安徽省蚌埠一中2015届高三上学期期中考试数学(文)试卷
- 格式:doc
- 大小:345.00 KB
- 文档页数:18
安徽省蚌埠一中2014—2015学年第一学期高三期中考试数学(理)试题一、选择题(每题5分)1.在复平面内,复数对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限2.已知集合2{|{|0}2x A x y B x x +===≤-,则 A . B . C . D .3.已知命题:,则( )A. B. [来源: ]C. D.4. 已知向量(1)(1)n n ==-,,,a b ,若与垂直,则( )A .B .C .D .45.设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, (A)0 (B)1 (C)2 (D)36.下列命题中真命题的个数是(1)若命题中有一个是假命题,则是真命题.(2)在中,“cos sin cos sin A A B B +=+”是“”的必要不充分条件.(3)表示复数集,则有.A .0B .2C .1D .37.将函数2cos 2y x x =-的图象向右平移个单位长度,所得图象对应的函数A .有最大值,最大值为B .对称轴方程是C .是周期函数,周期D .在区间上单调递增8.已知是周期为2的奇函数,当时,设则( )(A ) (B ) (C ) (D )9.对于R 上可导的任意函数f (x ),若满足(x -1)≥0,则必有( )A . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1)C. f (0)+f (2)≥2f (1)D. f (0)+f (2)>2f (1)10.已知四个函数:①;②;③;④的图象如下,但顺序打乱,则按照图象从左到右的顺序,对应的函数正确的一组是A .①④②③B .①④③②C .④①②③D .③④②①11.已知0,(),0,x x x f x e e x -≥=-<⎪⎩若函数有三个零点,则实数的取值范围是( )A. B. C. D.二、填空题(每题5分)12.已知则与的夹角为________13.函数y=sin2+4sinx,x 的值域是________14.在△ABC 中,角A 、B 、C 的对边分别为,若,三角形面积为,,则15. 曲线C 的参数方程是(为参数,且),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的方程为,曲线C 与曲线D 的交点为P ,则过交点P 且与曲线C 相切的极坐标方程是16.设f (x )=log 3(x +6)的反函数为f -1(x ),若〔f -1(m )+6〕〔f -1(n )+6〕=27,则f (m +n )=___________________三、解答题17(本题满分12)集合,{}ππsin ,,,062B y y a a a θθ⎡⎤==∈->⎢⎥⎣⎦且为常数. (1)求集合和B ;(2)若,求的取值范围.18. (本题满分14分) 已知定义域为的函数是奇函数。
蚌埠一中2014-2015学年度第一学期期中考试高三数学(理)试卷 戴冒生一、选择题(每题5分) 1.在复平面内,复数1ii+对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 2.已知集合2{|{|0}2x A x y B x x +===≤-,则A B = A .[]2,1-- B .[)1,2- C . [)1,2 D .[]1,1- 3.已知命题p :1sin ,≤∈∀x R x ,则( )A.1sin ,:≥∈∃⌝x R x pB. 1sin ,:≥∈∀⌝x R x pC.1sin ,:>∈∃⌝x R x pD. 1sin ,:>∈∀⌝x R x p 4. 已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( ) A .1B .C .2D .45.设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, (A)0 (B)1 (C)2 (D)36.下列命题中真命题的个数是(1)若命题,p q 中有一个是假命题,则()p q ⌝∧是真命题.(2)在ABC ∆中,“cos sin cos sin A A B B +=+”是“90C =”的必要不充分条件. (3)C 表示复数集,则有2,11x C x ∀∈+≥.A .0B .2C .1D .3 7.将函数2cos 2y x x =-的图象向右平移4π个单位长度,所得图象对应的函数()g xA1+ B .对称轴方程是7,12x k k Z ππ=+∈ C .是周期函数,周期2T π=D .在区间7[,]1212ππ上单调递增8.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f = 则( )(A )a b c << (B )b a c << (C )c b a << (D )c a b << 9.对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( )A . f (0)+f (2)2f (1) B. f (0)+f (2)2f (1)C. f (0)+f (2)2f (1)D. f (0)+f (2)2f (1)10.已知四个函数:①sin y x x =;②cos y x x =;③cos y x x =;④2xy x =⋅的图象如下,但顺序打乱,则按照图象从左到右的顺序,对应的函数正确的一组是A .①④②③B .①④③②C .④①②③D .③④②①11.已知0,(),0,x x x f x e e x -≥=-<⎪⎩若函数()(1)y f x k x =-+有三个零点,则实数k 的取值范围是( ) A.1(-0)2, B. 1(0)2, C.1(1)2, D.(1),+∞ 二、填空题(每题5分)12.,4,33)3()(=+⋅+b a b a 则a 与b 的夹角为________13.函数y=21sin2+4sin 2x,x R ∈的值域是________ 14.在△ABC 中,角A 、B 、C 的对边分别为c b a 、、,若20=++c b a ,三角形面积为310,60=A ,则=a15. 曲线C 的参数方程是22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数,且(,2)θππ∈),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的方程为sin()04πρθ+=,曲线C 与曲线D的交点为P ,则过交点P 且与曲线C 相切的极坐标方程是16.设f (x )=log 3(x +6)的反函数为f -1(x ),若〔f -1(m )+6〕〔f -1(n )+6〕=27,则f (m +n )=___________________三、解答题17(本题满分12)集合{}2113x A x x -=≥+,{}ππsin ,,,062B y y a a a θθ⎡⎤==∈->⎢⎥⎣⎦且为常数.(1)求集合A 和B ;(2)若A B ⋂=∅,求a 的取值范围.18. (本题满分14分) 已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数。
2014-2015学年安徽省蚌埠一中高二(上)期中数学试卷(文科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)若直线l∥平面α,直线m⊂α,则l与m的位置关系是()A.l∥m B.l与m异面C.l与m相交D.l与m没有公共点2.(5分)经过空间任意三点作平面()A.只有一个B.可作二个C.可作无数多个D.只有一个或有无数多个3.(5分)把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.不可能事件C.互斥事件但不是对立事件D.以上答案都不对4.(5分)经过两点A(4,2y+1),B(2,﹣3)的直线的倾斜角为,则y=()A.﹣1 B.﹣3 C.0 D.25.(5分)在长为12cm的线段AB上任取一点M,并以线段AM为边作正方形,则这个正方形的面积介于36cm2与81cm2之间的概率是()A.B.C.D.6.(5分)已知直线l经过点P(﹣2,5),且斜率为﹣,则直线l的方程为()A.3x+4y﹣14=0B.3x﹣4y+14=0 C.4x+3y﹣14=0 D.4x﹣3y+14=07.(5分)若直线3x+y+a=0过圆x2+y2+2x﹣4y=0的圆心,则a的值为()A.﹣1 B.1 C.3 D.﹣38.(5分)已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()A.B.C.D.9.(5分)若a∈{﹣2,0,1,},则方程x2+y2+ax+2ay+2a2+a﹣1=0表示的圆的个数为()A.0 B.1 C.2 D.310.(5分)已知点A(1,3),B(﹣2,﹣1),若直线l:y=k(x﹣2)+1与线段AB没有交点,则k的取值范围是()A.B.k≤﹣2 C.,或k<﹣2 D.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)11.(5分)已知l1:2x+my+1=0与l2:y=3x﹣1,若两直线平行,则m的值为.12.(5分)若直线x﹣2y+5=0与直线2x+my﹣6=0互相垂直,则实数m=.13.(5分)不等式组,表示的平面区域内到直线y=2x﹣4的距离最远的点的坐标为.14.(5分)经过点R(﹣2,3)且在两坐标轴上截距相等的直线方程是.15.(5分)直线xcosα+y+2=0的倾斜角范围为.三.解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)已知E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA上的点,且EH∥FG.求证:EH∥BD.17.(12分)经过三点A(1,12),B(7,10),C(﹣9,2)的圆的标准方程.18.(12分)已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:(1)过定点A(﹣3,4);(2)斜率为.19.(12分)已知直线l1过点A(1,1),B(3,a),直线l2过点M(2,2),N (3+a,4)(1)若l1∥l2,求a的值;(2)若l1⊥l2,求a的值.20.(13分)某企业生产A,B两种产品,生产每一吨产品所需的劳动力、煤和电耗如表:已知生产每吨A产品的利润是7万元,生产每吨B产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业如何安排生产,才能获得最大利润?21.(14分)已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=2时,求直线l的方程.2014-2015学年安徽省蚌埠一中高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)若直线l∥平面α,直线m⊂α,则l与m的位置关系是()A.l∥m B.l与m异面C.l与m相交D.l与m没有公共点【解答】解:∵直线l∥平面α,由线面平行的定义知l与α无公共点,又直线m在平面α内,∴l∥m,或l与m异面,故选:D.2.(5分)经过空间任意三点作平面()A.只有一个B.可作二个C.可作无数多个D.只有一个或有无数多个【解答】解:当三点在一条直线上时,过这三点的平面能作无数个;当三点不在同一条直线上时,过这三点的平面有且只有一个;∴过空间的任意三点作平面,只有一个或有无数多个.故选:D.3.(5分)把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.不可能事件C.互斥事件但不是对立事件D.以上答案都不对【解答】解:把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”由互斥事件和对立事件的概念可判断两者不可能同时发生,故它们是互斥事件,又事件“乙取得红牌”与事件“丙取得红牌”也是可能发生的,事件“甲分得红牌”与事件“乙分得红牌”不是对立事件,故两事件之间的关系是互斥而不对立,故选:C.4.(5分)经过两点A(4,2y+1),B(2,﹣3)的直线的倾斜角为,则y=()A.﹣1 B.﹣3 C.0 D.2【解答】解:因为直线经过两点A(4,2y+1),B(2,﹣3)所以直线AB的斜率k==y+2又因为直线的倾斜角为,所以k=﹣1,所以y=﹣3.故选:B.5.(5分)在长为12cm的线段AB上任取一点M,并以线段AM为边作正方形,则这个正方形的面积介于36cm2与81cm2之间的概率是()A.B.C.D.【解答】解:如图所示,当M点位于6到9之间时,正方形的面积介于36cm2与81cm2之间,概率为=.故选:A.6.(5分)已知直线l经过点P(﹣2,5),且斜率为﹣,则直线l的方程为()A.3x+4y﹣14=0B.3x﹣4y+14=0 C.4x+3y﹣14=0 D.4x﹣3y+14=0【解答】解:∵直线l经过点P(﹣2,5),且斜率为﹣,∴直线l的点斜式方程为y﹣5=(x+2),整理得:3x+4y﹣14=0.故选:A.7.(5分)若直线3x+y+a=0过圆x2+y2+2x﹣4y=0的圆心,则a的值为()A.﹣1 B.1 C.3 D.﹣3【解答】解:圆x2+y2+2x﹣4y=0的圆心为(﹣1,2),代入直线3x+y+a=0得:﹣3+2+a=0,∴a=1,故选:B.8.(5分)已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()A.B.C.D.【解答】解:设Q(x,y,z)由点Q在直线OP上可得存在实数λ使得,则有Q(λ,λ,2λ),当=(1﹣λ)(2﹣λ)+(2﹣λ)(1﹣λ)+(3﹣2λ)(2﹣2λ)=2(3λ2﹣8λ+5)根据二次函数的性质可得当时,取得最小值此时Q故选:C.9.(5分)若a∈{﹣2,0,1,},则方程x2+y2+ax+2ay+2a2+a﹣1=0表示的圆的个数为()A.0 B.1 C.2 D.3【解答】解:方程x2+y2+ax+2ay+2a2+a﹣1=0 即方程(x﹣)2+(y+a)2=1﹣a﹣a2 ,可以表示以(,﹣a)为圆心、半径为的圆.当a=﹣2时,圆心(1,2)、半径为0,不表示圆.当a=0时,圆心(0,0)、半径为1,表示一个圆.当a=1时,圆心(,﹣1)、1﹣a﹣a2<0,不表示圆.当a=时,圆心(,﹣)、1﹣a﹣a2<0,不表示圆.综上可得,所给的方程表示的圆的个数为1,故选:B.10.(5分)已知点A(1,3),B(﹣2,﹣1),若直线l:y=k(x﹣2)+1与线段AB没有交点,则k的取值范围是()A.B.k≤﹣2 C.,或k<﹣2 D.【解答】解:如图所示:由已知可得k PA=,.由此可知直线l若与线段AB有交点,则斜率k满足的条件是,或k≥﹣2.因此若直线l与线段AB没有交点,则k满足以下条件:,或k<﹣2.故选:C.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)11.(5分)已知l1:2x+my+1=0与l2:y=3x﹣1,若两直线平行,则m的值为.【解答】解:∵两直线平行,∴,故答案为﹣.12.(5分)若直线x﹣2y+5=0与直线2x+my﹣6=0互相垂直,则实数m=1.【解答】解:直线x﹣2y+5=0的斜率为直线2x+my﹣6=0的斜率为∵两直线垂直∴解得m=1故答案为:113.(5分)不等式组,表示的平面区域内到直线y=2x﹣4的距离最远的点的坐标为(﹣1,0).【解答】解:作出不等式组对应的平面区域如图:平移直线y=2x﹣4,由图象可知距离直线y=2x﹣4最远的点为A,其中A点的坐标为(﹣1,0),故答案为:(﹣1,0)14.(5分)经过点R(﹣2,3)且在两坐标轴上截距相等的直线方程是y=﹣x 或x+y﹣1=0.【解答】解:①当直线经过原点时,直线方程为y=﹣x;②当直线不经过原点时,设所求的直线方程为x+y=a,则a=﹣2+3=1,因此所求的直线方程为x+y=1.故答案为:y=﹣x或x+y﹣1=0.15.(5分)直线xcosα+y+2=0的倾斜角范围为.【解答】解:由于直线xcosα+y+2=0的斜率为﹣,由于﹣1≤cosα≤1,∴﹣≤﹣≤.设此直线的倾斜角为θ,则0≤θ<π,故﹣≤tanθ≤.∴θ∈.故答案为:.三.解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)已知E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA上的点,且EH∥FG.求证:EH∥BD.【解答】证明:∵EH∥FG,EH⊄面BCD,FG⊂面BCD∴EH∥面BCD,又∵EH⊂面ABD,面BCD∩面ABD=BD,∴EH∥BD17.(12分)经过三点A(1,12),B(7,10),C(﹣9,2)的圆的标准方程.【解答】解:AB的中点为(4,11),AB的斜率为﹣,故边AB的中垂线方程为y﹣11=3(x﹣4),即3x﹣y﹣1=0.同理求得BC边的中垂线方程为2x+y﹣4=0,由求得,可得圆心坐标为M(1,2),故半径r=MA=10,故过三点A(1,12),B(7,10),C(﹣9,2)的圆的方程为(x﹣1)2+(y﹣2)2=100.18.(12分)已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:(1)过定点A(﹣3,4);(2)斜率为.【解答】解:(1)设直线l的方程是y=k(x+3)+4,它在x轴、y轴上的截距分别是﹣﹣3,3k+4,由已知,得|(3k+4)(﹣﹣3)|=6,可得(3k+4)(﹣﹣3)=6或﹣6,解得k1=﹣或k2=﹣.所以直线l的方程为:2x+3y﹣6=0或8x+3y+12=0.(2)设直线l在y轴上的截距为b,则直线l的方程是y=x+b,它在x轴上的截距是﹣6b,由已知,得|﹣6b•b|=6,∴b=±1.∴直线l的方程为x﹣6y+6=0或x﹣6y﹣6=0.19.(12分)已知直线l1过点A(1,1),B(3,a),直线l2过点M(2,2),N (3+a,4)(1)若l1∥l2,求a的值;(2)若l1⊥l2,求a的值.【解答】解:∵直线l1过点A(1,1),B(3,a),∴直线l1的斜率为:.(1)若l1∥l2,则直线l2的斜率存在且有,解得:;(2)当a=1时,直线l1的斜率为0,要使l1⊥l2,则3+a=2,即a=﹣1;当a≠1时,要使l1⊥l2,则,解得:a=0.∴若l1⊥l2,则a的值为﹣1或0.20.(13分)某企业生产A,B两种产品,生产每一吨产品所需的劳动力、煤和电耗如表:已知生产每吨A产品的利润是7万元,生产每吨B产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业如何安排生产,才能获得最大利润?【解答】解:设生产A、B两种产品分别为x,y吨,利润为z万元,依题意可得:,目标函数为z=7x+12y,画出可行域如图:6﹣2阴影部分所示,当直线7x+12y=0向上平移,经过M(20,24)时z取得最大值,所以该企业生产A,B两种产品分别为20吨与24吨时,获利最大.21.(14分)已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=2时,求直线l的方程.【解答】解:将圆C的方程x2+y2﹣8y+12=0配方得标准方程为x2+(y﹣4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l与圆C相切,则有.解得.(2)联立方程并消去y,得(a2+1)x2+4(a2+2a)x+4(a2+4a+3)=0.设此方程的两根分别为x1、x2,所以x1+x2=﹣,x1x2=则AB===2两边平方并代入解得:a=﹣7或a=﹣1,∴直线l的方程是7x﹣y+14=0和x﹣y+2=0.另解:圆心到直线的距离为d=,AB=2=2,可得d=,解方程可得a=﹣7或a=﹣1,∴直线l的方程是7x﹣y+14=0和x﹣y+2=0.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
安徽省蚌埠一中2015届高三上学期12月月考数学试卷(文科)一、选择题,每小题5分,共10题1.若A={x|x+1>0},B={x|x﹣3<0},则A∩B=()A.(﹣1,+∞)B.(﹣∞,3)C.(﹣1,3)D.(1, 3)2.若a∈R,则“a=1”是“|a|=1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件3.已知直线l及两个平面α、β,下列命题正确的是()A.若l∥α,l∥β,则α∥βB.若l∥α,l∥β,则α⊥βC.若l⊥α,l⊥β,则α∥βD.若l⊥α,l⊥β,则α⊥β4.下列函数,在区间(0,+∞)上为增函数的是()A.y=ln(x+2)B.C.D.5.在等差数列{a n}中,已知a1=1,a2+a4=10,a n=39,则n=()A.19 B.20 C.21 D.226.设向量、,满足||=||=1,•=﹣,则|+2|=()A.B.C.D.7.设变量x,y满足,则x+2y的最大值和最小值分别为()A.1,﹣1 B.2,﹣2 C.1,﹣2 D.2,﹣18.下列求导运算正确的是()A.(x+)′=1+B.(log2x)′=C.(x2cosx)′=﹣2xsinx D.(3x)′=3x log3e9.若a为常数,且a>1,0≤x≤2π,则函数f(x)=﹣sin2x+2asinx的最大值为()A.2a+1 B.2a﹣1 C.﹣2a﹣1 D.a210.设a>b>0,则的最小值是()A.1 B.2 C.3 D.4二、填空每小题5分,共5小题11.等比数列{a n}中,a2=9,a5=243,则{a n}的前4项和为.12.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是cm3.13..14.设,当x∈[﹣1,2]时,f(x)<m恒成立,则实数m的取值范围为.15.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥面MNP的图形的序号是(写出所有符合要求的图形序号).三、解答题,前3题每题12分,后3题每题13分.16.设=(,sinα),=(cosα,),且∥,求锐角α.17.如图,己知E、F、G、H分别是三棱锥A﹣BCD的棱AB、BC、CD、DA的中点.①求证:E、F、G、H四点共面②若四边形EFGH是矩形,求证,AC⊥BD.18.已知等差数列{a n}满足a2=0,a6+a8=﹣10(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和.19.已知函数f(x)=x3﹣3ax﹣1,a≠0(1)求f(x)的单调区间;(2)若f(x)在x=﹣1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.20.如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求证:平面BCE⊥平面CDE.21.已知函数f(x)=lnx﹣ax+﹣1(a∈R).(Ⅰ)当a≤时,讨论f(x)的单调性;(Ⅱ)设g(x)=x2﹣2bx+4.当a=时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b取值范围.安徽省蚌埠一中2015届高三上学期12月月考数学试卷(文科)一、选择题,每小题5分,共10题1.若A={x|x+1>0},B={x|x﹣3<0},则A∩B=()A.(﹣1,+∞)B.(﹣∞,3)C.(﹣1,3)D.(1,3)考点:交集及其运算.专题:计算题.分析:根据集合的意义,A、B均是一元一次方程的解集,先求集合A、B,然后求交集,可以直接得结论.解答:解:根据集合的意义,A、B均是一元一次不等式的解集,解可得,A={x|x>﹣1},B={x|x<3}由交集的运算可得,A∩B={x|﹣1<x<3}=(﹣1,3),故选C.点评:本题考查集合交集的运算,2.若a∈R,则“a=1”是“|a|=1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断;充要条件.分析:先判断“a=1”⇒“|a|=1”的真假,再判断“|a|=1”时,“a=1”的真假,进而结合充要条件的定义即可得到答案.解答:解:当“a=1”时,“|a|=1”成立即“a=1”⇒“|a|=1”为真命题但“|a|=1”时,“a=1”不一定成立即“|a|=1”时,“a=1”为假命题故“a=1”是“|a|=1”的充分不必要条件故选A点评:本题考查的知识点是充要条件,其中根据绝对值的定义,判断“a=1”⇒“|a|=1”与“|a|=1”时,“a=1”的真假,是解答本题的关键.3.已知直线l及两个平面α、β,下列命题正确的是()A.若l∥α,l∥β,则α∥βB.若l∥α,l∥β,则α⊥βC.若l⊥α,l⊥β,则α∥βD.若l⊥α,l⊥β,则α⊥β考点:平面与平面垂直的判定;平面与平面平行的判定.专题:证明题.分析:因为平行与同一直线的两个平面可以是相交的也可以是平行的,故A,B错.再利用垂直与同一直线的两个平面平行可得结论C对,D错.即可得到答案.解答:解:因为平行与同一直线的两个平面可以是相交的也可以是平行的,故A,B错.又因为垂直与同一直线的两个平面平行,故C对,D错.故选 C.点评:本题考查了面面平行和面面垂直的判定.是对基础知识的考查.4.下列函数,在区间(0,+∞)上为增函数的是()A.y=ln(x+2)B.C.D.考点:对数函数的单调性与特殊点;函数单调性的判断与证明.专题:函数的性质及应用.分析:利用对数函数的图象和性质可判断A正确;利用幂函数的图象和性质可判断B错误;利用指数函数的图象和性质可判断C正确;利用“对勾”函数的图象和性质可判断D的单调性解答:解:A,y=ln(x+2)在(﹣2,+∞)上为增函数,故在(0,+∞)上为增函数,A正确;B,在[﹣1,+∞)上为减函数;排除BC,在R上为减函数;排除CD,在(0,1)上为减函数,在(1,+∞)上为增函数,排除D故选 A点评:本题主要考查了常见函数的图象和性质,特别是它们的单调性的判断,简单复合函数的单调性,属基础题5.在等差数列{a n}中,已知a1=1,a2+a4=10,a n=39,则n=()A.19 B.20 C.21 D.22考点:等差数列的性质;等差数列的通项公式.专题:计算题.分析:利用等差数列的通项公式和a2+a4=10求得的d,进而根据a n=39求得n.解答:解:依题意,设公差为d,则由得d=2,所以1+2(n﹣1)=39,所以n=20,故选B点评:本题主要考查了等差数列通项公式.属基础题.6.设向量、,满足||=||=1,•=﹣,则|+2|=()A.B.C.D.考点:平面向量数量积的坐标表示、模、夹角.专题:计算题.分析:利用向量模的平方等于向量的平方,求出模的平方,再开方即可.解答:解:∵向量、,满足||=||=1,•=﹣,∴=1﹣2+4=3,∴故选B点评:本题考查求向量模常将向量模平方;利用向量的运算法则求出.7.设变量x,y满足,则x+2y的最大值和最小值分别为()A.1,﹣1 B.2,﹣2 C.1,﹣2 D.2,﹣1考点:简单线性规划.专题:计算题;数形结合.分析:根据已知中的约束条件,画出满足的平面区域,并画出满足条件的可行域,由图我们易求出平面区域的各角点的坐标,将角点坐标代入目标函数易判断出目标函数x+2y 的最大值和最小值.解答:解:满足的平面区域如下图所示:由图可知当x=0,y=1时x+2y取最大值2当x=0,y=﹣1时x+2y取最小值﹣2故选B点评:本题考查的知识点是简单线性规划,画出满足条件的可行域及各角点的坐标是解答线性规划类小题的关键.8.下列求导运算正确的是()A.(x+)′=1+B.(log2x)′=C.(x2cosx)′=﹣2xsinx D.(3x)′=3x log3e考点:导数的运算.专题:导数的概念及应用.分析:根据导数的运算法则求导即可解答:解:∵(x+)′=1﹣,(log2x)′=,(x2cosx)′=2xcosx﹣x2sinx,(3x)′=3x ln3,∴只有B正确,故选:B点评:本题主要考查了求导的基本公式,属于基础题9.若a为常数,且a>1,0≤x≤2π,则函数f(x)=﹣sin2x+2asinx的最大值为()A.2a+1 B.2a﹣1 C.﹣2a﹣1 D.a2考点:三角函数的最值.专题:三角函数的求值;三角函数的图像与性质.分析:本题是一个复合函数,外层是一个二次函数,内层是一个正弦函数,可把内层的正弦函数看作是一个整体,用配方法求最值.解答:解:f(x)=﹣sin2x+2asinx=﹣(sinx﹣a)2+a2,∵0≤x≤2π,∴﹣1≤sinx≤1,又∵a>1,所以最大值在sinx=1时取到,∴f(x)max=﹣(1﹣a)2+a2=2a﹣1.故选:B.点评:本题考点是三角函数求最值,考查利用配方法求复合三角函数的最值,本题把内层函数看作一个整体,用到了整体的思想,第一步,配方,第二步,判断内层函数的值域,第三步判断复合函数的最值,最后求出最值.10.设a>b>0,则的最小值是()A.1 B.2 C.3 D.4考点:基本不等式在最值问题中的应用.专题:计算题;压轴题;转化思想.分析:将变形为,然后前两项和后两项分别用均值不等式,即可求得最小值.解答:解:=≥4当且仅当取等号即取等号.∴的最小值为4故选:D点评:本题考查凑成几个数的乘积为定值,利用基本不等式求出最值.二、填空每小题5分,共5小题11.等比数列{a n}中,a2=9,a5=243,则{a n}的前4项和为120.考点:等比数列;等比数列的前n项和.专题:计算题.分析:根据a2=9,a5=243求得a1和q,最后利用等比数列的求和公式求得前4项的和.解答:解:q3==27∴q=3∴a1==3∴S4==120故答案为120点评:本题主要考查了等比数列的性质和求和问题.要熟练掌握等比数列中通项公式、求和公式、等比中项等基本知识.12.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是4cm3.考点:由三视图求面积、体积.专题:计算题.分析:三视图复原的几何体是底面为直角梯形,一条侧棱垂直直角梯形的直角顶点的四棱锥,结合三视图的数据,求出几何体的体积.解答:解:三视图复原的几何体是底面为直角梯形,一条侧棱垂直直角梯形的直角顶点的四棱锥,所以几何体的体积为:故答案为:4.点评:本题是基础题,考查几何体的三视图,几何体的表面积的求法,准确判断几何体的形状是解题的关键.13.4.考点:基本不等式;对数的运算性质.专题:计算题.分析:根据题意,由对数的性质可得,xy=10且x、y>0,对于+,由基本不等式变形计算可得答案.解答:解:根据题意,lgx+lgy=1⇒lgxy=1,则xy=10且x、y>0,对于+,由x、y>0,,可得、>0,则+≥2=2=4,即+的最小值为4,故答案为4.点评:本题考查基本不等式的运用,注意由对数的性质得到x、y均大于0,进而得到+符合基本不等式使用的条件.14.设,当x∈[﹣1,2]时,f(x)<m恒成立,则实数m的取值范围为(7,+∞).考点:利用导数求闭区间上函数的最值.专题:常规题型.分析:先求导数,然后根据函数单调性研究函数的极值点,通过比较极值与端点的大小从而确定出最大值,进而求出变量m的范围.解答:解:f′(x)=3x2﹣x﹣2=0解得:x=1或﹣当x∈时,f'(x)>0,当x∈时,f'(x)<0,当x∈(1,2)时,f'(x)>0,∴f(x)max={f(﹣),f(2)}max=7由f(x)<m恒成立,所以m>f max(x)=7.故答案为:(7,+∞)点评:本题考查了利用导数求闭区间上函数的最值,求函数在闭区间[a,b]上的最大值与最小值是通过比较函数在(a,b)内所有极值与端点函数f(a),f(b)比较而得到的,属于基础题.15.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥面MNP的图形的序号是①③(写出所有符合要求的图形序号).考点:直线与平面平行的性质.专题:综合题;压轴题.分析:能得出AB∥面MNP,关键是看平面MNP中有没有与AB平行的直线,或者有没有过AB 的平面与平面MNP平行.逐一判断即可.解答:解:①∵面AB∥面MNP,∴AB∥面MNP.②若下底面中心为O,易知NO∥AB,NO⊄面MNP,∴AB与面MNP不平行.③易知AB∥MP,∴AB∥面MNP.④易知存在一直线MC∥AB,且MC⊄平面MNP,∴AB与面MNP不平行.故答案为:①③点评:本题考查直线与平面平行的判定,是基础题.三、解答题,前3题每题12分,后3题每题13分.16.设=(,sinα),=(cosα,),且∥,求锐角α.考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:利用向量的坐标运算和向量共线定理即可得出sin2α=1,继而求出锐角α.解答:解:∵=(,sinα),=(cosα,),且∥,∴sinαcosα=×=,∴sin2α=1,∵α为锐角,∴2α=,∴α=.点评:本题考查了向量的坐标运算和向量共线定理以及二倍角公式,属于基础题.17.如图,己知E、F、G、H分别是三棱锥A﹣BCD的棱AB、BC、CD、DA的中点.①求证:E、F、G、H四点共面②若四边形EFGH是矩形,求证,AC⊥BD.考点:平面的基本性质及推论;空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:①利用三角形中位线定理可知EH∥BD、GF∥BD,进而四边形EFGH为平行四边形,即得结论;②通过线面垂直的判定定理及性质定理即得结论.解答:证明:①依题意,EH为△ABD的中位线,∴EH∥BD,同理GF∥BD,∴四边形EFGH为平行四边形,∴E、F、G、H四点共面;②由①可知,EH∥BD、GF∥BD,∵四边形EFGH是矩形,∴EH⊥AD、GF⊥CD,∴BD⊥AD、BD⊥CD,∴BD⊥平面ACD,∴AC⊥BD.点评:本题考查空间中线线之间的位置关系,注意解题方法的积累,属于基础题.18.已知等差数列{a n}满足a2=0,a6+a8=﹣10(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和.考点:等差数列的通项公式;数列的求和.专题:综合题.分析:(I)根据等差数列的通项公式化简a2=0和a6+a8=﹣10,得到关于首项和公差的方程组,求出方程组的解即可得到数列的首项和公差,根据首项和公差写出数列的通项公式即可;(II)把(I)求出通项公式代入已知数列,列举出各项记作①,然后给两边都除以2得另一个关系式记作②,①﹣②后,利用a n的通项公式及等比数列的前n项和的公式化简后,即可得到数列{}的前n项和的通项公式.解答:解:(I)设等差数列{a n}的公差为d,由已知条件可得,解得:,故数列{a n}的通项公式为a n=2﹣n;(II)设数列{}的前n项和为S n,即S n=a1++…+①,故S1=1,=++…+②,当n>1时,①﹣②得:=a1++…+﹣=1﹣(++…+)﹣=1﹣(1﹣)﹣=,所以S n=,综上,数列{}的前n项和S n=.点评:此题考查学生灵活运用等差数列的通项公式化简求值,会利用错位相减法求数列的和,是一道中档题.19.已知函数f(x)=x3﹣3ax﹣1,a≠0(1)求f(x)的单调区间;(2)若f(x)在x=﹣1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.考点:利用导数研究函数的单调性;利用导数研究函数的极值.分析:(1)先确求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的区间是增区间,fˊ(x)<0的区间是减区间.(2)先根据极值点求出a,然后利用导数研究函数的单调性,求出极值以及端点的函数值,观察可知m的范围.解答:解析:(1)f′(x)=3x2﹣3a=3(x2﹣a),当a<0时,对x∈R,有f′(x)>0,当a<0时,f(x)的单调增区间为(﹣∞,+∞)当a>0时,由f′(x)>0解得或;由f′(x)<0解得,当a>0时,f(x)的单调增区间为;f(x)的单调减区间为.(2)因为f(x)在x=﹣1处取得极大值,所以f′(﹣1)=3×(﹣1)2﹣3a=0,∴a=1.所以f(x)=x3﹣3x﹣1,f′(x)=3x2﹣3,由f′(x)=0解得x1=﹣1,x2=1.由(1)中f(x)的单调性可知,f(x)在x=﹣1处取得极大值f(﹣1)=1,在x=1处取得极小值f(1)=﹣3.因为直线y=m与函数y=f(x)的图象有三个不同的交点,结合f(x)的单调性可知,m的取值范围是(﹣3,1).点评:本题主要考查了利用导数研究函数的极值,以及求最值和利用导数研究图象等问题,属于中档题.20.如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求证:平面BCE⊥平面CDE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:证明题.分析:(Ⅰ)取CE中点P,连接FP、BP,欲证AF∥平面BCE,根据直线与平面平行的判定定理可知只需证AF与平面平面BCE内一直线平行,而AF∥BP,AF⊂平面BCE,BP⊂平面BCE,满足定理条件;(Ⅱ)欲证平面BCE⊥平面CDE,根据面面垂直的判定定理可知在平面BCE内一直线与平面CDE 垂直,而根据题意可得BP⊥平面CDE,BP⊂平面BCE,满足定理条件.解答:证明:(Ⅰ)取CE中点P,连接FP、BP,∵F为CD的中点,∴FP∥DE,且FP=.又AB∥DE,且AB=.∴AB∥FP,且AB=FP,∴ABPF为平行四边形,∴AF∥BP.又∵AF⊄平面BCE,BP⊂平面BCE,∴AF∥平面BCE(Ⅱ)∵△ACD为正三角形,∴AF⊥CD∵AB⊥平面ACD,DE∥AB∴DE⊥平面ACD又AF⊂平面ACD∴DE⊥AF又AF⊥CD,CD∩DE=D∴AF⊥平面CDE又BP∥AF∴BP⊥平面CDE又∵BP⊂平面BCE∴平面BCE⊥平面CDE点评:本小题主要考查空间中的线面关系,考查线面平行、面面垂直的判定,考查运算能力和推理论证能力,考查转化思想,属于基础题.21.已知函数f(x)=lnx﹣ax+﹣1(a∈R).(Ⅰ)当a≤时,讨论f(x)的单调性;(Ⅱ)设g(x)=x2﹣2bx+4.当a=时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b取值范围.考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:(Ⅰ)直接利用函数与导数的关系,求出函数的导数,再讨论函数的单调性;(Ⅱ)利用导数求出f(x)的最小值、利用二次函数知识或分离常数法求出g(x)在闭区间[1,2]上的最小值,然后解不等式求参数.解答:解:(Ⅰ),令h(x)=ax2﹣x+1﹣a(x>0)(1)当a=0时,h(x)=﹣x+1(x>0),当x∈(0,1),h(x)>0,f′(x)<0,函数f(x)单调递减;当x∈(1,+∞),h(x)<0,f′(x)>0,函数f(x)单调递增.(2)当a≠0时,由f′(x)=0,即ax2﹣x+1﹣a=0,解得.当时x1=x2,h(x)≥0恒成立,此时f′(x)≤0,函数f(x)单调递减;当时,,x∈(0,1)时h(x)>0,f′(x)<0,函数f(x)单调递减;时,h(x)<0,f′(x)>0,函数f(x)单调递增;时,h(x)>0,f′(x)<0,函数f(x)单调递减.当a<0时,当x∈(0,1),h(x)>0,f′(x)<0,函数f(x)单调递减;当x∈(1,+∞),h(x)<0,f′(x)>0,函数f(x)单调递增.综上所述:当a≤0时,函数f(x)在(0,1)单调递减,(1,+∞)单调递增;当时x1=x2,h(x)≥0恒成立,此时f′(x)≤0,函数f(x)在(0,+∞)单调递减;当时,函数f(x)在(0,1)单调递减,单调递增,单调递减.(Ⅱ)当时,f(x)在(0,1)上是减函数,在(1,2)上是增函数,所以对任意x1∈(0,2),有,又已知存在x2∈[1,2],使f(x1)≥g(x2),所以,x2∈[1,2],(※)又g(x)=(x﹣b)2+4﹣b2,x∈[1,2]当b<1时,g(x)min=g(1)=5﹣2b>0与(※)矛盾;当b∈[1,2]时,g(x)min=g(b)=4﹣b2≥0也与(※)矛盾;当b>2时,.综上,实数b的取值范围是.点评:本题将导数、二次函数、不等式知识有机的结合在一起,考查了利用导数研究函数的单调性、利用导数求函数的最值以及二次函数的最值问题,考查了同学们分类讨论的数学思想以及解不等式的能力;考查了学生综合运用所学知识分析问题、解决问题的能力.。
安徽省蚌埠市五中十二中2015届高三第一学期期中考试数学文试题时间:120分钟 分数:150一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的表格内(每小题5分,共50分).1.已知集合M ={1,2,3},N ={2,3,4},则N M ⋂= A .∅ B. {1,4} C. {2,3} D. {1,2,3,4}2.已知b a >,则下列不等式一定成立的是 A .33->-b a B .bc ac > C .cbc a < D .32+>+b a 3.函数xx y 1+=()0>x 的最小值是 A .1 B . 2 C .-2 D .以上都不对 4.函数()x x x f ln +=的零点所在的大致区间为 A .(0,1) B .(1,2) C .(1,e ) D .(2,e )5.若⎩⎨⎧>+-≤+=)1(3)1(1)(x x x x x f ,则)]25([f f 的值为A .21-B .23C .25D .296.若R a ∈,则“a a >2”是“1>a ”的A .充分不必要条件 B.必要不充分条件 C .既不充分也不必要条件 D .充要条件 7.下列说法中正确的是①()0x x f =与()1=x g 是同一个函数;②()x f y =与()1+=x f y 有可能是同一个函数;③ ()x f y =与()t f y =是同一个函数;④定义域和值域相同的函数是同一个函数. A .①② B .②③ C .②④ D .①③8.已知函数()x f 是定义在R 上的偶函数,则下列结论一定成立的是 A .R x ∈∀,()()x f x f -> B .R x ∈∃0,()()00x f x f ->C .R x ∈∀,()()0≥-x f x fD .R x ∈∃0,()()000<-x f x f 9.已知函数()22x f x =-,则函数()y f x =的图象可能是10.下列命题中正确的是A .若命题P 为真命题,命题q 为假命题,则命题“q p ∧”为真命题B .命题“若p 则q ”的否命题是“若q 则p ”C .命题“R x ∈∀,02>x”的否定是“R x ∈∀0,020≤x ”D .函数22x x y -=的定义域是{}20≤≤x x选择题答案二、填空题:请把答案填在题中横线上(每小题5分,共25分).11.函数52)(2+-=x x x f 的定义域是(]2,1-∈x ,值域是 . 12.函数3222--=x xy 的单调递减区间是 .13.已知()x x f 5.0log =,且(1)(21)f a f a -<-,则a 的取值范围是 . 14.若点(1,3)和(-4,-2)在直线02=++m y x 的两侧,则m 的取值范围是 . 15.已知函数()12-x f 的定义域是[]2,3-,则函数()1+x f 的定义域是 .三、解答题:请写出详细过程(6小题,共75分)16.(本小题12分)设集合}32,3,2{2-+=a a U ,}2|,12{|-=a A ,}5{=A C U ,求实数a 的值.17.(本小题12分)已知函数()x x x x f ln 2212--=. ①.求函数()x f 在点⎪⎭⎫⎝⎛-21,1处的切线方程. ②.求函数()x f 的极值.18. (本小题12分)某工厂生产一种产品的固定成本是20000元,每生产一件产品需要另外投入100元,市场销售部进行调查后得知,市场对这种产品的年需求量为1000件,且销售收入函数21()10002g t t t =-+,其中t 是产品售出的数量,且01000t ≤≤.(利润=销售收入—成本).①.若x 为年产量,y 表示利润,求()y f x =的解析式. ②.当年产量为多少时,工厂的利润最大,最大值为多少?19.(本小题13分)已知定义在R 上的函数()x f 对所有的实数n m ,都有()()()n f m f n m f +=+,且当0>x 时,()0<x f 成立,()42-=f . ①.求()0f ,()1f ,()3f 的值.②.证明函数()x f 在R 上单调递减.③.解不等式()()622-<+x f x f .20.(本小题13分)已知不等式0222<-+-m x mx .①.若对于所有的实数x 不等式恒成立,求m 的取值范围.②.设不等式对于满足2≤m 的一切m 的值都成立,求x 的取值范围.21.(本小题13分)已知函数()()b x x a ax x f 6622323+++-=在2=x 处取得极值. ①.求a 的值及()x f 的单调区间.②.若[]4,1∈x 时,不等式()2b x f <恒成立,求b 的取值范围.2014-2015学年度高三第一学期期中联考文科数学参考答案题号 1 2 3 4 5 6 7 8 9 10 答案 CABABBBCBD11、[)8,4 12、(]1,∞- 13、3221<<a 14、105<<-m 15、46≤≤-x 三、解答题16、 由①得2=a 或4-=a 由②得2=a 或1-=a 2=∴a17、解:① ()xx x f 21--=' ()21-='=∴f k∴所求切线方程为232+-=x y ② ()()()xx x x x x x x x f 122212+-=--=--=' 且0>x 20<<∴x 时()0<'x f 2>x 时()0>'x f ∴函数()x f 在()2,0单调递减,在()+∞,2单调递增. 18、解:①当01000x ≤≤时,t x =,∴211000200001002y x x x =-+--21900200002x x =-+-当1000x >时,1000t =22110001000200001002y x =-⨯+--480000100x =- ()2190020000(01000)2480000100(1000)x x x f x xx ⎧-+-≤≤⎪∴=⎨⎪->⎩②当01000x ≤≤时()221190020000(900)3850022f x x x x =-+-=--+∴当900x =时,()max 385000f x =当1000x >时,()480000100f x x =-为减函数,∴()480000100100f x <-⨯,即()380000f x <∴当年产量为900件时,工厂的利润最大,最大值为385000元.19、解:① 令0==n m 得()00=f令1==n m 得()21-=f()()()6123-=+=∴f f f ② 由已知得()()()n f m f n m f =-+令21x x >,且R x x ∈21,()()()2121x x f x f x f -=-∴ 21x x >()021<-∴x x f 即 ()()21x f x f < ∴函数()x f 在R 单调递减.③ 不等式可化为())3(f 22<+∴x x f 因为() x f 为R 上的减函数所以322>+x x ,解得1>x 或3-<x20、解: ① 当0=m 时,不等式为022<--x ,显然不恒成立. 0≠∴m∴ 0<m 0<∆解得 21-<m② 法一:不等式可化为()2212+<+x x m 即 1222++<x x m 上式对2≤m 恒立 21222>++∴x x 解得 10<<x法二:不等式可化为()02212<--+x x m令 ()()2212--+=x xm m f()0<∴m f 对2≤m 恒立()02<∴f 即()022122<--+x x解得 10<<x21、解:① 由已知()()62332++-='x a ax x f()02='f 1=∴a ()()()213--='x x x f 由()0>'x f 得2>x 或1<x ()0<'x f 得21<<x故函数()x f 在()2,1单调递减,在()1,∞-和()+∞,2单调递增. ② 由①得函数()x f 在[]2,1单调递减,在[]4,2单调递增()b f 6251+=()b f 6164+=2616b b <+∴ 解得8>b 或2-<b。
蚌埠市2015届高三年级第一次教学质量检查考试数 学(文史类)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、复数()21z i =-+的虚部为( )A .2-B .2i -C .2D .0 2、已知集合{}2x x A =<,{}5x y y B ==,则A B =( )A .{}2x x <B .{}2x x >C .{}02x x ≤<D .{}02x x <<3、设tan135a =,()cos cos 0b =,0212c x ⎛⎫=+ ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .c a b >>B .c b a >>C .a b c >>D .b c a >> 4、函数()1ln f x x x =-的零点所在区间是( )A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫⎪⎝⎭ C .()1,2 D .()2,35、运行如图所示的程序框图,输出的所有实数对(),x y 所对应的点都在某函数图象上,则该函数的解析式为( )A .2y x =+B .3y x=C .3x y =D .33y x = 6、数列{}n a 是等差数列,若11a +,32a +,53a +构成公比为q 的等比数列,则q =( )A .1 B .2 C .3 D .4 7、设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 8、已知()f x 在R 上是奇函数,且满足()()4f x f x +=,当()0,2x ∈时,()22f x x =,则()7f =( )A .2-B .2C .98-D .98 9、某几何体的三视图如图所示,则该几何体的体积为( ) A .12π+ B .6π+ C .12π- D .6π-10、函数()g x 是偶函数,函数()()f x g x m =-,若存在,42ππϕ⎛⎫∈ ⎪⎝⎭,使()()sin cos f f ϕϕ=,则实数m 的取值范围是( )A.12⎛ ⎝⎭ B.12⎛ ⎝⎦C.2⎫⎪⎪⎝⎭ D.2⎤⎥⎝⎦ 二、填空题(本大题共5小题,每小题5分,共25分.) 11、命题:“R x ∀∈,都有31x ≥”的否定形式为 . 12、不等式2011x <-≤的解集为 . 13、若()2log 230m -=,则ln 1m e -= .14、已知x ,y 满足条件20326020x y x y y -+≤⎧⎪-+≥⎨⎪-≤⎩,则函数2z x y =-+的最大值是 .15、若正方形1234P P P P 的边长为1,集合{}{}13,,1,2,3,4i j x x i j M ==P P ⋅P P ∈且,则对于下列命题:①当1i =,3j =时,2x =; ②当3i =,1j =时,0x =; ③当1x =时,(),i j 有4种不同取值; ④当1x =-时,(),i j 有2种不同取值;⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)三、解答题(本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.) 16、(本小题满分12分)在C ∆AB 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知222b c a bc +=+. ()I 求A 的大小;()II 如果cos B =,2b =,求a . 17、(本小题满分12分)我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100500元,6001000元,以及年龄在2039岁,4059岁之间进行了统计,相关数据如下:()I 用分层抽样的方法在缴费100500元之间的村民中随机抽取5人,则年龄在2039岁之间应抽取几人?()II 在缴费100500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在4059岁之间的概率.18、(本小题满分12分)已知三次函数()f x 的导函数()233f x x ax '=-,()0f b =,a 、b 为实数.()I 若曲线()y f x =在点()()1,1a f a ++处切线的斜率为12,求a 的值;()II 若()f x 在区间[]1,1-上的最小值、最大值分别为2-和1,且12a <<,求函数()f x 的解析式.19、(本小题满分13分)如图,在四棱锥CD P -AB 中,底面CD AB 是正方形,PA ⊥底面CD AB ,且D PA =A ,点F 是棱D P 的中点,点E 为CD 的中点. ()I 证明:F//E 平面C PA ;()II 证明:F F A ⊥E .20、(本小题满分13分)某民营企业生产A 、B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图甲,B 产品的利润与投资的算术平方根成正比,其关系如图乙(注:利润与投资单位:万元).()I 分别将A 、B 两种产品的利润表示为投资的函数关系式,并写出它们的函数关系式;()II 该企业已筹集到10万元资金,并全部投入A 、B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?21、(本小题满分14分)数列{}n a 满足16a π=,,22n a ππ⎛⎫∈- ⎪⎝⎭,且1tan cos 1n n a a +⋅=(n *∈N ).()I 求数列{}2tan n a 的前n 项和;()II 求正整数m ,使得1211sin sin sin 1m a a a ⋅⋅⋅=.蚌埠市2015届高三年级第一次教学质量检查考试数 学(文史类)参考答案及评分标准一、选择题:本题有10小题,每小题5分,共50分。
高一数学期中试卷一、选择题(每题5分)1. 下列说法正确的是()A. 任何一个集合必有两个子集B. 无限集的真子集可以是无限集C. 我校建校以来毕业的所有优秀学生可以构成集合D. 函数是两个非空集合构成的映射【答案】B【解析】由于空集只有它本身一个子集,故选项A错;选项B显然正确;由“优秀学生”标准不统一,概念不明确,故选项C错;由函数概念知,函数是两个非空数集构成的映射,故选项D错,所以答案选B.2. 下列说法不正确的是()A. 定义域和对应关系都相同,则两个函数相同B. 定义域不同,则两个函数不同C. 定义域和值域都分别相同,则两个函数相同D. 对应关系相同,则两个函数可能不同【答案】C【解析】由两个函数相同的定义:如果两个函数的定义域相同,并且对应关系完全一则是称两个函数相同,因此,说法C不正确,故选C.3. 下列四类函数中,具有性质“对任意的,函数满足”的是()A. 幂函数B. 对数函数C. 指数函数D. 一次函数【答案】B【解析】在选项A中,取,则,而,显然不满足题意;在选项B中,取,则,而,显然满足题意;选项C中,取,则,而,显然不满足题意;选项D 中,取,则,而,显然不满足题意.故选B.4. 已知的单调递增区间为,则的取值是()A. B. C. D.【答案】B【解析】由已知,函数的对称轴为,且开口向上,则,解得,故选B.5. 下列说法正确的是()A. 幂函数一定是奇函数或偶函数B. 图像不经过(-1,1)的幂函数一定不是偶函数C. 任意两个幂函数都有两个以上交点D. 奇函数的图像一定过坐标原点【答案】B【解析】说法A中,取幂函数,则函数既不是奇函数也不是偶函数;说法B中,由幂函数的解析式,又过点,则可知为偶数,故此时为偶函数;说法C中,由幂函数与无交点;说法D中,由为奇函数,但其图象不过原点.故选B.6. 已知,,则的大小关系是()A. B. C. D....【答案】A【解析】由已知得,,,,所以.故选A.7. 函数的定义域为()A. B. C. D.R【答案】D8. 函数的值域为()A. B. C. D.【答案】C【解析】令,由,则,所以,又,所以函数的值域为,故选C.9. 下列说法正确的是()A. 函数的零点就是图像与轴的交点B. 函数在有零点,则C. 函数满足,则在有零点D. 函数满足,则在可以有零点【答案】D【解析】说法A中,函数的零点是图像与轴交点的横坐标,所以A错;说法B中,要确定函数是连续不断的曲线情况下才成立,所以B错;说法C与B犯同样的错;说法D显然正确,故选D.点睛:此题主要考查函数的零点的存在性的判断,属于中档题型,也是常考知识点.在应用函数零点的存在性定理中,要注意前提条件函数必须是连续不断,而且定理并不是存在零点的充要条件,判断函数零点的存在往往涉及到函数的单调性、奇偶性、极值等各方面的知识.10. 是定义在R上的函数,若均为奇函数则下列说法不正确的是()A. 一定是奇函数B. 不可能是偶函数C. 可以是偶函数D. 不可能是非奇非偶函数【答案】B【解析】选项A中,当,时,则既是奇函数也是偶函数;选项B中,两个奇函数的和不能成为偶函数,显然成立;则选项C、D均不正确,故选B.点睛:此题主要考查两个函数的和的奇偶性判断,属于中高档题型,也是常考知识点.函数的奇偶性的判断应从两个方面来进行,一是看函数的定义域是否关于原点对称(这是判断奇偶性的必要性),二是看与的关系,对于两个函数的和或差的奇偶性的判断,需要对特殊情况进行考虑,如解析中的两个函数等.二、填空题(每题5分)11. ,则=________________【答案】【解析】由题意知,,又,所以,因此.12. =_____________________________【答案】...【解析】由题意,因为,所以,又,所以,原式.13. 函数单调递增区间为_________________________【答案】【解析】由题意,函数在上为单调递增函数,而函数的单调递增区间为,所以函数的单调递增区间为.点睛:此题主要考查了复合函数单调区间的求解运算,属于中档题型,也是常考知识点.一般由函数和所构成的函数称为复合函数,首先分别求两个函数的单调区间,再根据复合函数“同增异减”的复合原则,即两个函数的单调性相同则复合函数为增,若两个函数单调性不同则复合函数为减,从而得出所求复合函数的单调区间.14. 若定义在R上的奇函数和偶函数满足则=___________________【答案】【解析】由题意知,,两式相减得.点睛:此题主要考查如何利用函数的奇偶性求函数的解析式,属于中档题型,也是常考题型.在此类问题中可将两个函数、视作两个未知数,利用两个函数的奇偶性(为奇函数,为偶函数),与原等式建立方程组,通过解方程组从而求得函数解析式.15. 设二次函数,如果,则=_________________【答案】-2【解析】由题意知,因为,所以.点睛:此题主要考查二次函数的对称性等方面的知识,属于中档题型,二次函数关于轴对称这一性质很重要,也是常考知识点,对于二次函数其对称轴为,二次函数的单调性、最值等都与对称轴的位置均有关,在本题中由于二次函数在对称两侧的单调性相反,故此时有.三、解答题(16、17、18、19各12分,20、21分别13分和14分)16. 证明:函数在上单调递减。
2014-2015学年安徽省蚌埠一中高三(上)期中数学试卷(理科)一、选择题(每题5分)1.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)已知集合A={x|y=},B={x|≤0},则A∩B=(A.[﹣1,1]B.[﹣1,2)C.[1,2) D.[﹣2,﹣1]3.(5分)已知命题p:∀x∈R,sinx≤1,则()A.¬p:∃x∈R,sinx≥1 B.¬p:∀x∈R,sinx≥1C.¬p:∃x∈R,sinx>1 D.¬p:∀x∈R,sinx>14.(5分)已知=(1,n),=(﹣1,n),若2﹣与垂直,则||=()A.1 B.C.2 D.45.(5分)设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.36.(5分)下列命题中真命题的个数是()(1)若命题p,q中有一个是假命题,则¬(p∧q)是真命题.(2)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的必要不充分条件.(3)C表示复数集,则有∀x∈C,x2+1≥1.A.0 B.1 C.2 D.37.(5分)将函数y=sin2x﹣cos2x的图象向右平移个单位长度,所得图象对应的函数g(x)()A.由最大值,最大值为B.对称轴方程是C.是周期函数,周期D.在区间上单调递增8.(5分)已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lgx.设,,则()A.a<b<c B.b<a<c C.c<b<a D.c<a<b9.(5分)若f(x)是定义在R上的可导函数,且满足(x﹣1)f′(x)≥0,则必有()A.f(0)+f(2)<2f(1) B.f(0)+f(2)>2f(1) C.f(0)+f(2)≤2f (1)D.f(0)+f(2)≥2f(1)10.(5分)现有四个函数:①y=xsinx,②y=xcosx,③y=x|cosx|,④y=x•2x的部分图象如下,但顺序被打乱了,则按照从左到右将图象对应的函数序号排列正确的一组是()A.①②③④B.②①③④C.③①④②D.①④②③11.(5分)已知f(x)=若函数y=f(x)﹣k(x+1)有三个零点,则实数k的取值范围是()A.(﹣,0)B.(0,)C.(,1)D.(1,+∞)二、填空题(每题5分)12.(5分)已知||=3,||=4,(+)(+3)=33,则与的夹角为.13.(5分)函数y=sin2x+4sin2x,x∈R的值域是.14.(5分)在△ABC中,角A、B、C的对边分别为a、b、c,若a+b+c=20,三角形面积为10,A=60°,则a=.15.(5分)曲线C的参数方程是(θ为参数,且θ∈(π,2π)),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线D的方程为,取线C与曲线D的交点为P,则过交点P且与曲线C相切的极坐标方程是.16.(5分)设f(x)=log3(x+6)的反函数为f﹣1(x),若〔f﹣1(m)+6〕〔f﹣1(n)+6〕=27,则f(m+n)=.三、解答题17.(12分)集合,B={y|y=asinθ,,a>0}(1)求集合A和B;(2)若A∩B=∅,求a的取值范围.18.(14分)已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值;(2)证明:函数f(x)在R上是减函数;(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.19.(14分)已知函数f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<,且y=f (x)的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).(1)求φ;(2)计算f(1)+f(2)+…+f(2014)的值.20.(14分)在△ABC中,a,b,c分别为角A,B,C所对的边,向量=(2a+c,b),=(cosB,cosC),且,垂直.(Ⅰ)确定角B的大小;(Ⅱ)若∠ABC的平分线BD交AC于点D,且BD=1,设BC=x,BA=y,试确定y 关于x的函数式,并求边AC长的取值范围.21.(16分)已知函数f(x)=a x+x2﹣xlna(a>0,a≠1).(Ⅰ)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;(Ⅱ)若函数y=|f(x)﹣t|﹣1有三个零点,求t的值;(Ⅲ)若存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,试求a的取值范围.2014-2015学年安徽省蚌埠一中高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(每题5分)1.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:复数==1﹣i,复数对应点为(1,﹣1)在第四象限.故选:D.2.(5分)已知集合A={x|y=},B={x|≤0},则A∩B=(A.[﹣1,1]B.[﹣1,2)C.[1,2) D.[﹣2,﹣1]【解答】解:集合A={x|x2﹣2x﹣3≥0}={x|x≤﹣1或x≥3},B={x|﹣2≤x<2},利用集合的运算可得:A∩B={x|﹣2≤x≤﹣1}.故选:D.3.(5分)已知命题p:∀x∈R,sinx≤1,则()A.¬p:∃x∈R,sinx≥1 B.¬p:∀x∈R,sinx≥1C.¬p:∃x∈R,sinx>1 D.¬p:∀x∈R,sinx>1【解答】解:∵¬p是对p的否定∴¬p:∃x∈R,sinx>1故选:C.4.(5分)已知=(1,n),=(﹣1,n),若2﹣与垂直,则||=()A.1 B.C.2 D.4【解答】解:∵=(1,n),=(﹣1,n),∴2﹣=(3,n),∵2﹣与b垂直∴∴||=2故选:C.5.(5分)设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.3【解答】解:f(f(2))=f(log3(22﹣1))=f(1)=2e1﹣1=2,故选C.6.(5分)下列命题中真命题的个数是()(1)若命题p,q中有一个是假命题,则¬(p∧q)是真命题.(2)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的必要不充分条件.(3)C表示复数集,则有∀x∈C,x2+1≥1.A.0 B.1 C.2 D.3【解答】解:(1)真命题,若p,q中有一个为假命题,则p∧q为假命题,所以¬(p∧q)为真命题;(2)真命题,在△ABC中,若cosA+sinA=cosB+sinB,则(cosA+sinA)2=(cosB+sinB)2,∴1+2sinAcosA=1+2sinBcosB,∴sin2A=sin2B;∵A,B中必有一个是锐角,不妨设A是锐角,∴2A=2B,或2A=180°﹣2B,∴A=B,或A+B=90°;∴由cosA+sinA=cosB+sinB不一定得出C=90°,而C=90°一定得到cosA+sinA=cosB+sinB,所以“cosA+sinA=cosB+sinB”是“C=90°”的必要不充分条件;(3)假命题,x是复数,不妨设x=i,则i2=﹣1,∴x2+1=0<1;∴为真命题的个数为:2.故选:C.7.(5分)将函数y=sin2x﹣cos2x的图象向右平移个单位长度,所得图象对应的函数g(x)()A.由最大值,最大值为B.对称轴方程是C.是周期函数,周期D.在区间上单调递增【解答】解:化简函数得,所以将函数y=sin2x﹣cos2x的图象向右平移个单位长度,所得图象对应的函数g(x)=2sin[2(x﹣)﹣],即,易得最大值是2,周期是π,故A,C均错;由,得对称轴方程是,故B错;由,令k=0,故D正确.故选:D.8.(5分)已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lgx.设,,则()A.a<b<c B.b<a<c C.c<b<a D.c<a<b【解答】解:已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lgx.则=﹣lg>0,=﹣lg>0,=lg<0,又lg>lg∴0<﹣lg<﹣lg∴c<a<b,故选:D.9.(5分)若f(x)是定义在R上的可导函数,且满足(x﹣1)f′(x)≥0,则必有()A.f(0)+f(2)<2f(1) B.f(0)+f(2)>2f(1) C.f(0)+f(2)≤2f (1)D.f(0)+f(2)≥2f(1)【解答】解:∵(x﹣1)f'(x)≥0∴x>1时,f′(x)≥0;x<1时,f′(x)≤0∴f(x)在(1,+∞)为增函数;在(﹣∞,1)上为减函数∴f(2)≥f(1)f(0)≥f(1)∴f(0)+f(2)≥2f(1)故选:D.10.(5分)现有四个函数:①y=xsinx,②y=xcosx,③y=x|cosx|,④y=x•2x的部分图象如下,但顺序被打乱了,则按照从左到右将图象对应的函数序号排列正确的一组是()A.①②③④B.②①③④C.③①④②D.①④②③【解答】解:研究发现①是一个偶函数,其图象关于y轴对称,故它对应第一个图象②③都是奇函数,但②在y轴的右侧图象在x轴上方与下方都存在,而③在y轴右侧图象只存在于x轴上方,故②对应第三个图象,③对应第四个图象,④与第二个图象对应,易判断.故按照从左到右与图象对应的函数序号①④②③故选:D.11.(5分)已知f(x)=若函数y=f(x)﹣k(x+1)有三个零点,则实数k的取值范围是()A.(﹣,0)B.(0,)C.(,1)D.(1,+∞)【解答】解:y=f(x)﹣k(x+1)=0得f(x)=k(x+1),设y=f(x),y=k(x+1),在同一坐标系中作出函数y=f(x)和y=k(x+1)的图象如图:因为当x<0时,函数f(x)=e﹣x﹣e x单调递减,且f(x)>0.由图象可以当直线y=k(x+1)与相切时,函数y=f(x)﹣k(x+1)有两个零点.下面求切线的斜率.由得k2x2+(2k2﹣1)x+k2=0,当k=0时,不成立.由△=0得△=(2k2﹣1)2﹣4k2⋅k2=1﹣4k2=0,解得,所以k=或k=(不合题意舍去).所以要使函数y=f(x)﹣k(x+1)有三个零点,则0<k.故选:B.二、填空题(每题5分)12.(5分)已知||=3,||=4,(+)(+3)=33,则与的夹角为120°.【解答】解:因为(+)(+3)=33,即(+)(+3)=++,又由所以=.所以120°;故答案为120°.13.(5分)函数y=sin2x+4sin2x,x∈R的值域是[2﹣,2+] .【解答】解:化简可得y=sin2x+4sin2x=sin2x+4•=sin2x﹣2cos2x+2=sin(2x﹣θ)+2,其中tanθ=4,∵sin(2x﹣θ)的值域为[﹣1,1],∴y=sin(2x﹣θ)+2的值域为[2﹣,2+]故答案为:[2﹣,2+]14.(5分)在△ABC中,角A、B、C的对边分别为a、b、c,若a+b+c=20,三角形面积为10,A=60°,则a=7.=bcsinA=bcsin60°【解答】解:由题意可得,S△ABC∴bcsin60°=10∴bc=40∵a+b+c=20∴20﹣a=b+c.由余弦定理可得,a2=b2+c2﹣2bccos60°=(b+c)2﹣3bc=(20﹣a)2﹣120解得a=7.故答案为:7.15.(5分)曲线C的参数方程是(θ为参数,且θ∈(π,2π)),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线D的方程为,取线C与曲线D的交点为P,则过交点P且与曲线C相切的极坐标方程是ρsinθ=﹣2.【解答】解:曲线D的方程为,展开化为:=0,即直线D的普通方程为x+y=0,又曲线C的参数方程是,化为(x﹣2)2+y2=4,曲线C是圆心为C(2,0),半径为2的半圆,注意到θ∈(π,2π),∴y<0,联立方程组得,解之得,故交点P的坐标为(2,﹣2).过交点P且与曲线C相切的直线的普通方程是y=﹣2,对应的极坐标方程为ρsinθ=﹣2.16.(5分)设f(x)=log3(x+6)的反函数为f﹣1(x),若〔f﹣1(m)+6〕〔f﹣1(n)+6〕=27,则f(m+n)=2.【解答】解:∵f﹣1(x)=3x﹣6故〔f﹣1(m)+6〕•〔f﹣1(x)+6〕=3m•3n =3m+n =27,∴m+n=3,∴f(m+n)=log3(3+6)=2.故答案为2.三、解答题17.(12分)集合,B={y|y=asinθ,,a>0}(1)求集合A和B;(2)若A∩B=∅,求a的取值范围.【解答】解:(1)由集合A中的不等式变形得:≥0,可化为(x﹣4)(x+3)≥0,且x+3≠0,解得:x≥4或x<﹣3,∴A=(﹣∞,﹣3)∪[4,+∞);由集合B中的函数y=asinθ(a>0),θ∈[﹣,],得到﹣≤sinθ≤1,∴﹣a≤y=asinθ≤a,∴B=[﹣a,a];(2)∵A∩B=∅,∴,解得:a<4,则a的范围为a<4.18.(14分)已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值;(2)证明:函数f(x)在R上是减函数;(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.【解答】解:(1)因为f(x)是奇函数,函数的定义域为R,∴f(0)=0,即=0,解得:b=1,f(﹣1)=﹣f(1),即=﹣,解得:a=2证明:(2)由(1)得:f(x)=,设x1<x2,则f(x1)﹣f(x2)=﹣=,∵y=2x在实数集上是增函数且函数值恒大于0,故>0,>0,>0.即f(x1)﹣f(x2)>0.∴f(x)在R上是单调减函数;(3)由(2)知f(x)在(﹣∞,+∞)上为减函数.又因为f(x)是奇函数,所以f(t2﹣2t)+f(2t2﹣k)<0,等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),因为f(x)为减函数,由上式可得:t2﹣2t>k﹣2t2.即对一切t∈R有:3t2﹣2t﹣k>0,从而判别式△=4+12k<0⇒k<﹣.所以k的取值范围是k<﹣.19.(14分)已知函数f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<,且y=f (x)的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).(1)求φ;(2)计算f(1)+f(2)+…+f(2014)的值.【解答】解:(1)y=Asin2(ωx+φ)=﹣cos(2ωx+2φ),∵y=f(x)的最大值为2,A>0.∴A=2.又∵其图象相邻两对称轴间的距离为2,ω>0,∴=2×2,ω=,∴f(x)=1﹣cos(x+2φ)=1﹣cos(x+2φ),∵y=f(x)过(1,2)点,∴cos(+2φ)=﹣1,∴+2φ=2kπ+π,k∈Z,∴2φ=2kπ+,k∈Z,∴φ=kπ+,k∈Z,又∵0<φ<,∴φ=.(2)根据(1)知,函数的周期为4,∴f(1)+f(2)+f(3)+f(4)=2+1+0+1=4.又∵y=f(x)的周期为4,2014=4×503+2,∴f(1)+f(2)+…+f(2014)=4×503+f(1)+f(2)=2012+3=2015.20.(14分)在△ABC中,a,b,c分别为角A,B,C所对的边,向量=(2a+c,b),=(cosB,cosC),且,垂直.(Ⅰ)确定角B的大小;(Ⅱ)若∠ABC的平分线BD交AC于点D,且BD=1,设BC=x,BA=y,试确定y 关于x的函数式,并求边AC长的取值范围.【解答】解:(I)∵⊥,∴(2a+c)cosB+bcosC=0,在△ABC中,由正弦定理得:,∴a=ksinA,b=ksinB,c=ksinC,代入得k[(2sinA+sinC)cosB+sinBcosC]=0,∴2sinAcosB+sin(B+C)=0,即sinA(2cosB+1)=0.∵A,B∈(0,π),∴sinA≠0,∴,解得B=.(II)∵S=S△ABD+S△BCD,,S△ABD==,△ABC,∴xy=x+y,∴.在△ABC中,由余弦定理得:=x2+y2+xy=(x+y)2﹣xy=(x+y)2﹣(x+y)=.∵,x>0,y>0,∴x+y≥4,∴,∴.又AC<x+y.∴AC的取值范围是:AC∈.21.(16分)已知函数f(x)=a x+x2﹣xlna(a>0,a≠1).(Ⅰ)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;(Ⅱ)若函数y=|f(x)﹣t|﹣1有三个零点,求t的值;(Ⅲ)若存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,试求a的取值范围.【解答】解:(Ⅰ)∵函数f(x)=a x+x2﹣xlna,∴f′(x)=a x lna+2x﹣lna=2x+(a x ﹣1)lna,由于a>1,故当x∈(0,+∞)时,lna>0,a x﹣1>0,所以f′(x)>0,故函数f(x)在(0,+∞)上单调递增.(Ⅱ)当a>0,a≠1时,因为f′(0)=0,且f(x)在(0,+∞)上单调递增,故f′(x)=0有唯一解x=0.所以x,f′(x),f(x)的变化情况如下表所示:又函数y=|f(x)﹣t|﹣1有三个零点,所以方程f(x)=t±1有三个根,即y=f(x)的图象与两条平行于x轴的两条直线y=t±1共有三个交点.不妨取a>1,y=f(x)在(﹣∞,0)递减,在(0,+∞)递增,极小值f(0)=1也是最小值,当x→±∞时,f(x)→+∞.∵t﹣1<t+1,∴f(x)=t+1有两个根,f(x)=t﹣1只有一个根.∴t﹣1=f min(x)=f(0)=1,∴t=2.(Ⅲ)因为存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,所以当x∈[﹣1,1]时,|(f(x))max﹣(f(x))min|=(f(x))max﹣(f(x))≥e﹣1,min由(Ⅱ)知,f(x)在[﹣1,0]上递减,在[0,1]上递增,所以当x∈[﹣1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(﹣1),f(1)},而,记,因为(当t=1时取等号),所以在t∈(0,+∞)上单调递增,而g(1)=0,所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,也就是当a>1时,f(1)>f(﹣1),当0<a<1时,f(1)<f(﹣1).综合可得,①当a>1时,由f(1)﹣f(0)≥e﹣1,可得a﹣lna≥e﹣1,求得a ≥e.②当0<a<1时,由,综上知,所求a的取值范围为(0,]∪[e,+∞).赠送—高中数学知识点【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号n a -0的n 次方根是0;负数a 没有n 次方根.n a n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0) nn a a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mn m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质 (4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()n a a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质(5)对数函数图象定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<变化对 图象的影响在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.x O(1,0)xO (1,0)。
2014-2015学年安徽省蚌埠五中、蚌埠十二中联考高三(上)期中数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的表格内(每小题5分,共50分).1.已知集合M={1,2,3},N={2,3,4},则M∩N=()A. {2,3} B. {1,2,3,4} C. {1,4} D.∅2.已知a>b,则下列不等式一定成立的是()A. a﹣3>b﹣3 B. ac>bc C.< D. a+2>b+33.函数y=x+(x>0)的最小值是()A. 1 B. 2 C.﹣2 D.以上都不对4.函数f(x)=x+lnx的零点所在的大致区间为()A.(0,1) B.(1,2) C.(1,e) D.(2,e)5.若,则值为()A.﹣ B. C. D.6.若a∈R,则“a2>a”是“a>1”的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充要条件7.下列说法中正确的是()①f(x)=x0与g(x)=1是同一个函数;②y=f(x)与y=f(x+1)有可能是同一个函数;③y=f(x)与y=f(t)是同一个函数;④定义域和值域相同的函数是同一个函数.A.①② B.②③ C.②④ D.①③8.已知函数f(x)是定义在实数集R上的偶函数,则下列结论一定成立的是()A.∀x∈R,f(x)>f(﹣x) B.∃x0∈R,f(x0)>f(﹣x0)C.∀x∈R,f(x)f(﹣x)≥0 D.∃x0∈R,f(x0)f(﹣x0)<09.已知函数f(x)=2x﹣2,则函数y=|f(x)|的图象可能是()A. B.C. D.10.下列命题中正确的是()A.若命题P为真命题,命题q为假命题,则命题“p∧q”为真命题B.命题“若p则q”的否命题是“若q则p”C.命题“∀x∈R,2x>0”的否定是“∀x0∈R,≤0”D.函数y=的定义域是{x|0≤x≤2}二、填空题:请把答案填在题中横线上(每小题5分,共25分).11.函数f(x)=x2﹣2x+5的定义域是x∈(﹣1,2],值域是.12.函数y=的f(x+1)单调递减区间是.13.已知f(x)=log0.5x,且f(1﹣a)<f(2a﹣1),则a的取值范围是.14.若点(1,3)和(﹣4,﹣2)在直线2x+y+m=0的两侧,则m的取值范围是.15.已知函数f(2x﹣1)的定义域是[﹣2,3],则函数f(x+1)的定义域是t.三、解答题:请写出详细过程(6小题,共75分)16.设集合U={2,3,a2+2a﹣3},A={|2a﹣1|,2},∁U A={5},求实数a的值.17.已知函数f(x)=x2﹣x﹣2lnx.①求函数f(x)在点(1,﹣)处的切线方程.②求函数f(x)的极值.18.某工厂生产一种产品的固定成本是20000元,每生产一件产品需要另外投入100元,市场销售部进行调查后得知,市场对这种产品的年需求量为1000件,且销售收入函数,其中t是产品售出的数量,且0≤t≤1000.(利润=销售收入﹣成本)(1)若x为年产量,y表示利润,求y=f(x)的解析式;(2)当年产量为多少时,工厂的利润最大,最大值为多少?19.已知定义在R上的函数f(x)对所有的实数m,n都有f(m+n)=f(m)+f(n),且当x>0时,f(x)<0成立,f(2)=﹣4.①求f(0),f(1),f(3)的值.②证明函数f(x)在R上单调递m=n=0减.③解不等式f(x2)+f(2x)<﹣6.20.已知不等式mx2﹣2x﹣m+1<0.(1)若对于所有的实数x,不等式恒成立,求m的取值范围;(2)设不等式对于满足|m|≤2的一切m的值都成立,求x的取值范围.21.已知函数f(x)=ax3﹣(a+2)x2+6x+b在x=2处取得极值.(Ⅰ)求a的值及f(x)的单调区间;(Ⅱ)若x∈[1,4]时,不等式f(x)>b2恒成立,求b的取值范围.2014-2015学年安徽省蚌埠五中、蚌埠十二中联考高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的表格内(每小题5分,共50分).1.已知集合M={1,2,3},N={2,3,4},则M∩N=()A. {2,3} B. {1,2,3,4} C. {1,4} D.∅考点:交集及其运算.专题:集合.分析:由M与N,求出两集合的交集即可.解答:解:∵M={1,2,3},N={2,3,4},∴M∩N={2,3}.故选:A.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知a>b,则下列不等式一定成立的是()A. a﹣3>b﹣3 B. ac>bc C.< D. a+2>b+3考点:不等式的基本性质.专题:不等式的解法及应用.分析:由a>b,可得a﹣3>b﹣3.即可得出.解答:解:∵a>b,∴a﹣3>b﹣3.故选:A.点评:本题考查了不等式的基本性质,属于基础题.3.函数y=x+(x>0)的最小值是()A. 1 B. 2 C.﹣2 D.以上都不对考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式的性质即可得出.解答:解:∵x>0,∴y=x+=2,当且仅当x=1时取等号.∴函数y=x+(x>0)的最小值是2.故选:B.点评:本题考查了基本不等式的性质,属于基础题.4.函数f(x)=x+lnx的零点所在的大致区间为()A.(0,1) B.(1,2) C.(1,e) D.(2,e)考点:函数零点的判定定理.专题:计算题.分析:对f(x)进行求导,研究其单调性和极值问题,再利用函数的零点定理进行判断;解答:解:∵函数f(x)=x+lnx,(x>0)∴f′(x)=1+=,令f′(x)=0,∴x=﹣1,若x>0,f′(x)>0,f(x)为增函数,f()=+ln=﹣1<0,f(1)=1>0,f(x)在(,1)存在唯一的零点,∵(,1)⊆(0,1),∴函数f(x)=x+lnx的零点所在的大致区间(0,1),故选A;点评:此题主要考查利用导数研究函数的单调性及其应用,以及函数零点的判定,是一道基础题;5.若,则值为()A.﹣ B. C. D.考点:函数的值;分段函数的解析式求法及其图象的作法.专题:计算题.分析:由先把代入“﹣x+3”求出f()的值,再根据此值的大小代入“x+1”,求出的值.解答:解:由题意知,,∴f()=﹣+3=,则f[f()]=+1=.故选B.点评:本题是分段函数求值问题,对应多层求值按“由里到外”的顺序逐层求值,一定要注意自变量的值所在的范围,然后代入相应的解析式求解.6.若a∈R,则“a2>a”是“a>1”的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据不等式的解法以及充分条件和必要条件的定义进行判断即可.解答:解:由a2>a得a>1或a<0,则“a2>a”是“a>1”的必要不充分条件,故选:B点评:本题主要考查充分条件和必要条件的判断,根据不等式的关系是解决本题的关键.7.下列说法中正确的是()①f(x)=x0与g(x)=1是同一个函数;②y=f(x)与y=f(x+1)有可能是同一个函数;③y=f(x)与y=f(t)是同一个函数;④定义域和值域相同的函数是同一个函数.A.①② B.②③ C.②④ D.①③考点:判断两个函数是否为同一函数.专题:函数的性质及应用.分析:本题通过对函数的定义域、值域、解析式的研究,从而判断选项中的函数是否为同一函数,不是同一函数的,只要列举一个原因即可.解答:解:命题①,f(x)=x0x≠0,g(x)=1中,x∈R,故不是同一个函数;命题②,若f(x)=1,则f(x+1)=1,y=f(x),故y=f(x+1)有可能是同一个函数,该选项正确;命题③,y=f(x)与y=f(t)解析式相同,定义域一致,y=f(x)与y=f(t)是同一个函数;命题④,函数y=x与y=x+1,定义域和值域均为R,但由于对应法则不同,故浊相同的函数,选项④不正确.故选B.点评:本题考查了函数的表示、函数的定义域、值域、解析式,本题难度不大,属于基础题.8.已知函数f(x)是定义在实数集R上的偶函数,则下列结论一定成立的是()A.∀x∈R,f(x)>f(﹣x) B.∃x0∈R,f(x0)>f(﹣x0)C.∀x∈R,f(x)f(﹣x)≥0 D.∃x0∈R,f(x0)f(﹣x0)<0考点:函数奇偶性的判断.专题:计算题.分析:由偶函数的性质f(﹣x)=f(x)即可对A,B,C,D四个选项逐一判断,即可得到答案.解答:解:∵函数f(x)是定义在实数集R上的偶函数,∴f(﹣x)=f(x),故∀x∈R,f(x)>f(﹣x)错误,即A错误;对于B,若f(x)=0,则不存在x0∈R,f(x0)>f(﹣x0),故B错误;对于C,∀x∈R,f(x)f(﹣x)≥0,正确;对于D,若f(x)=0,则不存在x0∈R,f(x0)f(﹣x0)<0,故D错误;故选C.点评:本题考查函数奇偶性的判断,着重考查偶函数的概念与性质的应用,考查特称命题与全称命题,属于基础题.9.已知函数f(x)=2x﹣2,则函数y=|f(x)|的图象可能是()A. B. C.D.考点:指数函数的图像变换.专题:数形结合.分析:因为y=|f(x)|=,故只需作出y=f(x)的图象,将x轴下方的部分做关于x轴的对称图象即可.解答:解:先做出y=2x的图象,在向下平移两个单位,得到y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象.故选B点评:本题考查含有绝对值的函数的图象问题,先作出y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象.10.下列命题中正确的是()A.若命题P为真命题,命题q为假命题,则命题“p∧q”为真命题B.命题“若p则q”的否命题是“若q则p”C.命题“∀x∈R,2x>0”的否定是“∀x0∈R,≤0”D.函数y=的定义域是{x|0≤x≤2}考点:命题的真假判断与应用.专题:简易逻辑.分析:利用复合命题的真假判断A的正误;命题的否命题的形式判断B的正误;命题的分判断C的正误;求出函数的定义域判断D的正误.解答:解:对于A,若命题P为真命题,命题q为假命题,则命题“p∧q”为假命题,所以A不正确;对于B,命题“若p则q”的否命题是“¬p则¬q”,显然B不正确;对于C,命题“∀x∈R,2x>0”的否定是“∃x0∈R,≤0”,显然C不正确;对于D,函数y=有意义,必须2x﹣x2≥0,解得x∈[0,2].所以函数的定义域是{x|0≤x≤2},正确.故选:D.点评:本题考查命题的真假的判断与应用,复合命题的真假,四种命题的逆否关系,特称命题与全称命题的否定,函数的定义域的求法,考查基本知识的应用.二、填空题:请把答案填在题中横线上(每小题5分,共25分).11.函数f(x)=x2﹣2x+5的定义域是x∈(﹣1,2],值域是[4,8).考点:函数的值域.专题:计算题;函数的性质及应用.分析:由题意,配方法化简f(x)=x2﹣2x+5=(x﹣1)2+4;从而求值域.解答:解:f(x)=x2﹣2x+5=(x﹣1)2+4;∵x∈(﹣1,2],∴(x﹣1)2+4∈[4,8);故答案为:[4,8).点评:本题考查了函数的值域的求法,属于基础题.12.函数y=的f(x+1)单调递减区间是(﹣∞,0] .考点:复合函数的单调性.专题:函数的性质及应用.分析:根据复合函数单调性之间的关系即可得到结论.解答:解:函数y==,则函数y==,的单调递减区间为(﹣∞,1],即函数f(x)的单调递减区间为(﹣∞,1],将函数f(x)向左平移1个单位得到f(x+1],此时函数f(x+1)单调递减区间为(﹣∞,0],故答案为:(﹣∞,0]点评:本题主要考查复合函数单调性的判断,根据复合函数之间的关系是解决本题的关键.13.已知f(x)=log0.5x,且f(1﹣a)<f(2a﹣1),则a的取值范围是.考点:函数单调性的性质.专题:函数的性质及应用.分析:根据函数的单调性得到关于a的不等式组,要注意真数大于零.解答:解:因为函数y=log0.5x是定义域内的减函数.所以由题意得.解得.故答案为点评:本题考查了利用对数函数的单调性解不等式的问题,要注意不能忽视定义域.14.若点(1,3)和(﹣4,﹣2)在直线2x+y+m=0的两侧,则m的取值范围是﹣5<m<10 .考点:简单线性规划.专题:计算题.分析:将点(1,3)和(﹣4,﹣2)的坐标代入直线方程,使它们异号,建立不等关系,求出参数m即可.解答:解:将点(1,3)和(﹣4,﹣2)的坐标代入直线方程,可得两个代数式,∵在直线2x+y+m=0的两侧∴(5+m)(﹣10+m)<0解得:﹣5<m<10,故答案为﹣5<m<10.点评:本题主要考查了简单的线性规划,属于基础题.15.已知函数f(2x﹣1)的定义域是[﹣2,3],则函数f(x+1)的定义域是[﹣6,4] t.考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据函数成立的条件,即可求出函数的定义域.解答:解:∵f(2x﹣1)的定义域是[﹣2,3],∴﹣2≤x≤3,﹣4≤2x≤6,﹣5≤2x﹣1≤5,由﹣5≤x+1≤5,得﹣6≤x≤4,即函数f(x+1)的定义域为[﹣6,4],故答案为:[﹣6,4]点评:本题主要考查函数定义域的求法,要求熟练掌握复合函数定义域之间的关系,比较基础.三、解答题:请写出详细过程(6小题,共75分)16.设集合U={2,3,a2+2a﹣3},A={|2a﹣1|,2},∁U A={5},求实数a的值.考点:集合关系中的参数取值问题.专题:计算题.分析:根据C U A⊆U,可得a2+2a﹣3=5,求出a的值,再进行验证,即可求得实数a的值.解答:解:∵集合U={2,3,a2+2a﹣3},C U A={5},∴a2+2a﹣3=5,∴a=2或﹣4.当a=2时,A={2,3}符合题意.当a=﹣4时,A={9,3}不符合题意,舍去.故a=2.点评:本题考查集合的补集运算,考查集合的关系,明确C U A⊆U是解题的关键.17.已知函数f(x)=x2﹣x﹣2lnx.①求函数f(x)在点(1,﹣)处的切线方程.②求函数f(x)的极值.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的极值.专题:导数的综合应用.分析:①求函数的导数即可求出求函数f(x)在点(1,﹣)处的切线方程.②求函数的导数,根据函数f(x)的极值和导数之间的关系即可得到结论..解答:解:①,∴k=f'(1)=﹣2,∴所求切线方程为.②函数的导数且x>0,∴0<x<2时,f'(x)<0,当x>2时,f'(x)>0,∴函数f(x)在(0,2)单调递减,在(2,+∞),单调递增.故当x=2时,函数取得极小值f(2)=﹣2ln2.点评:本题主要考查导数的几何意义的应用,以及函数极值和导数之间的关系.考查学生的综合应用能力.18.某工厂生产一种产品的固定成本是20000元,每生产一件产品需要另外投入100元,市场销售部进行调查后得知,市场对这种产品的年需求量为1000件,且销售收入函数,其中t是产品售出的数量,且0≤t≤1000.(利润=销售收入﹣成本)(1)若x为年产量,y表示利润,求y=f(x)的解析式;(2)当年产量为多少时,工厂的利润最大,最大值为多少?考点:函数模型的选择与应用.专题:综合题.分析:(1)根据利润=销售收入﹣成本,结合销售收入函数,可得分段函数;(2)分段求出函数的最值,从而可得工厂的利润最大值.解答:解:(1)根据利润=销售收入﹣成本,当0≤x≤1000时,t=x,可得y=﹣x2+1000x﹣20000﹣100x=﹣x2+900x﹣20000当x>1000时,t=1000,y=﹣×10002+10002﹣20000﹣100x=480000﹣100x(4分)∴f(x)=( 6分)(2)当0≤x≤1000时,f(x)=﹣x2+900x﹣20000=﹣(x﹣900)2+38500∴x=900时,f(x)max=38500,当x>1000时,f(x)=480000﹣100x为减函数∴f(x)<480000﹣10000=380000(11分)∴当年产量为900件时,工厂的利润最大,最大值为385000元.(12分)点评:本题考查函数模型的构建,考查函数的最值,解题的关键是正确构建函数,确定函数的最值.19.已知定义在R上的函数f(x)对所有的实数m,n都有f(m+n)=f(m)+f(n),且当x>0时,f(x)<0成立,f(2)=﹣4.①求f(0),f(1),f(3)的值.②证明函数f(x)在R上单调递m=n=0减.③解不等式f(x2)+f(2x)<﹣6.考点:抽象函数及其应用;函数单调性的性质.专题:函数的性质及应用.分析:(1)利用赋值法分别求出三个函数值;(2)结合函数的单调性以及已知条件,利用构造的方法证明即可;(3)结合单调性,构造出关于x的不等式(组)求解即可.解答:解:因为函数f(x)对所有的实数m,n都有f(m+n)=f(m)+f(n).①令m=n=0得f(0)=0.令m=n=1得2f(1)=f(2)=﹣4,所以f(1)=﹣2∴f(3)=f(2)+f(1)=﹣6.②由已知得f(m+n)﹣f(m)=f(n)令x1>x2,且x1,x2∈R∴f(x1)﹣f(x2)=f(x1﹣x2),因x1>x2,∴f(x1﹣x2)<0即 f(x1)<f(x2)函数f(x)在R单调递减.③因为f(3)=﹣6,所以不等式可化为,∴f(x2+2x)<f(3),因为f(x)为为R上的减函数,所以x2+2x>3,解得x>1或x<﹣3.点评:本题考查了利用函数的单调性的定义解决函数的单调性问题,利用赋值法求函数值的方法.属于中档题,要注意将函数与方程、不等式有机结合起来.20.已知不等式mx2﹣2x﹣m+1<0.(1)若对于所有的实数x,不等式恒成立,求m的取值范围;(2)设不等式对于满足|m|≤2的一切m的值都成立,求x的取值范围.考点:一元二次不等式的应用.专题:不等式的解法及应用.分析:(1)当m=0时,经检验不满足条件;解得m≠0时,设f(x)=mx2﹣2x﹣m+1,则由题意可得有,解得 m∈∅.综合可得结论.(2)由题意﹣2≤m≤2,设g(m)=(x2﹣1)m+(1﹣2x),则由题意可得,由此求得x的取值范围.解答:解:(1)当m=0时,1﹣2x<0,即当时不等式恒成立,不满足条件.…(2分)解得m≠0时,设f(x)=mx2﹣2x﹣m+1,由于f(x)<0恒成立,则有,解得 m∈∅.综上可知,不存在这样的m使不等式恒成立.…(6分)(2)由题意﹣2≤m≤2,设g(m)=(x2﹣1)m+(1﹣2x),则由题意可得g(m)<0,故有,即,解之得,所以x的取值范围为.…(12分)点评:本题主要考查一元二次不等式的应用,函数的恒成立问题,体现了分类讨论和转化的数学思想,属于中档题.21.已知函数f(x)=ax3﹣(a+2)x2+6x+b在x=2处取得极值.(Ⅰ)求a的值及f(x)的单调区间;(Ⅱ)若x∈[1,4]时,不等式f(x)>b2恒成立,求b的取值范围.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:计算题;函数的性质及应用;导数的综合应用.分析:(Ⅰ)求出导数,由题意得,f'(2)=0,求出a的值,再令导数大于0,得增区间,令导数小于0,得减区间;(Ⅱ)x∈[1,4]时,不等式f(x)>b2恒成立即为f(x)的最小值大于b2,在[1,4]上恒成立,只要求出最小值即可.解答:解:(Ⅰ)∵函数f(x)=ax3﹣(a+2)x2+6x+b,∴f'(x)=3ax2﹣3(a+2)x+6,∴f'(2)=12a﹣6a﹣12+6=0,∴a=1.由f'(x)=3x2﹣9x+6>0得x>2或x<1,由f'(x)=3x2﹣9x+6<0得1<x<2,∴函数f(x)的单调增区间为(﹣∞,1)、(2,+∞),单调减区间为(1,2).(Ⅱ),当x∈[1,4]时,不等式f(x)>b2恒成立,即有f(x)的最小值大于b2,∵f(x)min=f(2)=2+b,∴2+b>b2,﹣1<b<2,∴b的取值范围(﹣1,2).点评:本题考查导数的综合应用:求单调区间、求极值、求最值,考查不等式的恒成立问题转化为求函数的最值问题,属于中档题.。
2015-2016年度高三第一学期数学期中测试一、选择题(本大题有12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的并填在答题卡上)1.设A ,B 是两个集合,则“A B A =I ”是“A B Í”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 2.设命题p :2,2n n N n $?,则p Ø为( )A .2,2n n N n "? B.2,2n n N n $危 C. 2,2n n N n "危 D.2,=2n n N n $?3.下列函数为奇函数的是( ) A .y x =B .sin y x = C .cos y x = D .x x y e e -=-4.要得到函数sin 43y x p骣琪=-琪桫的图象,只需要将函数sin 4y x =的图象( ) A.向左平移12π个单位 B.向右平移12π个单位C.向左平移3π个单位 D.向右平移3π个单位 5.已知菱形ABCD 的边长为a ,60ABC ?o,则BD CD ?u u u r u u u r( )A.232a -B.234a -C. 234aD. 232a 6.函数()f x =cos()x w j +的部分图像如图所示,则()f x 的单调递减区间为( )A.13(,),44k k k Z p p -+?B.13(2,2),44k k k Z p p -+? C.13(,),44k k k Z -+? D.13(2,2),44k k k Z -+?7..在ABC D 中,已知,a c bb c a c-=-+则角A 的值是( )A . 30oB .60oC .120oD .150o8.设函数211log (2),1,()2,1,x x x f x x -ì+-<ï=í³ïî,2(2)(log 12)f f -+=( )A .3B .6C .9D .12 9.若非零向量a ,b 满足|a ||b |,且(a -b )^(3a +2b ),则a 与b 的夹角为 ( ) A.4πB.2πC.34πD.π 10.已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为( )A.a b c <<B.a c b <<C.c a b <<D.c b a << 11.已知符号函数1,0,sgn 0,0,1,0.x x x x ì>ïï==íï-<ïî ()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =-12.设函数'()f x 是奇函数()()f x x R Î的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-?UB .(1,0)(1,)-+?UC .(,1)(1,0)-?-UD .(0,1)(1,)+?U 二、填空题(本大题有4小题,每小题5分,共20分。
2014-2015学年安徽省蚌埠一中高三(上)期中数学试卷(文科)一.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的..每小题5分,总分60分1.已知全集U=R,集合A={x|2x>1},B={x|﹣4<x<1},则A∩B等于()A.(0,1) B.(1,+∞) C.(﹣4,1) D.(﹣∞,﹣4)2.若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()A. B. C. D.3.已知曲线y=﹣3lnx的一条切线的斜率为﹣,则切点的横坐标为()A. 3 B. 2 C. 1 D.4.“φ=”是“函数y=sin(x+φ)为偶函数的”()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.在索契冬奥会跳台滑雪空中技巧比赛赛前训练中,甲、乙两位队员各跳一次.设命题p 是“甲落地站稳”,q是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为()A. p∨q B. p∨(¬q) C.(¬p)∧(¬q) D.(¬p)∨(¬q)6.若a=30.5,b=ln2,c=logπsin,则()A. b>a>c B. a>b>c C. c>a>b D. b>c>a7.已知函数f(x)的定义域是(0,1),那么f(2x)的定义域是()A.(0,1) B.(﹣∞,1) C.(﹣∞,0) D.(0,+∞)8.已知f(x)为偶函数,当x≥0时,f(x)=,则不等式f (x﹣1)≤的解集为()A. [,]∪[,] B. [﹣,﹣]∪[,]C. [,]∪[,] D. [﹣,﹣]∪[,]9.若函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g(x)=log a(x+k)的是()A. B. C. D.10.若幂函数的图象不过原点,且关于原点对称,则m的取值是()A. m=﹣2 B. m=﹣1 C. m=﹣2或m=﹣1 D.﹣3≤m≤﹣111.已知函数f(x)=sinx+λcosx的图象的一个对称中心是点(,0),则函数g(x)=λsinxcosx+sin2x的图象的一条对称轴是直线()A. x= B. x= C. x= D. x=﹣12.若a,b为非零实数,则以下不等式中恒成立的个数是()①;②;③;④.A. 4 B. 3 C. 2 D. 1二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在横线相应位置上.13.集合M={x||x2﹣2x|+a=0}有8个子集,则实数a的值为.14.已知函数f(x)=e x﹣2x+a有零点,则a的取值范围是.15.已知函数f(x)=则f(f())= .16.已知x≥0,y≥0,且x+y=1,则的最小值为.三.解答题:本大题共6小题,共74分.解答应写文字说明、证明过程或演算步骤.解答过程写在答题卷上的指定区域内.17.对于定义域为[0,1]的函数f(x),如果同时满足以下三个条件:①对任意的x∈[0,1],总有f(x)≥0②f(1)=1③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立;则称函数f(x)为理想函数.试证明下列三个命题:(1)若函数f(x)为理想函数,则f(0)=0;(2)函数f(x)=2x﹣1(x∈[0,1])是理想函数;(3)若函数f(x)是理想函数,假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,则f(x0)=x0.18.已知定义域为R的函数是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.19.已知函数f(x)=2cos(cos﹣sin).(Ⅰ)设x∈[﹣,],求f(x)的值域;(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c.已知c=1,f(C)=+1,且△ABC的面积为,求边a和b的长.20.设函数f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1,记f(x)≤1的解集为M,g(x)≤4的解集为N.(Ⅰ)求M;(Ⅱ)当x∈M∩N时,求函数h(x)=x2f(x)+x[f(x)]2的最大值.21.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻两对称轴之间的距离为π.(Ⅰ)求函数f(x)的表达式.(Ⅱ)若sinα+f(α)=,求的值.22.已知函数f(x)=,a∈R.(1)若函数y=f(x)在x=1处取得极值,求a的值;(2)若函数y=f(x)的图象上存在两点关于原点对称,求a的范围.2014-2015学年安徽省蚌埠一中高三(上)期中数学试卷(文科)参考答案与试题解析一.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的..每小题5分,总分60分1.已知全集U=R,集合A={x|2x>1},B={x|﹣4<x<1},则A∩B等于()A.(0,1) B.(1,+∞) C.(﹣4,1) D.(﹣∞,﹣4)考点:交集及其运算.专题:集合.分析:求出A中不等式的解集确定出A,找出A与B的交集即可.解答:解:由A中的不等式变形得:2x>1=20,解得:x>0,即A=(0,+∞),∵B=(﹣4,1),∴A∩B=(0,1).故选:A.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()A. B. C. D.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的求值.分析:利用两角和的正弦函数对解析式进行化简,由所得到的图象关于y轴对称,根据对称轴方程求出φ的最小值.解答:解:函数f(x)=sin2x+cos2x=sin(2x+)的图象向右平移φ的单位,所得图象是函数y=sin(2x+﹣2φ),图象关于y轴对称,可得﹣2φ=kπ+,即φ=﹣,当k=﹣1时,φ的最小正值是.故选:C.点评:本题考查三角函数的图象变换,考查正弦函数图象的特点,属于基础题.3.已知曲线y=﹣3lnx的一条切线的斜率为﹣,则切点的横坐标为()A. 3 B. 2 C. 1 D.考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出原函数的导函数,设出斜率为的切线的切点为(x0,y0),由函数在x=x0时的导数等于2求出x0的值,舍掉定义域外的x0得答案.解答:解:由y=﹣3lnx,得,设斜率为2的切线的切点为(x0,y0),则.由,解得:x0=﹣3或x0=2.∵函数的定义域为(0,+∞),∴x0=2.故选:B.点评:考查了利用导数求曲线上过某点切线方程的斜率,考查了基本初等函数的导数公式,是中档题.4.“φ=”是“函数y=sin(x+φ)为偶函数的”()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件考点:正弦函数的奇偶性;必要条件、充分条件与充要条件的判断.专题:计算题.分析:通过φ=⇒函数y=sin(x+φ)为偶函数,以及函数y=sin(x+φ)为偶函数推不出φ=,判断充要条件即可.解答:解:因为φ=⇒函数y=sin(x+φ)=cosx为偶函数,所以“φ=”是“函数y=sin (x+φ)为偶函数”充分条件,“函数y=sin(x+φ)为偶函数”所以“φ=kπ+,k∈Z”,所以“φ=”是“函数y=sin(x+φ)为偶函数”的充分不必要条件.故选A.点评:本题是基础题,考查正弦函数的奇偶性,必要条件、充分条件与充要条件的判断,正确计算函数是偶函数的条件是解题的关键.5.在索契冬奥会跳台滑雪空中技巧比赛赛前训练中,甲、乙两位队员各跳一次.设命题p 是“甲落地站稳”,q是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为()A. p∨q B. p∨(¬q) C.(¬p)∧(¬q) D.(¬p)∨(¬q)考点:复合命题.专题:简易逻辑.分析:命题“至少有一位队员落地没有站稳”表示“甲落地没有站稳”与“乙落地没有站稳至少一个发生”.解答:解:设命题p是“甲落地站稳”,q是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”表示¬p与¬q至少一个发生,即¬p与¬q至少一个发生,表示为(¬)p∨(¬q).故选:D点评:本题考查用简单命题表示复合命题的非命题,属于基础题6.若a=30.5,b=ln2,c=logπsin,则()A. b>a>c B. a>b>c C. c>a>b D. b>c>a考点:对数值大小的比较.专题:函数的性质及应用.分析:利用对数函数和指数函数的单调性比较大小.解答:解:∵a=30.5>30=1,0<ln1<b=ln2<lne=1,c=logπsin<logπ1=0,∴a>b>c.故选:B.点评:本题考查对数值大小的比较,是基础题,解题时要认真审题,注意对数函数和指数函数的单调性的合理运用.7.已知函数f(x)的定义域是(0,1),那么f(2x)的定义域是()A.(0,1) B.(﹣∞,1) C.(﹣∞,0) D.(0,+∞)考点:函数的定义域及其求法.专题:计算题;整体思想.分析:根据函数f(x)的定义域是(0,1),而2x相当于f(x)中的x,因此得到0<2x <1,利用指数函数的单调性即可求得结果.解答:解:∵函数f(x)的定义域是(0,1),∴0<2x<1,解得x<0,故选C.点评:此题主要考查了函数的定义域和指数函数的单调性,体现了整体代换的思想,是一道基础题.8.已知f(x)为偶函数,当x≥0时,f(x)=,则不等式f (x﹣1)≤的解集为()A. [,]∪[,] B. [﹣,﹣]∪[,]C. [,]∪[,] D. [﹣,﹣]∪[,]考点:分段函数的应用.专题:不等式的解法及应用.分析:先求出当x≥0时,不等式f(x)≤的解,然后利用函数的奇偶性求出整个定义域上f(x)≤的解,即可得到结论.解答:解:当x∈[0,],由f(x)=,即cosπx=,则πx=,即x=,当x>时,由f(x)=,得2x﹣1=,解得x=,则当x≥0时,不等式f(x)≤的解为≤x≤,(如图)则由f(x)为偶函数,∴当x<0时,不等式f(x)≤的解为﹣≤x≤﹣,即不等式f(x)≤的解为≤x≤或﹣≤x≤﹣,则由≤x﹣1≤或﹣≤x﹣1≤﹣,解得≤x≤或≤x≤,即不等式f(x﹣1)≤的解集为{x|≤x≤或≤x≤},故选:A.点评:本题主要考查不等式的解法,利用分段函数的不等式求出x≥0时,不等式f(x)≤的解是解决本题的关键.9.若函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g(x)=log a(x+k)的是()A. B. C. D.考点:奇偶性与单调性的综合;对数函数的图像与性质.专题:数形结合.分析:由函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则由复合函数的性质,我们可得k=1,a>1,由此不难判断函数的图象.解答:解:∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(a x﹣a﹣x)=0则k=1又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选C点评:若函数在其定义域为为奇函数,则f(﹣x)+f(x)=0,若函数在其定义域为为偶函数,则f(﹣x)﹣f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.10.若幂函数的图象不过原点,且关于原点对称,则m的取值是()A. m=﹣2 B. m=﹣1 C. m=﹣2或m=﹣1 D.﹣3≤m≤﹣1考点:幂函数的性质.分析:根据函数为幂函数,可知函数的系数为1,从而可求m的取值,再根据具体的幂函数,验证是否符合图象不过原点,且关于原点对称即可.解答:解:由题意,m2+3m+3=1∴m2+3m+2=0∴m=﹣1或m=﹣2当m=﹣1时,幂函数为y=x﹣4,图象不过原点,且关于y轴对称,不合题意;当m=﹣2时,幂函数为y=x﹣3,图象不过原点,且关于原点对称,符合题意;故选A.点评:本题以幂函数性质为载体,考查幂函数的解析式的求解.函数为幂函数,可知函数的系数为1是解题的关键.11.已知函数f(x)=sinx+λcosx的图象的一个对称中心是点(,0),则函数g(x)=λsinxcosx+sin2x的图象的一条对称轴是直线()A. x= B. x= C. x= D. x=﹣考点:两角和与差的正弦函数;正弦函数的对称性.专题:三角函数的求值.分析:由对称中心可得λ=﹣,代入g(x)由三角函数公式化简可得g(x)=﹣sin (2x+),令2x+=kπ+解x可得对称轴,对照选项可得.解答:解:∵f(x)=sinx+λcosx的图象的一个对称中心是点(,0),∴f()=sin+λcos=+λ=0,解得λ=﹣,∴g(x)=﹣sinxcosx+sin2x=sin2x+=﹣sin(2x+),令2x+=kπ+可得x=+,k∈Z,∴函数的对称轴为x=+,k∈Z,结合四个选项可知,当k=﹣1时x=﹣符合题意,故选:D点评:本题考查两角和与差的三角函数,涉及三角函数对称性,属中档题.12.若a,b为非零实数,则以下不等式中恒成立的个数是()①;②;③;④.A. 4 B. 3 C. 2 D. 1考点:基本不等式.专题:不等式的解法及应用.分析: a,b为非零实数,①利用(a﹣b)2≥0,展开即可得出;②由(a﹣b)2≥0,展开可得a2+b2≥2ab,2(a2+b2)≥(a+b)2,即可得出;③取a=b=﹣1,则不成立;④取ab<0,则不成立.解答:解:a,b为非零实数,①∵(a﹣b)2≥0,展开可得;②∵(a﹣b)2≥0,展开可得a2+b2≥2ab,∴2(a2+b2)≥(a+b)2,∴;③取a=b=﹣1,则不成立;④取ab<0,则不成立.综上可得:成立的只有①②.故选:C.点评:本题考查了基本不等式的性质,使用时注意“一正二定三相等”的法则,属于基础题.二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在横线相应位置上.13.集合M={x||x2﹣2x|+a=0}有8个子集,则实数a的值为﹣1 .考点:函数的零点;子集与真子集.专题:集合思想;函数的性质及应用.分析:根据集合M有8个子集,可以判断出集合M中共有3个元素,即|x2﹣2x|+a=0有3个根,转化为y=|x2﹣2x|与y=﹣a的图象有三个交点,画出图象即可解得a的值.解答:解:∵集合M={x||x2﹣2x|+a=0}有8个子集,根据集合中有n个元素,则集合有2n 个子集,∴2n=8,解得,n=3,∴集合M={x||x2﹣2x|+a=0}中有3个元素,即|x2﹣2x|+a=0有3个根,∴函数y=|x2﹣2x|与y=﹣a的图象有三个交点,作出y=|x2﹣2x|与y=﹣a的图象如右图所示,∴实数a的值a=﹣1.故答案为:﹣1.点评:本题考查了集合的子集个数以及函数的零点.如果集合中有n个元素,则集合有2n 个子集.对于方程的根问题,可以运用数形结合的思想转化为两个图象的交点的问题进行解决.属于中档题.14.已知函数f(x)=e x﹣2x+a有零点,则a的取值范围是(﹣∞,2ln2﹣2] .考点:函数零点的判定定理.专题:计算题;压轴题.分析:先讨论函数的单调性,得出函数的最值,由函数的最大值大于或等于零(或函数的最小值小于或等于零)得出a的取值范围.解答:解:f′(x)=e x﹣2,可得f′(x)=0的根为x0=ln2当x<ln2时,f′(x)<0,可得函数在区间(﹣∞,ln2)上为减函数;当x>ln2时,f′(x)>0,可得函数在区间(ln2,+∞)上为增函数,∴函数y=f(x)在x=ln2处取得极小值f(ln2)=2﹣2ln2+a,并且这个极小值也是函数的最小值,由题设知函数y=f(x)的最小值要小于或等于零,即2﹣2ln2+a≤0,可得a≤2ln2﹣2,故答案为:(﹣∞,2ln2﹣2].点评:利用导数工具讨论函数的单调性,是求函数的值域和最值的常用方法,本题可以根据单调性,结合函数的图象与x轴交点,来帮助对题意的理解.15.已知函数f(x)=则f(f())= .考点:函数的值.专题:函数的性质及应用.分析:由此得f()==﹣2,由此能求出f(f()).解答:解:∵函数f(x)=,∴f()==﹣2,f(f())=f(﹣2)=3﹣2=.故答案为:.点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.16.已知x≥0,y≥0,且x+y=1,则的最小值为 3 .考点:基本不等式.专题:导数的综合应用.分析:由已知x≥0,y≥0,且x+y=1,可得0≤x≤1,y=1﹣x.代入可得==f(x),再利用导数研究其单调性即可得出.解答:解:∵x≥0,y≥0,且x+y=1,∴0≤x≤1,y=1﹣x.∴==f(x),∴f′(x)==≥0,∴函数f(x)在[0,1]上单调递增.∴当x=0时,f(x)取得极小值即最小值3.故答案为:3.点评:本题考查了利用导数研究函数的单调性极值与最值,属于基础题.三.解答题:本大题共6小题,共74分.解答应写文字说明、证明过程或演算步骤.解答过程写在答题卷上的指定区域内.17.对于定义域为[0,1]的函数f(x),如果同时满足以下三个条件:①对任意的x∈[0,1],总有f(x)≥0②f(1)=1③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立;则称函数f(x)为理想函数.试证明下列三个命题:(1)若函数f(x)为理想函数,则f(0)=0;(2)函数f(x)=2x﹣1(x∈[0,1])是理想函数;(3)若函数f(x)是理想函数,假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,则f(x0)=x0.考点:抽象函数及其应用;函数的最值及其几何意义.专题:函数的性质及应用.分析:(1)首先根据理想函数的概念,可以采用赋值法,可得f(0)=0;(2)根据“理想函数”的定义,只要检验函数gfx)=2x﹣1,是否满足理想函数的三个条件即可;(3)根据“理想函数”的定义进行推导即可.解答:解:(1)取x1=x2=0,代入f(x1+x2)≥f(x1)+f(x2),可得f(0)≥f(0)+f(0)即f(0)≤0,由已知∀x∈[0,1],总有f(x)≥0可得f(0)≥0,∴f(0)=0;(2)①显然f(x)=2x﹣1在[0,1]上满足f(x)≥0;②f(1)=1.若x1≥0,x2≥0,且x1+x2≤1,则有f(x1+x2)﹣[f(x1)+f(x2)]=2x1+x2﹣1﹣[(2x1﹣1)+(2x2﹣1)]=(2x2﹣1)(2x1﹣1)≥0,故f(x)=2x﹣1满足条件①②③,故f(x)=2x﹣1为理想函数.(3)由条件③知,任给m、n∈[0,1],当m<n时,由m<n知n﹣m∈[0,1],∴f(n)=f(n﹣m+m)≥f(n﹣m)+f(m)≥f(m).若f(x0)>x0,则f(x0)≤f[f(x0)]=x0,前后矛盾;若:f(x0)<x0,则f(x0)≥f[f(x0)]=x0,前后矛盾.故f(x0)=x0.点评:本题主要考查抽象函数的应用,利用赋值法是解决抽象函数问题的常用方法,函数的新定义则转化为函数性质问题,本题则结合指数函数的性质,探讨函数的函数值域,指数函数的单调性的应用等知识点.综合性较强.18.已知定义域为R的函数是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.考点:指数函数单调性的应用;奇函数.专题:压轴题.分析:(Ⅰ)利用奇函数定义,在f(﹣x)=﹣f(x)中的运用特殊值求a,b的值;(Ⅱ)首先确定函数f(x)的单调性,然后结合奇函数的性质把不等式f(t2﹣2t)+f(2t2﹣k)<0转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围.解答:解:(Ⅰ)因为f(x)是奇函数,所以f(0)=0,即又由f(1)=﹣f(﹣1)知.所以a=2,b=1.经检验a=2,b=1时,是奇函数.(Ⅱ)由(Ⅰ)知,易知f(x)在(﹣∞,+∞)上为减函数.又因为f(x)是奇函数,所以f(t2﹣2t)+f(2t2﹣k)<0等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),因为f(x)为减函数,由上式可得:t2﹣2t>k﹣2t2.即对一切t∈R有:3t2﹣2t﹣k>0,从而判别式.所以k的取值范围是k<﹣.点评:本题主要考查函数奇偶性与单调性的综合应用;同时考查一元二次不等式恒成立问题的解决策略.19.已知函数f(x)=2cos(cos﹣sin).(Ⅰ)设x∈[﹣,],求f(x)的值域;(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c.已知c=1,f(C)=+1,且△ABC的面积为,求边a和b的长.考点:三角函数中的恒等变换应用;正弦定理.专题:计算题;三角函数的图像与性质.分析:(Ⅰ)化简可得f(x)=.x∈[﹣,],即可求出f(x)的值域;(Ⅱ)先求出C,再由三角形面积公式有,由正弦定理得a2+b2=7.联立方程即可解得.解答:解:(Ⅰ)==.时,值域为.(Ⅱ)因为C∈(0,π),由(1)知.因为△ABC的面积为,所以,于是.①在△ABC中,设内角A、B的对边分别是a,b.由余弦定理得,所以a2+b2=7.②由①②可得或.点评:本题主要考察了三角函数中的恒等变换应用和正弦定理的综合应用,属于中档题.20.设函数f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1,记f(x)≤1的解集为M,g(x)≤4的解集为N.(Ⅰ)求M;(Ⅱ)当x∈M∩N时,求函数h(x)=x2f(x)+x[f(x)]2的最大值.考点:函数的最值及其几何意义;不等式的证明.专题:计算题;分类讨论;函数的性质及应用;不等式的解法及应用.分析:(Ⅰ)由所给的不等式可得①,或②.分别求得①、②的解集,再取并集,即得所求;(Ⅱ)由g(x)≤4,求得N,可得M∩N=[0,].当x∈M∩N时,f(x)=1﹣x,h(x)=﹣(x﹣)2,显然它小于或等于,最大值即可得到.解答:解:(Ⅰ)由f(x)=2|x﹣1|+x﹣1≤1 可得①,或②.解①求得1≤x≤,解②求得 0≤x<1.综上,原不等式的解集M为[0,].(Ⅱ)由g(x)=16x2﹣8x+1≤4,求得﹣≤x≤,∴N=[﹣,],∴M∩N=[0,].∵当x∈M∩N时,f(x)=1﹣x,h(x)=x2f(x)+x[f(x)]2 =xf(x)[x+f(x)]=﹣(x﹣)2≤,当且仅当x=时,取得最大值.则函数的最大值为.点评:本题主要考查绝对值不等式的解法,体现了分类讨论、等价转化的数学思想,属于中档题.21.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻两对称轴之间的距离为π.(Ⅰ)求函数f(x)的表达式.(Ⅱ)若sinα+f(α)=,求的值.考点:三角函数的周期性及其求法;同角三角函数基本关系的运用.专题:综合题.分析:(I)函数是偶函数,求出ϕ,利用图象上相邻两对称轴之间的距离为π,求出ω,即可求得函数f(x)的表达式.(II)利用两角和的正弦以及弦切互化,化简为sinαcosα,应用,求出所求结果即可.解答:解:(I)∵f(x)为偶函数∴sin(﹣ωx+ϕ)=sin(ωx+ϕ)即2sinωxcosϕ=0恒成立∴cosϕ=0,又∵0≤ϕ≤π,∴(3分)又其图象上相邻对称轴之间的距离为π∴T=2π∴ω=1∴f(x)=cosx(6分)(II)∵原式=(10分)又∵,∴(11分)即,故原式=(12分)点评:本题考查三角函数的周期性及其求法,同角三角函数基本关系的运用,考查计算能力,是基础题.22.已知函数f(x)=,a∈R.(1)若函数y=f(x)在x=1处取得极值,求a的值;(2)若函数y=f(x)的图象上存在两点关于原点对称,求a的范围.考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:(1)当x>0时,f'(x)=2(e x﹣x+a)从而f'(1)=0,解出即可,(2)由题意得到方程组,求出a的表达式,设(x>0),再通过求导求出函数h(x)的最小值,问题得以解决.解答:解:(1)当x>0时,f(x)=2e x﹣(x﹣a)2+3,f′(x)=2(e x﹣x+a),∵y=f(x)在x=1处取得极值,∴f′(1)=0,即2(e﹣1+a)=0解得:a=1﹣e,经验证满足题意,∴a=1﹣e.(2)y=f(x)的图象上存在两点关于原点对称,即存在y=2e x﹣(x﹣a)2+3图象上一点(x0,y0)(x0>0),使得(﹣x0,﹣y0)在y=x2+3ax+a2﹣3的图象上则有,∴化简得:,即关于x0的方程在(0,+∞)内有解设(x>0),则∵x>0∴当x>1时,h'(x)>0;当0<x<1时,h'(x)<0即h(x)在(0,1)上为减函数,在(1,+∞)上为增函数∴h(x)≥h(1)=2e,且x→+∞时,h(x)→+∞;x→0时,h(x)→+∞即h(x)值域为[2e,+∞),∴a≥2e时,方程在(0,+∞)内有解∴a≥2e时,y=f(x)的图象上存在两点关于原点对称.点评:本题考察了函数的单调性,函数的最值问题,导数的应用,函数图象的对称性,是一道综合题.。