a·a·…·a=a na n 读作a 的n 次幂(或a 的n 次方)。
其中a 是底数,n 是指数。
【例1】把下列各数写成乘方的形式(1) (-6)×(-6) ×(-6) (2)32323232⨯⨯⨯ (3)-2×2×2×2变式训练读出下列个数,并指出其中的底数和指数 1) 在(-9)7中,底数是 ,指数是 ,读作 ,或读作 ;2) 在83中,底数是 ,指数是 ,读作 ,或读作 ;3) 在 中,底数是 ,指数是 ,读作 ; 4) 在-24中,底数是 ,指数是 ;5)在 5 中,底数是 ,指数是 。
【知识点三】有理数乘方的运算法则:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数;【例2】计算 1) (-3)4 2) -343) 4)443⎪⎭⎫ ⎝⎛35.1443⎪⎭⎫ ⎝⎛-5)(-1)11【例3】计算并对比= ___ = ______(-1)2n =____ (-1)2n-1=_____【知识点四】科学记数法:科学记数法的的定义:我们把大于10的数记成a×10n 的形式,其中a 是整数数位只有一位的数(即1≤a<10),n 是正整数。
有理数的乘方辅导教案1.有理数的乘方一、引入1.a a ⋅记作,读作;a a a ⋅⋅记作,读作 ;思 考:如果有n 个a 相乘呢?你能把他记下来吗? 归纳:n 个相同的因数a 相乘,即a a a a ⋅⋅⋅⋅⋅⋅⋅⋅,记作n 个2.定义:这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在n a 中,a 叫作底数,n 叫做指数,n a 读作a 的n 次方,n a 看作是a 的n 次方的结果时,也可读作a 的n 次幂.思考:32和23的意义相同吗?()32-与32-呢?若不同,指出他们的不同之处。
3.注意:①一个数可以看作这个数本身的次方,例如5就是,通常指数为1时省略不写. ②零的任何次幂为 ,即n 0= ;1的任何次幂为 ,即n 1= 。
二、例题讲解 例1.计算:(1)32 ; (2)43 ; (3)()34-; (4)()42-; (5)332⎪⎭⎫⎝⎛-.解:(1)=32 (2)=43 (3)()34-=(4)()42-= (5)332⎪⎭⎫ ⎝⎛-=观察上面的式子,得出结论: 有理数乘方运算法则:负数的奇次幂是数,负数的偶次幂是数。
正数的任何次幂都是数,0的任何正整数次幂都是。
A 组:1.把333()444-××写成乘方形式。
2.(1)()54-读作 ,其中-4叫做数,5叫做数,()54-是 数。
(填正或负)(2)()62-读作 ,其中底数是 ,指数是 ,()62- 是 数。
(填正或负)3.=34; =⎪⎭⎫ ⎝⎛-231; ()=-51; ()=-31.04.把下列各式写成乘方运算的形式:(1)6×6×6; (2)2.1×2.1;(3)(-3)(-3)(-3)(-3); (4)2121212121⨯⨯⨯⨯.5. 3的平方是多少?-3的平方是多少?平方得9的数有几个?有无平方得-9 的有理数?B 组:1.把下列各式写成乘法运算的形式:(1)43; (2) 34; (3)()21-; (4)31.1.2.计算:(1)2211⎪⎭⎫ ⎝⎛-; (2) ()325.0-; (3) ()43--;(4) ()53--; (5)423⎪⎭⎫ ⎝⎛; (6)()323-⨯ ;(7) ()()2322-⨯-; (8) 532121⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛-; (9)4392⨯⎪⎭⎫ ⎝⎛- ;(10)()()5214-÷- (11)()()[]24313÷-++-2.科学记数法一、引入1.展示你收集的你认为非常大的数,与同学交流,你觉得记录这些数据方便吗?2.现实生活中,我们会遇到一些比较大的数,如太阳的半径、光速,日前世界人口等,读写这样大的数有一定的困难,先看10的乘方的特点:210100=3101000=610=1000 000 910=1000 000 00010=n 10…..0(在1后面有个0)对于一般的大数如何简单地表示出来? 567000000=5.67×100 000 000=5.67×108 读作5.67乘10的8次方(幂)二、新课 科学记数法:像上面这样,把一个大于10的数表示成的形式(其中a 是整数数位只有一位的数,n 是整数),使用的是科学记数法,“科学记数”谨记三点: (1)弄清a ×10n 中的a 的取值范围(2)正确确定a ×10n 中的n 的值,当所记数大于10时,n 是且等于所记数的整数位数。
有理数的乘方小学数学教案全解析!小学数学是我们学生必须要掌握的一项能力,其中有理数的乘方就是小学数学中的一项重要知识点。
今天我将为大家带来一篇关于有理数的乘方的小学数学教案全解析的文章。
一、知识点的引入在学习有理数的乘方之前,我们需要先了解一些有关指数的知识。
在数学中,指数就是代表一个数的幂的数字,用来表示一个数的重复乘积。
例如,2的3次方就是2*2*2=8。
在这个例子中,2是底数,3是指数。
二、有理数的乘方的定义有理数的乘方指的是将某个有理数自乘n次来获得一个新的有理数的过程。
在这个过程中,底数是一个有理数,指数是一个正整数。
例如,如果我们要求2的4次方,用公式表示就是:2的4次方=2*2*2*2=16这意味着,将2自乘4次会得到16这个新的有理数。
三、有理数的乘方的性质了解有理数的乘方的性质可以帮助我们更好地理解它们的运算规则和应用场景。
1.相同底数的乘方,指数相加例如,2的3次方乘以2的4次方就是:2的3次方*2的4次方=2的(3+4)次方=2的7次方=128这里,我们将相同底数的乘方的指数相加。
2.乘方的积,底数相同指数相加例如,3的4次方乘以3的2次方就是:3的4次方*3的2次方=3的(4+2)次方=3的6次方=729这里,我们将乘方的积的底数相同的指数相加。
3.幂的倒数,指数取相反数例如,如果我们要求3的-2次方,用公式表示就是:3的-2次方=1/3的2次方=1/9这里,我们将指数取相反数并将底数转化为其倒数。
四、教学设计的教案我将提供一份完整的小学数学教案,以帮助您更好地教授有理数的乘方知识点。
主题:有理数的乘方学习对象:小学学生学习目标:1.了解有理数的乘方的定义和性质2.掌握有理数的乘方的运算方法3.应用有理数的乘方解决实际问题学习内容:1.有理数的乘方的定义和性质2.有理数的乘方的运算方法3.有理数的乘方在实际生活中的应用学习方式:1.理论讲解2.示范演示3.实际应用教学过程:第一节:学习有理数的乘方的定义和性质1.引入知识点(5分钟)老师展示一个有理数并告诉学生,我们可以通过将这个有理数“自乘”来得到一个新的有理数。
有理数的乘方
引入:
棋盘上的数学
古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋。
为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。
大臣说:“陛下,就在这个棋盘上放一些米粒吧!第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒…,一直到第64格。
”“你真傻!就要这么一点米粒?!”国王哈哈大笑,大臣说:“就怕您的国库里没有这么多米!”
设计意图:
通过创设故事和问题情境,吸引学生的注意力,唤起学生的好奇心,激发学生兴趣和主动学习的欲望,营造一个让学生主动思考、探索的氛围。
猜想第64格的米粒是多少?
第1格: 1
第2格: 2
第3格: 4=2×2=22
第4格: 8=2 ×2 ×2=23
第5格: 16= 2 ×2 ×2 ×2=24
63个2
第64格=2×2×······×2=263
【知识点二】乘方的意义
乘方:求n个相同因数a的积的运算叫做乘方
a·a·…·a=a n
a n 读作a 的n 次幂(或a 的n 次方)。
其中a 是底数,n 是指数。
【例1】
把下列各数写成乘方的形式
(1) (-6)×(-6) ×(-6) (2)
32323232⨯⨯⨯ (3)
-2×2×2×2
变式训练
读出下列个数,并指出其中的底数和指数 1) 在(-9)7中,底数是 ,指数是 ,读作 ,或读作 ;
2) 在83中,底数是 ,指数是 ,读作 ,或读作 ;
3) 在 中,底数是 ,指数是 ,读作 ; 4) 在-24中,底数是 ,指数是 ;
5)在 5 中,底数是 ,指数是 。
【知识点三】
有理数乘方的运算法则:
正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数;
【例2】
443⎪⎭
⎫ ⎝⎛
计算 1) (-3)4 2) -34
3) 4)
5)(-1)11
【例3】计算并对比
= ___ = ______
(-1)2n =____ (-1)2n-1=_____
【知识点四】
科学记数法:
科学记数法的的定义:我们把大于10的数记成a×10n 的形式,其中a 是整数数位只有一位的数(即1≤a<10),n 是正整数。
这种记数法叫做科学记数法。
(1)引入:10,100 ,1000,10000,能写成10()
2、(2)300=3×100=3×10( )
3000=3×1000=3×10()
30000=3×10000=3×10()
3、160 000 000 000这个数可能表示为 ,(强调a 的范围)
【例4】
1、将下列大数用科学记数法表示
(1)地球表面积约为510 000 000 000 000 平方米,地球上陆地的面积大约为149000000平方米;
(2)2002年,中国有劳动力约为720000000人,失业下岗人员约为14000000人;每年新增劳动
10000000人,进城找工的农民约120000000人。
2、下列用科学记数法表示的数,原来各是什么数:
35.14
43⎪⎭⎫ ⎝⎛-2)3(-23-
(1)2003年10月15日,中国首次进行载人航天飞行,神舟五号飞船绕地球飞行了14圈,行程约为6×105千米;
(2)一套《辞海》大约有1.7×107个字。
(3)1972年3月发射的“先驱者十号”是人类发往太阳系外的第一艘人造太空探测器,至2003年2 月人们最后一次收到它发回的信号时,它离地球
1.22×1011千米。
课堂练习
选择题
1、118表示()
A、11个8连乘
B、11乘以8
C、8个11连乘
D、8个别1相加
2、-32的值是()
A、-9
B、9
C、-6
D、6
3、下列各对数中,数值相等的是()
A、-32与-23
B、-23与(-2)3
C、-32与(-3)2
D、(-3×2)2与-3×22
4、下列说法中正确的是()
A、23表示2×3的积
B、任何一个有理数的偶次幂是正数
C 、-32 与 (-3)2互为相反数
D 、一个数的平方是94,这个数一定是3
2 5、下列各式运算结果为正数的是( ) A 、-24×5 B 、(1-2)×5 C 、(1-24)×5 D 、1-(3×5)6
6、如果一个有理数的平方等于(-2)2,那么这个有理数等于( )
A 、-2
B 、2
C 、4
D 、2或-2
7、一个数的立方是它本身,那么这个数是( )
A 、 0
B 、0或1
C 、-1或1
D 、0或1或-1
8、如果一个有理数的正偶次幂是非负数,那么这个数是( )
A 、正数
B 、负数
C 、 非负数
D 、任何有理数
9、-24×(-22)×(-2) 3=( )
A 、 29
B 、-29
C 、-224
D 、224
10、两个有理数互为相反数,那么它们的n 次幂的值( )
A 、相等
B 、不相等
C 、绝对值相等
D 、没有任何关系
11、一个有理数的平方是正数,则这个数的立方是( )
A 、正数
B 、负数
C 、正数或负数
D 、奇数
12、(-1)2001+(-1)2002÷1 +(-1)2003的值等于( )
A 、0
B 、 1
C 、-1
D 、2
13、 2009年中央预算用于教育、医疗卫生、社会保障、就业等方面的民生支出达到7285亿元,用科学记数法表示为( )
A. 7285×108元 B . 72.85×1010元
C . 7.285×1011
元 D . 0.7285×1012 元
14、《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )
A . 7.26×1010
元 B . 72.6×109元 C . 0.726×1011
元 D . 7.26×1011元
15、据《沈阳日报》报道,今年前四个月辽宁省进出口贸易总值达164亿美元.164亿美元用科学记数法可以表示为( )
A . 16.4×10亿美元
B . 1.64×102亿美元
C . 16.4×102亿美元
D . 1.64×103亿美元
计算
(1)()2332-+- (2) ()2233-÷- (3) ()()3322222+-+-- (4) ()34255414-÷-⎪⎭
⎫ ⎝⎛-÷ (5) ()⎪⎭
⎫ ⎝⎛-÷----721322246 (6) ()()()33220132-⨯+-÷--- 2.解下列方程:
(1)5x =-15 (2)-4x =20 (3)-6x =-45 (4)-7x =-3
1
解答题
1、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?
2、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?
3、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?
4.一只小虫沿一条东西方向放着的木杆爬行,先以每分钟2.5•米的速度向东爬行,后来又以这个速度向西爬行,试求它向东爬行3分钟,又向西爬行5•分钟后距出发点的距离.
5. 某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?
探究题
1、你能求出102
1018
.0⨯的结果吗?
125
2、若a是最大的负整数,求2003
2000a
2001
2002
+的值。
+
a
a
a+
3、若a与b互为倒数,那么2a与2b是否互为倒数?3a与3b是否互为倒数?
4、若a与b互为相反数,那么2a与2b是否互为相反数?3a与3b是否互为相反数?。