2014届九年级数学上学期期末模拟试卷 (新人教版 第6套)
- 格式:doc
- 大小:187.50 KB
- 文档页数:5
2013-2014学年上学期九年级期末试卷(满分120 分数学试题卜,考试时间120分钟,新人教版命题:宋先贵)班级 _______ 姓名 ___________ 考号 __________ 等分 __________题目-一- -二二 三总分目 1-1011 — 18 1920212223 242526得分、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个正确的选项,请把正确答案的代号填在题后括4 .下列事件中必然发生的事件是()A •一个图形平移后所得的图形与原来的图形不全等B . 100件产品中有4件次品,从中任意抽取 5件,至少一件是正品C .不等式的两边同时乘以一个数,结果仍是不等式D •随意翻一一本书的某页,这页的页码一定是偶数得分评卷人号内)1 •下列计算中,正确的是A . <92B. Q 222 .方程xx3 x 3的解是(A . X 1B . X 1=0, X 2= — 33 .下列图形中,是 中心对称图形的疋A B5 .已知O O i 的半径是5cm ,O O 2的半径是3cm , 0i 02= 6cm ,则O O i 和O O 2的位置关系 是( )6 •抛物线y 2x 2 4x 5的对称轴为(A . X 1B . X 1C . X 210.有一张矩形纸片 ABCD , AB = 2.5 , AD = 1.5,将纸片折叠,使 AD 边落在AB 边上,折 痕为AE ,再将△ AED 以DE 为折痕向右折叠,AC 与BC 交于点F (如下图),则CF 的长 为( )A . 0.5B . 0.75C . 1D . 1.25A .外离B .外切C .相交D •内含7.两道单选题都含有 A 、B 、C 、D 四个选择支,瞎猜这两道题恰好全部猜对的概率有B.-C .16&如图,A 、B 、 于()A . 160 °C 三点在O O 上,若/ AOB = 80°,则/ ACBB .C . 40 °D .9 .已知圆锥的底面半径是( )3,母线长为 6,则该圆锥侧面展开后所得扇形的圆心角为A . 180B . 120 °C . 90 °D . 60第8题图211•方程x 4x 0的根是O的直径是6 cm,圆心0到直线AB的距离为6cm, O O与直线AB的位置关系疋得分评卷人、填空题(本大题共8小题,每小题3分,共24分)13 .当时,二次根式..2 3x有意义.14 •某商场在“元旦”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色球各两个。
2014-2015学年人教版九年级上学期期末数学试卷考试时间100分钟,试卷满分100分一. 选择题(每小题3分,共30分)1.“ a 是实数,0≥a ”这一事件是( )A .必然事件B .不确定事件C .不可能事件D .随机事件2. 把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值( )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定 3.已知反比例函数xy 1=,下列结论中不正确的是( ) A .图象经过点(-1,-1) B .图象在第一、三象限C .当x >1 时, 0 <y <1D .当 x <0 时, y 随着 x 的增大而增大 4.如图,在方格纸中,△ABC 经过变换得到△DEF ,正确的变换是( ) A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格 B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格 C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180° D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180° 5.如果关于x 的一元二次方程22(21)10k x k x -++=有两个 不相等的实数根,那么k 的取值范围是() A .14k >-B .14k >-且0k ≠ C .14k <- D .14k ≥-且0k ≠ 6.如图,点A 、B 、O 是正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧tan 的值是( )A .1BCD 7.如图,在大小为4×4的正方形网格中与①中三角形相似的是( )A .②B . ③C . ④和③D . ②和④8.已知抛物线k x a y +-=2)2((是常数,>k a a ,0),A (﹣3,y 1)、B (3,y 2)、C (4,y 3)是抛物线上三点,则y 1,y 2,y 3由小到大依序排列为( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 2<y 3<y 1 D .y 3<y 2<y 1 9.如图,△AOB 是等边三角形,B (2,0),将△AOB 绕O 点逆时针方向旋转90°到△A′OB′位置,则点A′ 的坐标是( )(第4题)(第6题)A .(﹣1,)B .(﹣,1)C .(,﹣1)D .(1,﹣)10. 已知二次函数c bx ax y ++=2的图象如图所示,那么 一次函数c bx y +=和反比例函数xay =在同一平面直角坐标系中的图象大致是( )A .B .C .D .二.填空题(每小题3分,共24分.) 11. 已知点M )3,21(m -关于原点对称的点在第一象限,那么的取值范围是________. 12. 如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为 13.一种药品经过两次降价,药价从原来每盒 60 元降至现在的 48.6 元,则平均每次降价的百分率是 .14. 如图,在平面直角坐标系中,点O为坐标原点,点P 在第一象限,☉P 与x 轴交于O 、A 两点,点A 的坐标为(6,0),☉P的半径为13,则点P 的坐标为 .15.如图,在△ABC 中,AB=24,AC=18,D 是AC 上一点,AD=12,AB 上取一点E ,A 、D 、E 三点为顶点组成的三角形与△ABC 相似,AE 的长是_____ _. 16.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行.点P (a 3,a )是反比例函数xk y =(k >0)的图象上与正方形的一个交点,若图中阴影部分的 面积等于9,则k 的值为 .(第16题) 17. 轮船从B 处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达 C 处,在C 处观测灯塔A 位于北偏东60°方向上,则C 处与灯塔 A 的距离是 海里.18. 二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0),下列说法:①若b 2﹣4ac=0,则抛物线的顶点一定在x 轴上; ②若a-b+c=0,则抛物线必过点(-1,0);③若a <0,且一元二次方程ax 2+bx+c=0有两根x 1,x 2(x 1<x 2),则ax 2+bx+c <0的解集为x 1<x <x 2;④若33ca b +=,则方程ax 2+bx+c=0有一根为-3. (第12题) (第14题) (第15题)其中正确的是 (把正确的序号都填上)三.解答题(本大题共有5题,满分46分) 19.(每小题6分,共12分)(1)2tan 603sin 30cos 45+--o o o . (2)解方程:2410x x ++=20.(本题8分) 如图,一次函数y 1=kx+b 的图象与反比例函数2my x=(x >0)的图象交于A (1,6),B (a ,2)两点.(1)求一次函数与反比例函数的解析式; (2)直接写出y 1≤y 2时x 的取值范围.21.(本题8分) 小华和小丽两人玩数字游戏,先由小丽心中任意想一个数记为 x ,再由小华猜小丽刚才想的数字,把小华猜的数字记为 y ,且他们想和猜的数字只能在 1、2、3、4这四个数字中.(1)请用树状图或列表法表示出他们想和猜的所有情况;(2)如果他们想和猜的数字相同,则称他们“心灵相通” .求他们“心灵相通”的概率; (3)如果他们想和猜的数字满足x y 1-≤,则称他们“心有灵犀” .求他们“心有灵犀”的概率.22. (本题8分) 如图,直线PM 切⊙O 于点M,直线PO 交⊙O 于A 、B 两点,弦AC ∥PM ,连接OM 、BC. 求证:(1)△ABC ∽△POM ;(2)2OA 2=OP·BC.23. (本题10分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润甲y (万元)与进货量x(吨)近似满足函数关系x y 3.0=甲;乙种水果的销售利润乙y (万元)与进货量x (吨)近似满足函数关系bx ax y +=2乙(其中0≠a ,a ,b 为常数),且进货量x 为1吨时,销售利润乙y 为1.4万元;进货量x 为2吨时,销售利润乙y 为2.6万元.(1)求乙y (万元)与x (吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t 吨,请你写出这两种水果所获得的销售利润之和W (万元)与t (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?2014—2015学年第一学期九年级数学期末质量检测评分标准11.m0< 12.1413.010 14.(3,2) 15.916或16.3 17.25 18.①、②、④三.解答题(本大题共有5题,满分46分)19.(1)21-2⎛⨯⎝…………………………………3分=313+-22…………………………………5分=4………………………………………6分(2)(2)解:2x4x1+=-,2x4x 414++=-+2(x2)3+=…………………………………3分x+2=…………………………………5分12x2,x2==.………………………………………6分20. (1)∵点A(1,6),B(a,2)在y2=的图象上,∴=6,m=6.∴反比例函数的解析式为:y2=,…………………………………3分∴=2,a==3,∵点A(1,6),B(3,2)在函数y1=kx+b的图象上,∴,解这个方程组,得∴一次函数的解析式为y1=-2x+8,反比例函数的解析式为y2=;…………………6分(2)由函数图象可知,当x在A、B之间时一次函数的图象在反比例函数图象的上方,∵点A(1,6),B(3,2),∴1≤x≤3.…………………………………8分(2)根据(1)得所以可能的情况有16中,想和猜的数相同的情况有4种,∴P(心灵相通)=41164=…………………6分(3)根据(1)得所以可能的情况有16中,数字满足|x-y|≤1的情况有10种,∴P(心有灵犀)105168==…………………8分22.(1)证明:∵直线PM切⊙O于点M,∴∠PMO=90°,∵弦AB是直径,∴∠ACB=90°,∴∠ACB=∠PMO,∵AC∥PM,∴∠CAB=∠P,∴△ABC∽△POM;…………………4分(2)∵△ABC∽△POM,∴,又AB=2OA,OA=OM,∴,∴2OA2=OP·BC.…………………8分23.解:(1)由题意,得:解得∴y乙=-0.1x2+1.5x.…………………4分(2)W=y甲+y乙=0.3(10-t)+(-0.1t2+1.5t)∴W=-0.1t2+1.2t+3.W=-0.1(t-6)2+6.6.∴t=6时,W有最大值为6.6.∴10-6=4(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元.…………………10分2014-2015学年人教版九年级上学期期末数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知=,则x的值是()A.B.C.D.2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.4.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣15.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是()A.B.C.D.7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣38.如图,等边△ABC边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC,则y关于x函数的图象大致为()A.B.C.D.二、填空题:(本题共16分,每小题4分)9.扇形的半径为9,且圆心角为120°,则它的弧长为.10.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是.11.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,在下列结论中,唯一正确的是.(请将正确的序号填在横线上)①a<0;②c<﹣1;③2a+3b=0;④b2﹣4ac<0;⑤当x=时,y的最小值为.12.如图,在平面直角坐标系xOy中,正方形ABCD顶点A(﹣1,﹣1)、B(﹣3,﹣1).我们规定“把正方形ABCD先沿x轴翻折,再向右平移2个单位”为一次变换.(1)如果正方形ABCD经过1次这样的变换得到正方形A1B1C1D1,那么B1的坐标是.(2)如果正方形ABCD经过2014次这样的变换得到正方形A2014B2014C2014D2014,那么B2014的坐标是.三、解答题:(本题共30分,每题5分)13.计算:tan30°﹣cos60°×tan45°+sin30°.14.已知抛物线y=x2﹣4x+3.(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.15.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.四、解答题:(本题共20分,每题5分)19.如图,在锐角△ABC中,AB=AC,BC=10,sinA=,(1)求tanB的值;(2)求AB的长.20.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.22.阅读下面材料:小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).请回答:图1中∠APB的度数等于,图2中∠PP′C的度数等于.参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A坐标为(﹣,1),连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形ABC.当C(x,y)在第一象限内时,求y与x之间的函数表达式.五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程mx2+(3m+1)x+3=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值;(3)在(2)的条件下,将关于x的二次函数y=mx2+(3m+1)x+3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请结合这个新的图象回答:当直线y=x+b与此图象有两个公共点时,b的取值范围.24.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.25.我们规定:函数y=(a、b、k是常数,k≠ab)叫奇特函数.当a=b=0时,奇特函数y=就是反比例函数y=(k是常数,k≠0).(1)如果某一矩形两边长分别是2和3,当它们分别增加x和y后,得到新矩形的面积为8.求y与x之间的函数表达式,并判断它是否为奇特函数;(2)如图,在平面直角坐标系xOy中,矩形OABC的顶点A、C坐标分别为(6,0)、(0,3),点D是OA中点,连接OB、CD交于E,若奇特函数y=的图象经过点B、E,求该奇特函数的表达式;(3)把反比例函数y=的图象向右平移4个单位,再向上平移个单位就可得到(2)中得到的奇特函数的图象;(4)在(2)的条件下,过线段BE中点M的一条直线l与这个奇特函数图象交于P,Q两点(P在Q右侧),如果以B、E、P、Q为顶点组成的四边形面积为16,请直接写出点P的坐标.2014-2015学年人教版九年级上学期期末数学试卷答案解析参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知=,则x的值是()A.B.C.D.考点:比例的性质.专题:计算题.分析:根据内项之积等于外项之积得到2x=15,然后解一次方程即可.解答:解:∵=,∴2x=15,∴x=.故选B.点评:本题是基础题,考查了比例的基本性质,比较简单.2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定考点:点与圆的位置关系.分析:点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).解答:解:∵OP=3<4,故点P与⊙O的位置关系是点在圆内.故选A.点评:本题考查了点与圆的位置关系,注意掌握点和圆的位置关系与数量之间的等价关系是解决问题的关键.3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.考点:锐角三角函数的定义.分析:首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.解答:解:∵在Rt△ABC中,∠C=90°,AB=5,BC=4,∴AC===3,∴sinB==.故选D.点评:本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.4.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣1考点:反比例函数的性质.分析:如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()解答:解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.点评:本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.5.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°考点:圆周角定理.分析:已知⊙O是△ABC的外接圆,∠AOB=100°,根据圆周角定理可求得∠ACB的度数.解答:解:∵⊙O是△ABC的外接圆,∠AOB=100°,∴∠ACB=∠AOB=×100°=50°.故选B.点评:本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是()A.B.C.D.考点:概率公式.分析:先统计出奇数点的个数,再根据概率公式解答.解答:解:∵正方体骰子共六个面,点数为1,2,3,4,5,6,奇数为1,3,5,∴点数为奇数的概率为:=.故选:C.点评:此题主要考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3考点:二次函数图象与几何变换.专题:几何变换.分析:先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.如图,等边△ABC边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC,则y关于x函数的图象大致为()A .B .C .D .考点: 动点问题的函数图象.分析: 分段讨论,当0≤x ≤2时,作PQ ⊥AC ,根据锐角三角函数和勾股定理求出AQ 、PQ 、CQ 、PC 2;当2<x <4时,PC 在BC 上,是一次函数;当4<x ≤6时,PC 在AC 上,是一次函数,根据函数关系式分析即可得出结论.解答: 解:当0≤x ≤2时,作PQ ⊥AC ,∵AP=x ,∠A=60°∴AQ=,PQ=, ∴CQ=2﹣,∴PC==, ∴PC 2=x 2﹣2x+4=(x ﹣1)2+3;当2<x <4时,PC=4﹣x ,当4<x ≤6时,PC=2﹣(6﹣x )=x ﹣4,故选:C .点评: 本题主要考查了动点问题的函数图形,分段讨论,列出每段函数的解析式是解决问题的关键.二、填空题:(本题共16分,每小题4分)9.扇形的半径为9,且圆心角为120°,则它的弧长为 6π .考点: 弧长的计算.分析: 直接利用弧长的计算公式计算即可.解答: 解:弧长是:=6π.故答案是:6π.点评:本题考查了弧长的计算公式,正确记忆公式是关键.10.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是2:5.考点:相似三角形的应用.分析:由题意知三角尺与其影子相似,它们周长的比就等于相似比.解答:解:∵,∴三角尺的周长与它在墙上形成的影子的周长的比是.点评:本题考查相似三角形的性质,相似三角形的周长的比等于相似比.11.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,在下列结论中,唯一正确的是③⑤.(请将正确的序号填在横线上)①a<0;②c<﹣1;③2a+3b=0;④b2﹣4ac<0;⑤当x=时,y的最小值为.考点:二次函数图象与系数的关系.分析:根据二次函数的图象开口方向即可判断A;由二次函数的图象与y轴的交点位置即可判断B;把x=﹣1代入二次函数的解析式即可判断C;根据二次函数的对称轴即可求出D.解答:解:①∵二次函数的图象开口向上,∴a>0,故本选项错误;②∵二次函数的图象与y轴的交点在点(0,﹣1)的上方,∴c>﹣1,故本选项错误;③、∵二次函数的图象的对称轴是直线x=,∴﹣=,﹣3b=2a,2a+3b=0,故本选项正确;④∵二次函数的图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;⑤∵二次函数的图象的对称轴是直线x=,∴﹣=,∴﹣3b=2a,b=﹣a,∴y最小值=a+b+c=a+×(﹣a)+c=;即y的最小值为,故本选项正确;故答案为:③⑤.点评:本题考查了二次函数的图象和系数的关系,题目具有一定的代表性,是一道比较好的题目,注意用了数形结合思想,二次函数的图象开口方向决定a的符号,二次函数的图形与y轴的交点位置决定c的符号,根据二次函数的图象的对称轴是直线x=得出﹣=,把x=代入y=ax2+bx+c(a≠0)得出y=a+b+c等等.12.如图,在平面直角坐标系xOy中,正方形ABCD顶点A(﹣1,﹣1)、B(﹣3,﹣1).我们规定“把正方形ABCD先沿x轴翻折,再向右平移2个单位”为一次变换.(1)如果正方形ABCD经过1次这样的变换得到正方形A1B1C1D1,那么B1的坐标是(﹣1,1).(2)如果正方形ABCD经过2014次这样的变换得到正方形A2014B2014C2014D2014,那么B2014的坐标是(4025,﹣1).考点:规律型:点的坐标.分析:(1)把正方形ABCD先沿x轴翻折,则点B关于x轴对称,得到B点的坐标为:(﹣3,1),再向右平移2个单位”后点B的坐标为:(﹣3+2,1),即B1(﹣1,1).(2)首先由正方形ABCD,点A、B的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),然后根据题意求得第1次、2次、3次变换后的点B的对应点的坐标,即可得规律:第n次变换后的点B的对应点的为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n﹣3,﹣1),继而求得把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标.解答:解:(1)∵正方形ABCD,点A、B的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),∴根据题意得:第1次变换后的点B的对应点的坐标为(﹣3+2,1),即B1(﹣1,1),(2)第2次变换后的点B的对应点的坐标为:(﹣1+2,﹣1),即(1,﹣1),第3次变换后的点B的对应点的坐标为(1+2,1),即(3,1),第n次变换后的点B的对应点的为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n﹣3,﹣1),∴把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标是:(4025,﹣1).故答案为:(﹣1,1);(4025,﹣1).点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点B的对应点的坐标为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n ﹣3,﹣1)是解此题的关键.三、解答题:(本题共30分,每题5分)13.计算:tan30°﹣cos60°×tan45°+sin30°.考点:特殊角的三角函数值.分析:将tan30°=,cos60°=,tan45°=1,sin30°=分别代入运算,然后合并即可得出答案.解答:解:原式==.点评:本题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是关键.14.已知抛物线y=x2﹣4x+3.(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.考点:二次函数的三种形式;二次函数的性质.分析:(1)由于二次项系数是1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)根据二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h求解即可;(3)先求出方程x2﹣4x+3=0的两根,再根据二次函数的性质即可求解.解答:解:(1)y=x2﹣4x+3=(x2﹣4x+4)﹣4+3=(x﹣2)2﹣1;(2)∵y=(x﹣2)2﹣1,∴对称轴为直线x=2,顶点坐标为(2,﹣1);(3)解方程x2﹣4x+3=0,得x=1或3.∵y=x2﹣4x+3,a=1>0,∴抛物线开口向上,∴当1<x<3时,函数y<0.点评:本题考查了二次函数解析式的三种形式,二次函数的性质,难度适中.利用配方法将一般式转化为顶点式是解题的关键.15.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.考点:相似三角形的判定与性质.分析:(1)根据两角对应相等,两三角形相似即可证明△ADC∽△ACB;(2)根据相似三角形的对应边成比例得出AC:AB=AD:AC,即AC2=AB•AD,将数值代入计算即可求出AC的长.解答:(1)证明:在△ADC与△ACB中,∵∠ABC=∠ACD,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴AC:AB=AD:AC,∴AC2=AB•AD,∵AD=2,AB=7,∴AC2=7×2=14,∴AC=.点评:本题考查的是相似三角形的判定与性质,用到的知识点为:①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(简叙为两角对应相等,两三角形相似);②相似三角形的对应边成比例.16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:在Rt△ABD中,求出BD,在Rt△ACD中,求出CD,二者相加即为楼高BC.解答:解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=20.在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=AD=20.∴BC=BD+CD=20+20(m).答:这栋楼高为(20+20)m.点评:本题考查了解直角三角形的应用﹣﹣仰角俯角问题,将原三角形转化为两个直角三角形是解题的关键.17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.考点:圆周角定理;勾股定理;垂径定理.专题:计算题.分析:(1)由OB=OC,利用等边对等角得到一对角相等,再由同弧所对的圆周角相等得到一对角相等,等量代换即可得证;(2)由弦CD与直径AB垂直,利用垂径定理得到E为CD的中点,求出CE的长,在直角三角形OCE中,设圆的半径OC=r,OE=OA﹣AE,表示出OE,利用勾股定理列出关于r 的方程,求出方程的解即可得到圆的半径r的值.解答:(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)解:∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.点评:此题考查了垂径定理,勾股定理,以及圆周角定理,熟练掌握定理是解本题的关键.18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.考点:反比例函数与一次函数的交点问题;三角形的面积.专题:计算题.分析:(1)先将点A(2,3)代入反比例函数和一次函数y=kx+2,求得m、k的值,(2)可求得点B的坐标,设P(x,y),由S△PBC=18,即可求得x,y的值.解答:解:(1)把A(2,3)代入,∴m=6.∴.(1分)把A(2,3)代入y=kx+2,∴2k+2=3.∴.∴.(2分)(2)令,解得x=﹣4,即B(﹣4,0).∵AC⊥x轴,∴C(2,0).∴BC=6.(3分)设P(x,y),∵S△PBC==18,∴y1=6或y2=﹣6.分别代入中,得x1=1或x2=﹣1.∴P1(1,6)或P2(﹣1,﹣6).(5分)点评:本题考查了一次函数和反比例函数的交点问题,利用待定系数法求解析式是解此题的关键.四、解答题:(本题共20分,每题5分)19.如图,在锐角△ABC中,AB=AC,BC=10,sinA=,(1)求tanB的值;(2)求AB的长.考点:解直角三角形.专题:计算题.分析:(1)过点C作CD⊥AB,垂足为D,设CD=3k,则AB=AC=5k,继而可求出BD=k,从而求出tanB的值;(2)在Rt△BCD中,先求出BC=k=10,求出k的值,继而得出AB的值.解答:解:(1)过点C作CD⊥AB,垂足为D,(1分)在Rt△ACD中,,(1分)设CD=3k,则AB=AC=5k,(1分)∴.(1分)在△BCD中,∵BD=AB﹣AD=5k﹣4k=k.(1分)∴.(1分)(2)在Rt△BCD中,,(1分)∵BC=10,∴.(1分)∴.(1分)∴AB=.(1分)点评:本题考查了解直角三角形的知识,过点C作CD⊥AB,构造直角三角形是关键.20.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.考点:待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.分析:(1)根据待定系数法即可求得;(2)正确画出图形;(3)通过图象可以看出点B纵坐标t的取值范围.解答:解:(1)∵抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).∴,解得,∴抛物线的表达式为y=﹣x2﹣2x+3.(2)此抛物线如图所示.(3)2<t≤4.如图,由图象可知点B纵坐标t的取值范围为2<t≤4.点评:本题考查了待定系数法求解析式,以及画图的能力和识别图形的能力,要熟练掌握.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.考点:切线的性质.分析:(1)连接AE,由圆周角定理和等腰三角形的性质,结合切线的性质可证得∠CBF=∠BAE,可证得结论;(2)由(1)结论结合正弦值,在Rt△ABE中可求得BE,可求出BC,过C作CM⊥BF,在Rt△BCM中可求得BM,CM,再利用平行线分线段成比例可求得BF.解答:(1)证明:如图1,连结AE.∵AB是⊙O的直径,∴∠AEB=90°,∴∠BAE=∠BAC.∵BF是⊙O的切线,∴∠CBF=∠BAE,∴∠CBF=∠CAB.(2)解:由(1)可知∠CBF=∠BAE,∴sin∠BAE=sin∠CBF=,在Rt△ABE中,sin∠BAE=,∴=,∴BE=,∴BC=2,如图2,过C作CM⊥BF于点M,则sin∠CBF==,即=,解得CM=2,由勾股定理可求得BM=4,又∵AB∥CM,∴=,。
九年级数学十二月联考试卷一、选择题(本大题共10个小题,每小题3分,满分30分)1.下列电视台的台标,是中心对称图形的是()A. B. C. D.2一元二次方程x2-4x+5=0的根的情况是()A.有两个不相等的实数根; B.有两个相等的实数根;C.只有一个实数根; D.没有实数根.3、下列说法正确的是()A.三个点可以确定一个圆B.三角形的外心是这个三角形三条角平分线的交点C.垂直于弦的直径平分这条弦并且平分弦所对的两条弧D.过弦的中点的直线必过圆心4.用一条长为40 cm的绳子围成一个面积为a cm2的长方形,a的值不可能...为()A.20 B.40 C.100 D.1205如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是A.12B.13C.14D.166.如图,△ABC内接于⊙O,AB是⊙O的直径,直线AE是⊙O的切线,CD平分ACB∠,若︒=∠21CAE,则BFC∠的度数为A.66°B.111°C.114°D.119°7.已知:点P(1-2a,a-2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程1xx a+-=2的解是( )A.5 B.1 C.3 D.不能确定8.一元二次方程02=++cbxax有两个异号根,且负根的绝对值较大,则(abMA.第一象限B.第二象限C.第三象限D.第四象限9.一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是【】A.5:4B.5:2C2D10.已知抛物线2y ax bx c=++(a≠0)经过点(1,1)和(-1,0).下列结论:①0a b c-+=;②2b>4ac;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为14xa=-.其中结论正确的个数有()A.4个 B. 3个 C.2个 D.1个二、填空题(本大题共5个小题,每小题3分,满分15分)11若关于x 的方程x²-5x+k=0的一个根是0,则另一个根是____________.12.如图,在Rt△OAB中,∠B=90°,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△11OA B,则∠1AOB= .13如图,在□ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若EF的长为2π,则图中阴影部分的面积为.14.抛物线252+-=xkxy的图象和x轴有交点,则k的取值范围是.15.如图,⊙O的半径为3,点P是弦AB延长线上一点,连OP,若OP=4,∠P=30°,则弦AB= .三、解答题(本大题共10个小题,满分75分)16、(满分5分)解方程:3x(x-2)=2(2-x)17(满分6分)有两部不同型号的手机(分别记为A,B)和与之匹配的2个保护盖(分别记为a,b)(如图所示)散乱地放在桌子上.(1)若从手机中随机取一部,再从保护盖中随机取一个,求恰好匹配的概率.(2)若从手机和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.18.(本题满分6分)某经销店为厂家代销一种新型环保水泥,当每吨售价为260 元时,月销售量为45 吨,每售出1 吨这种水泥共需支付厂家费用和其他费用共100 元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10 元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240 元时,此时的月销售量是____________吨.(2)该经销店计划月利润为9000 元而且尽可能地扩大销售量,则售价应定为每吨多少元?19.(本题满分6 分)如图,AB 是O的一条弦,OD⊥AB,垂足为C,交圆O于点D,点E 在圆O上. ⑴若∠AOD=52°,求∠DEB 的度数;⑵若OC=3,OA=5,求AB 的长.第13题图第5题图20本题满分8分)已知:函数y=ax2-(3a+1)x+2a+1(a为常数).(1)若该函数图象与坐标轴只有两个交点,求a的值;(2)若该函数图象是开口向上的抛物线,与x轴相交于点A(x1,0),B(x2,0)两点,与y轴相交于点C,且x2-x1=2.求抛物线的解析式;21(本题满分8分)已知,⊙O为∆ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.22.(本题满分6分)如图①,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C 在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连结BE,DF.请在图②中用实线补全图形,这时DF=BE还成立吗?请说明理由.23.(本题满分8 分)在一节数学实践活动课上,老师拿出三个边长都为5cm 的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为)______ cm(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为)______ cm(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为)______ cm(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.24.(满分10分)某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:如果以13元/千克的价格销售,那么每天可获取利润750元.【利润=(销售价-进价) 销售量】(1)请根据他们的对话填写下表:(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?25(12分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.BACOEFGAEFAEFBCD图①图②。
九年级(上)期末数学试卷一、选择题(每题3分)1.一元二次方程x(2x+3)=5的常数项是()A.﹣5 B.2 C.3 D.52.如图所示的几何体的左视图是()A.B.C.D.3.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.4.下列关于矩形的说法,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线互相垂直且平分D.矩形的对角线相等且互相平分5.小明乘车从广州到北京,行车的平均速度y(km/h)和行车时间x(h)之间的函数图象()A.B.C.D.6.如图,小强和小明去测量一座古塔的高度,他们在离古塔60m的A处,用测角仪测得古塔顶的仰角为30°,已知测角仪高AD=1.5m,则古塔BE的高为()A.(20﹣1.5)m B.(20+1.5)m C.31.5m D.28.5m7.若两个相似三角形的面积比为2:3,那么这两个三角形的周长的比为()A.4:9 B.2:3 C.:D.3:28.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)二、填空题(每题4分)9.在Rt△ABC中,∠C=90°,BC=3,AB=12,sinA=______.10.我们知道,平行光线所形成的投影称为平行投影,当平行光线与投影面______,这种投影称为正投影.11.已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是______.12.反比例函数y=的图象,当x>0时,y随x的增大而增大,则k的取值范围是______.13.如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,若AD=8cm,则OE的长为______cm.14.如图,已知△ABC和△ADE均为等边三角形,点D在BC边上,DE与AC相交于点F,如果AB=9,BD=3,那么CF的长度为______.15.某小区2012年屋顶绿化面积为2000平方米,计划2014年屋顶绿化面积要达到2880平方米,如果每年屋顶绿化面积的增长率相同,那么这个增长率是______.16.如图,Rt△ABO中,∠AOB=90°,∠ABO=30°,点A在第二象限,点B在第一象限,过点A的反比例函数表达式为y=﹣,则过点B的反比例函数表达式为______.三、解答题17.计算:2cos30°﹣tan45°﹣.18.已知,如图,在△ABC中,点D在AB边上,连接CD,∠1=∠2.(1)求证:△ACD∽△ABC;(2)如果AD=2,BD=1,求AC的长.19.学校旁边的文具店里有A、B、C、D四种笔记本,每种笔记本数量充足,某同学去该店购买笔记本,每种笔记本被选中的可能性相同.(1)若他去买一本笔记本,则他买到A种笔记本的概率是______;(2)若他两次去买笔记本,每次买一本,且两次所买笔记本品种不同,请用树状图或列表法求出恰好买到A种笔记本和C种笔记本的概率.20.已知,如图,△ABC中,CD平分∠ACB,DE∥BC,AD:DB=7:5,AC=24,求DE 的长.21.已知:y=2x2﹣ax﹣a2,且当x=1时,y=0,先化简,再求值:(1﹣)÷.五、解答题22.如图,一艘渔船位于小岛M的北偏东42°方向、距离小岛180海里的A处,渔船从A 处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(参考数据:参考数据:sin42°≈0.6691,cos42°≈0.7431,tan42°≈0.9044,≈1.732,结果精确到0.1海里)(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时)23.如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).(1)求反比例函数的解析式;(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.24.通过市场调查,一段时间内某地区某一种农副产品的需求数量y(千克)与市场价格x (元/千克)(0<x<30)存在下列关系:x(元/千克) 5 10 15 20y(千克)4500 4000 3500 3000又假设该地区这种农副产品在这段时间内的生产数量z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<30).现不计其它因素影响,如果需求数量y等于生产数量z,那么此时市场处于平衡状态.(1)请通过描点画图探究y与x之间的函数关系,并求出函数关系式;(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z与市场价格x的函数关系发生改变,而需求数量y与市场价格x的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?25.如图①所示,矩形ABCD一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的点P处,折痕与边BC交于点O,连接AP,OP,OA,△PDA的面积是△OCP的面积的4倍.(1)求证:△OCP∽△PDA;(2)求边AB的长;(3)连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.①按上面的叙述在图②中画出正确的图象;②当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分)1.一元二次方程x(2x+3)=5的常数项是()A.﹣5 B.2 C.3 D.5【考点】一元二次方程的一般形式.【分析】方程整理为一般形式后,找出常数项即可.【解答】解:方程整理得:2x2+3x﹣5=0,则常数项为﹣5,故选A.2.如图所示的几何体的左视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】找到从几何体的左边看所得到的图形即可.【解答】解:从几何体的左边看可得直角三角形,故选:A.3.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.【考点】列表法与树状图法;点的坐标.【分析】画出树状图,然后确定出在第二象限的点的个数,再根据概率公式列式进行计算即可得解.【解答】解:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,所以,P==.故选B.4.下列关于矩形的说法,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线互相垂直且平分D.矩形的对角线相等且互相平分【考点】矩形的判定与性质.【分析】根据定义有一个角是直角的平行四边形叫做矩形.矩形的性质:1.矩形的四个角都是直角2.矩形的对角线相等3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线).5.对边平行且相等6.对角线互相平分,对各个选项进行分析即可.【解答】解:A、因为对角线相等的平行四边形是矩形,所以本选项错误;B、因为对角线互相平分且相等的四边形是矩形,所以本选项错误;C、因为矩形的对角线相等且互相平分,所以本选项错误;D、因为矩形的对角线相等且互相平分,所以本选项正确.故选:D.5.小明乘车从广州到北京,行车的平均速度y(km/h)和行车时间x(h)之间的函数图象()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】根据时间x、速度y和路程s之间的关系,在路程不变的条件下,得y=,则y是x的反比例函数,且x>0.【解答】解:由题意可得:y=(x>0),故y是x的反比例函数.故选:B.6.如图,小强和小明去测量一座古塔的高度,他们在离古塔60m的A处,用测角仪测得古塔顶的仰角为30°,已知测角仪高AD=1.5m,则古塔BE的高为()A.(20﹣1.5)m B.(20+1.5)m C.31.5m D.28.5m【考点】解直角三角形的应用-仰角俯角问题.【分析】作AC⊥BE于点C.则CE=AD,AC=DE.在直角△ABC中选择适当的三角函数求出BC即可得解.【解答】解:过点A作AC⊥BE于点C.根据题意有:AC=DE=60,CE=AD=1.5.∴BC=AC×tan30°=20.故古塔BE的高为BC+CE=(20+1.5)m.故选B.7.若两个相似三角形的面积比为2:3,那么这两个三角形的周长的比为()A.4:9 B.2:3 C.:D.3:2【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的面积比为2:3,∴这两个三角形的相似比为:,∴这两个三角形的周长的比为:,故选:C.8.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)【考点】坐标与图形变化-旋转.【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.二、填空题(每题4分)9.在Rt△ABC中,∠C=90°,BC=3,AB=12,sinA=.【考点】锐角三角函数的定义.【分析】根据正弦的概念计算即可.【解答】解:sinA==,故答案为:.10.我们知道,平行光线所形成的投影称为平行投影,当平行光线与投影面垂直,这种投影称为正投影.【考点】平行投影.【分析】根据正投影定义解答.【解答】解:在平行投影中,当投影线垂直于投影面时,这种投影叫正投影,故答案为:垂直.11.已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是2.【考点】根的判别式.【分析】根据方程有两个相等的实数根,得到根的判别式的值等于0,即可求出b的值.【解答】解:根据题意得:△=b2﹣4(b﹣1)=(b﹣2)2=0,则b的值为2.故答案为:212.反比例函数y=的图象,当x>0时,y随x的增大而增大,则k的取值范围是k<3.【考点】反比例函数的性质.【分析】先根据当x>0时,y随x的增大而增大判断出k﹣3的符号,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象,当x>0时,y随x的增大而增大,∴k﹣3<0,解得k<3.故答案为:k<3.13.如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,若AD=8cm,则OE的长为4cm.【考点】菱形的性质;三角形中位线定理.【分析】根据已知可得OE是△ABC的中位线,从而求得OE的长.【解答】解:∵OE∥DC,AO=CO∴OE是△ABC的中位线∵AB=AD=8cm∴OE=4cm.故答案为4.14.如图,已知△ABC和△ADE均为等边三角形,点D在BC边上,DE与AC相交于点F,如果AB=9,BD=3,那么CF的长度为2.【考点】相似三角形的判定与性质;等边三角形的性质.【分析】利用两对相似三角形,线段成比例:AB:BD=AE:EF,CD:CF=AE:EF,可得CF=2.【解答】解:如图,∵△ABC和△ADE均为等边三角形,∴∠B=∠BAC=60°,∠E=∠EAD=60°,∴∠B=∠E,∠BAD=∠EAF,∴△ABD∽△AEF,∴AB:BD=AE:EF.同理:△CDF∽△EAF,∴CD:CF=AE:EF,∴AB:BD=CD:CF,即9:3=(9﹣3):CF,∴CF=2.故答案为:2.15.某小区2012年屋顶绿化面积为2000平方米,计划2014年屋顶绿化面积要达到2880平方米,如果每年屋顶绿化面积的增长率相同,那么这个增长率是20%.【考点】一元二次方程的应用.【分析】一般用增长后的量=增长前的量×(1+增长率),如果设人均年收入的平均增长率为x,根据题意即可列出方程.【解答】解:设平均增长率为x,根据题意可列出方程为:2000(1+x)2=2880,(1+x)2=1.44.1+x=±1.2.所以x1=0.2,x2=﹣2.2(舍去).故x=0.2=20%.即:这个增长率为20%.故答案是:20%.16.如图,Rt△ABO中,∠AOB=90°,∠ABO=30°,点A在第二象限,点B在第一象限,过点A的反比例函数表达式为y=﹣,则过点B的反比例函数表达式为y=.【考点】待定系数法求反比例函数解析式.【分析】解直角三角形求得=,然后过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,可证明△AOC∽△OBD,由点A在y=﹣上,可求得△AOC的面积,由相似三角形的性质可求得△BOD的面积,可求得答案.【解答】解:∵Rt△ABO中,∠AOB=90°,∠ABO=30°,∴tan30°==,如图,过A作AC⊥x轴,过B作BD⊥x轴,垂足分别为C、D,∵∠AOB=90°,∴∠BOD+∠AOC=∠DBO+∠BOD,∴∠DBO=∠AOC,∴△AOC∽△OBD,∴=()2=()2=,设A点坐标为(x A,y A),∵点A在函数y=﹣的图象上,∴x A y A=k=﹣1,∴S△AOC=|k|=,∴S△OBD=3S△AOC=,设B点坐标为(x B,y B),∴x B y B=,∴x B y B=3,∴过B点的反比例函数的解析式为y=,故答案为:y=.三、解答题17.计算:2cos30°﹣tan45°﹣.【考点】特殊角的三角函数值.【分析】直接把各特殊角的三角函数值代入进行计算即可.【解答】解:原式=2×﹣1﹣=﹣1﹣(﹣1)=0.18.已知,如图,在△ABC中,点D在AB边上,连接CD,∠1=∠2.(1)求证:△ACD∽△ABC;(2)如果AD=2,BD=1,求AC的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定定理即可得到结论;(2)根据相似三角形的性质得到,代入数据即可得到结果.【解答】(1)证明:∵∠1=∠2,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴,∴AC2=AB•AD,∵AD=2,BD=1,∴AB=3,∴AC=.19.学校旁边的文具店里有A、B、C、D四种笔记本,每种笔记本数量充足,某同学去该店购买笔记本,每种笔记本被选中的可能性相同.(1)若他去买一本笔记本,则他买到A种笔记本的概率是;(2)若他两次去买笔记本,每次买一本,且两次所买笔记本品种不同,请用树状图或列表法求出恰好买到A种笔记本和C种笔记本的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由学校旁边的文具店里有A、B、C、D四种笔记本,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好买到A种笔记本和C种笔记本的情况,再利用概率公式即可求得答案.【解答】解:(1)∵学校旁边的文具店里有A、B、C、D四种笔记本,∴若他去买一本笔记本,则他买到A种笔记本的概率是:;故答案为:.(2)画树状图得:∵共有12种等可能的结果,恰好买到A种笔记本和C种笔记本的有2种情况,∴恰好买到A种笔记本和C种笔记本的概率为:=.20.已知,如图,△ABC中,CD平分∠ACB,DE∥BC,AD:DB=7:5,AC=24,求DE 的长.【考点】相似三角形的判定与性质.【分析】根据平行线分线段成比例的知识求出AE,EC,然后判断ED=EC,即可得出答案.【解答】解:∵DE∥BC,∴,又∵AC=24,∴AE=14,EC=10,∵CD平分∠ACB交AB于D,∴∠ACD=∠DCB,又∵DE∥BC,∴∠EDC=∠DCB,∴∠ACD=∠EDC,∴DE=EC=10.21.已知:y=2x2﹣ax﹣a2,且当x=1时,y=0,先化简,再求值:(1﹣)÷.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再由当x=1时,y=0求出a的值,选取合适的a的值代入进行计算即可.【解答】解:原式=[1﹣]÷=•=,∵y=2x2﹣ax﹣a2,且当x=1时,y=0,∴2﹣a﹣a2=0,解得a1=1,a2=﹣2,当a=1时,原式=3;当a=﹣2时,a+2=0,原式无意义.故原式=3.五、解答题22.如图,一艘渔船位于小岛M的北偏东42°方向、距离小岛180海里的A处,渔船从A 处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(参考数据:参考数据:sin42°≈0.6691,cos42°≈0.7431,tan42°≈0.9044,≈1.732,结果精确到0.1海里)(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时)【考点】解直角三角形的应用-方向角问题.【分析】(1)过点M作MD⊥AB于点D,根据∠AME的度数求出∠A=42°,再根据AM的值求出和特殊角的三角函数值即可求出答案;(2)在Rt△DMB中,根据∠BMF=60°,得出∠DMB=30°,再根据MD的值求出MB的值,最后根据路程÷速度=时间,即可得出答案.【解答】解:(1)过点M作MD⊥AB于点D,∵∠AME=42°,∴∠A=42°,∵AM=180海里,∴MD=AM•sin42°≈120.4(海里),答:渔船从A到B的航行过程中与小岛M之间的最小距离约为120.4海里;(2)在Rt△DMB中,∵∠BMF=60°,∴∠DMB=30°,∵MD=120.4海里,∴MB=≈139,0,∴139.0÷20≈7.0(小时),答:渔船从B到达小岛M的航行时间约为7.0小时.23.如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).(1)求反比例函数的解析式;(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A的坐标代入直线解析式求出m的值,再将点A的坐标代入反比例函数解析式可求出k的值,继而得出反比例函数关系式;(2)将点P的纵坐标代入反比例函数解析式可求出点P的横坐标,将点P的横坐标和点F 的横坐标相等,将点F的横坐标代入直线解析式可求出点F的纵坐标,将点的坐标转换为线段的长度后,即可计算△CEF的面积.【解答】解:(1)将点A的坐标代入y=x﹣1,可得:m=﹣1﹣1=﹣2,将点A(﹣1,﹣2)代入反比例函数y=,可得:k=﹣1×(﹣2)=2,故反比例函数解析式为:y=.(2)将点P的纵坐标y=﹣1,代入反比例函数关系式可得:x=﹣2,将点F的横坐标x=﹣2代入直线解析式可得:y=﹣3,故可得EF=3,CE=OE+OC=2+1=3,故可得S△CEF=CE×EF=.24.通过市场调查,一段时间内某地区某一种农副产品的需求数量y(千克)与市场价格x (元/千克)(0<x<30)存在下列关系:x(元/千克) 5 10 15 20y(千克)4500 4000 3500 3000又假设该地区这种农副产品在这段时间内的生产数量z(千克)与市场价格x(元/千克)成正比例关系:z=400x(0<x<30).现不计其它因素影响,如果需求数量y等于生产数量z,那么此时市场处于平衡状态.(1)请通过描点画图探究y与x之间的函数关系,并求出函数关系式;(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z与市场价格x的函数关系发生改变,而需求数量y与市场价格x的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?【考点】一次函数的应用.【分析】(1)通过描点画图可知y是x的一次函数,从而利用待定系数法即可求出该解析式;(2)令y=z,求出此时的x,则农民的总销售收入是xy元;(3)可设这时该农副产品的市场价格为a元/千克,因为该地区农民的总销售收入比未精加工市场平衡时增加了17600元,则a(﹣100a+5000)=40000+17600,解之即可.【解答】解:(1)描点.因为由图象可知,y是x的一次函数,所以设y=kx+b,由x=5,y=4500;x=10,y=4000得:则所以即y=﹣100x+5000(2)∵y=z,∴﹣100x+5000=400x,∴x=10.∴总销售收入=10×4000=40000(元)∴农副产品的市场价格是10元/千克,农民的总销售收入是40000元.(3)设这时该农副产品的市场价格为a元/千克,则a(﹣100a+5000)=40000+17600,解之得:a1=18,a2=32.∵0<a<30,∴a=18.∴这时该农副产品的市场价格为18元/千克.25.如图①所示,矩形ABCD一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的点P处,折痕与边BC交于点O,连接AP,OP,OA,△PDA的面积是△OCP的面积的4倍.(1)求证:△OCP∽△PDA;(2)求边AB的长;(3)连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.①按上面的叙述在图②中画出正确的图象;②当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.【考点】相似形综合题.【分析】(1)利用折叠和矩形的性质可得到∠C=∠D,∠APD=∠POC,可证得相似;(2)利用面积比可求得PC的长,在Rt△APD中利用勾股定理可求得AB的长;(3)①结合描述画出图形即可,②作MQ∥AN交PB于点Q,利用条件证明△MFQ≌△NFB,得到EF=PB,且可求出PB的长,可得出结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°,由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B,∴∠APO=90°,∴∠APD=90°﹣∠CPO=∠POC,∴△OCP∽△PDA;(2)解:∵△OCP与△PDA的面积比为1:4,∴==,∴CP=4,设AB=x,则AP=x,DP=x﹣4,在Rt△ADP中,由勾股定理可得AP2=AD2+DP2,即x2=82+(x﹣4)2,解得x=10,即边AB的长为10;(3)解:①如图所示,②EF的长度不变,理由如下:作MQ∥AN,交PB于点Q,如上图,∵AP=AB,MQ∥AN,∴∠APB=∠ABP,∠ABP=∠MQP,∴∠∠APB=∠MQP,∴MP=MQ,∵ME⊥PQ,∴PE=EQ=PQ,∵BN=PN,MP=MQ,∴BN=QM,∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,,∴△MFQ≌△NFB(AAS),∴QF=BF,∴QF=QB,∴EF=EQ+QF=PQ+QB=PB,又由(1)可知在Rt△PBC中,BC=8,PC=4,∴PB=4,∴EF=2,即EF的长度不变.2016年9月20日。
新世纪教育网 精品资料版权所有@新世纪教育网参考答案与试题解析一、选择题(每小题3分,共30分)D﹣+3=3.=•B=+C=24.(3分)如图,已知▱ABCD的对角线BD=4cm,将▱ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()5.(3分)如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于()7.(3分)如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P 且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是()≤>.所以≤OP=≤9.(3分)抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x﹣3,则b、10.(3分)如图,抛物线y=ax2+bx+c与两坐标轴的交点分别是A、B、E,且△ABE是等腰直角三角形,AE=BE,则下列关系:①a+c=0;②b=0;③ac=﹣1;④S△ABE=c2.其中正确的有()二、填空题(每小题4分,共24分)11.(4分)若x,y为实数,且,则(x+y)2010的值为1.12.(4分)方程x2﹣3x+1=0的解是x1=,x2=.13.(4分)已知二次函数y=ax2﹣3x+5a的最大值是2,它的图象交x轴于A、B两点,交y轴于C点,则S△ABC= 5.代入函数,求出=2a=或∵a<0,﹣,﹣,y=0得﹣=0,y=)=14.(4分)某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是.=.=15.(4分)如图,在直角三角形ABC中,∠ABC=90°,AC=2,BC=,以点A为圆心,AB为半径画弧,交AC于点D,则阴影部分的面积是﹣.16.(4分)已知⊙P的半径为1,圆心P在抛物线上运动,当⊙P与x轴相切时,圆心P的坐标为(2,1)或(﹣2,1)或(0,﹣1).1=三、解答题(共66分)17.(6分)已知a=2+,b=2﹣,试求的值.18.(6分)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当时,求m的值.,再把;﹣.也考查了一元二次方程的根的判别式.19.(8分)有三张背面完全相同的卡片,它们的正面分别写上、、,把它们的背面朝上洗匀后;小丽先从中抽取一张,然后小明从余下的卡片中再抽取一张.(1)直接写出小丽取出的卡片恰好是的概率;(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请用画树状图或列表法进行分析说明.张卡片,所以小丽取出的卡片恰好是的概率是;)小丽取出的卡片恰好是的概率为.20.(8分)已知二次函数y=﹣x2+4x.(1)用配方法把该函数化为y=a(x﹣h)2+k(其中a、h、k都是常数且a≠0)的形式,并指出函数图象的对称轴和顶点坐标;(2)函数图象与x轴的交点坐标.21.(8分)已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.22.(8分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC=8,,求AD的长.BED=BED=,BED=,×=23.(10分)某公司销售一种新型产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元),(利润=销售额﹣成本﹣广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元),(利润=销售额﹣成本﹣附加费).(1)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(2)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(3)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?x+150xx)﹣x xx﹣﹣=,整理,得(150﹣a)2=14400,a1=30,a2=270(不合题意,舍去).a=30.﹣2﹣24.(12分)如图,矩形ABCD的顶点A、B的坐标分别为(﹣4,0)和(2,0),BC=.设直线AC与直线x=4交于点E.(1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E;(2)设(1)中的抛物线与x轴的另一个交点为N,M是该抛物线上位于C、N之间的一动点,求△CMN面积的最大值.∴所求抛物线的函数关系式为:y=﹣(x﹣4)2+,设直线AC的函数关系式为y=kx+b,,解得:.y=x+)﹣,﹣m﹣(﹣﹣=MP MP×m m;﹣Smax=的最大面积为。
人教版初三(九年级)数学上册期末考试卷6一、填空题1.已知扇形的圆心角为120°,弧长为6π,则扇形的面积是2.如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=°3.如图,直线EF经过平行四边形ABCD的对称中心O,若AE=2cm,四边形AEFB的面积为12cm2,则CF=,四边形ABCD的面积为.4.在平面直角坐标系xOy中,将抛物线平移后得到抛物线.请你写出一种平移方法.答:.5.在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC绕AB所在直线旋转一周,得到的几何体的侧面积为.6.如图,是的直径,若,,以为边作圆的内接正多边形,则这个正多边形是________边形.7.已知实数m是关于x的方程的一根,则代数式值为.8.如图,△ABC中,∠BAC=30°,将△ABC绕点A按顺时针方向旋转85°,对应得到△ADE,则∠CAD=_____度.9.如图,在边长为2的正方形ABCD中,以点D为圆心.AD的长为半径画弧,再以BC为直径画平圆.若阴影部分①的面积为S1,阴影部分②的面积为S2,则S2-S1的值为______.10.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1690辆,则该厂四、五月份的月平均增长率为______.二、选择题11.若关于x的方程x2﹣2x+m=0没有实数根,则m的取值范围是()A.m>1B.m<1C.m≥1D.m=012.如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A.R2﹣r2=a2B.a=2Rsin36°C.a=2rtan36°D.r=Rcos36°13.已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A.﹣<m<3B.﹣<m<2C.﹣2<m<3D.﹣6<m<﹣214.一个不透明的口袋里装有除颜色不同外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出1球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球有()A.60个B.50个C.40个D.30个15.点A(5,-3)关于原点对称的点的坐标是()A.(5,3)B.(-5,-3)C.(-5,3)D.(-3,5)16.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论错误的是()A.4a+2b+c>0B.abc<0C.b<a﹣cD.3b>2c17.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.18.关于的一元二次方程有实数根,则的取值范围是()A. B. C.且 D.且19.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣5,0),对称轴为直线x =﹣2,给出四个结论:①abc>0;②4a﹣b=0;③若点B(﹣3,y1).C(0,y2)为函数图象上的两点,则y1<y2;④a+b+c=0;其中,正确结论的个数是()A.1B.2C.3D.420.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A. B. C. D.三、解答题21.为丰富学生的学习生活,某校九年级组织学生参加春游活动,所联系的旅行收费标准如下:春游活动结束后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次春游活动?22.如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E. F.(1)求证:△BCF≌△BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由。
2014年秋季九年级数学上期末测试题一、选择题(每题3分,共36分)。
1、一元二次方程01x x 22=+-的一次项系数和常数项依次是( )A 、-1和1B 、1和1C 、2和1D 、0和12、在正三角形、正方形、棱形和圆中,既是轴对称图形又是中心对称图形的个数是( )A 、4B 、3C 、2D 、13、若抛物线c bx ax y ++=2的对称轴是,2-=x 则=b a ( ) A.2 B.21 C.4 D.414.如图,抛物线c bx x y ++=2与y 轴交于A 点,与x 轴正半轴交于B ,C 两点,且BC=3,S △ABC=6,则b 的值是( ) A.b=5 B.b=-5 C.b=±5 D.b=45.二次函数2ax y =(a <0),若要使函数值永远小于零,则自变量x 的取值范围是( )A .X 取任何实数 B.x <0 C.x >0 D.x <0或x >06、假如两圆的半径分别是4和7,两圆的连心线段长为3,则两圆的位置关系是( ) A 、外离 B 、内含 C 、外切 D 、内切7、以下事件中,不是随机事件的是( )A 、掷一次图钉,图钉尖朝上B 、掷一次硬币,硬币正面朝上C 、三角形的内角和小于180°D 、三角形的内角和等于360°8、一元二次方程0c x 2x 2=++有两不等实数根,则c 的取值范围是( )A 、c <1B 、c ≤1C 、c=1D 、c ≠1 9、如图,AB 是⊙O 的直径,D 、C 在⊙O 上,AD ∥OC ,∠DAB=60°,连接AC ,则∠DAC 等于( )A 、15°B 、30°C 、45°D 、60° 10、已知关于x 的方程01k kx 2x )1k (2=++--(k 为实数),则其根的情况是( )A 、没有实数根B 、有两不等实数根C 、有两相等实数根D 、恒有实数根 11、掷一次骰子(每面分别刻有1—6点),向上一面的点数是质数..的概率等于( ) A 、61 B 、 21 C 、31 D 、 3212、一件商品的标价为108元,经过两次降价后的销售价是72元,求平均每次降价的百分率。
2014学年第一学期九年级数学科期末测试题【试卷说明】1.本试卷共4页,全卷满分120分(,考试时间为120分钟.考生应将答案全部填(涂)写在答题卡相应位置上,写在本试卷上无效.考试时允许使用计算器; 2. 答题前考生务必将自己的姓名、准考证号等填(涂)写到答题卡的相应位置上;3. 作图必须用2B 铅笔,并请加黑加粗,描写清楚。
一、选择题 (本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 一元二次方程2450x x -+=的根的情况是(※).(A )有两个实数根 (B )没有实数根 (C )有两个相等的实数根 (D )只有一个实数根 2. 既是轴对称图形,又是中心对称图形的是(※). 3. 如图,关于抛物线2(1)2y x =--,下列说法中错误的是(※). (A )顶点坐标为(1,-2) (B )对称轴是直线1x = (C )当1x >时,y 随x 的增大而减小 (D )开口方向向上 4. 如图,A ∠是⊙O 的圆周角,50A ∠=︒,则BOC ∠的度数为(※). (A )40︒ (B )50︒ (C )90︒ (D )100︒5. 下列事件中是必然事件的是(※).(A )抛出一枚硬币,落地后正面向上 (B )明天太阳从西边升起 (C )实心铁球投入水中会沉入水底(D )NBA 篮球队员在罚球线投篮2次,至少投中一次 6. 如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A B C '',若60B ∠=︒,则∠1的度数是(※).(A )15︒ (B )25︒ (C )10︒ (D )20︒ 7. 一元二次方程220x px +-=的一个根为2,则p 的值为(※).(A )1 (B )1- (C )2 (D )2-A B CA′ B′1 第6题 CBAO第4题( A ) (B ) (C ) (D )8. 如图,AB 是O ⊙的弦,半径OC AB ⊥于点D ,且6cm AB =,4cm OD =.则DC 的长为(※). (A )5cm (B )3cm (C )2cm (D )1cm 9. 若关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,则k 的取值范围是(※).(A )12k > (B )12k ≥(C )12k >且k ≠1 (D )12k ≥且k ≠1 10. 函数2(0)y ax a =-≠与2(0)y ax a =≠在同一平面直角坐标系中的图象可能是(※).二、填空题(共6题,每题3分,共18分.) 11.方程225x =的解为 ※ .12.抛物线23(2)5y x =-+的顶点坐标为 ※ .13.正六边形的边心距为3,则该正六边形的边长是 ※ .14.如图,AB 为半圆的直径,且4AB =,半圆绕点B 顺时针旋转45°,点A 旋转到'A 的位置,则图中阴影部分的面积为 ※ .15.抛物线256y x x =-+与x 轴交于A B 、两点,则AB 的长为 ※ . 16.甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红球的概率是 ※ .三、解答题(本大题共7小题,满分52分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分6分,各题3分)(1)用配方法解方程:2810x x -+=; (2)用公式法解方程:2531x x x -=+.18.(本小题满分7分)已知二次函数2y x bx c =++的图象过点(4,3)、(3,0).(1)求b 、c 的值;(2)求出该二次函数图象的顶点坐标和对称轴;(A ) (B ) (C ) (D) A'AB第14题 第8题OBCD A(3)在下图中作出此二次函数的图象,根据图像说明,当x 取何值时,0y <?19.(本小题满分7分)在如图所示的网格图中,每个小正方形的边长均为1个单位,Rt △ABC 的三个顶点均在格点上,且90C ∠=︒,3 4.AC BC ==, (1)在图中作出△ABC 以A 为旋转中心,沿顺时针方向旋转90°后的图形△11AB C ; (2)若点B 的坐标为(-3,5),试在图中画出直角坐标系,并写出A C 、的坐标; (3)在上述坐标系中作出△ABC 关于原点对称的图形△222A B C ,写出22B C 、的坐标. 20.(本小题满分7分)随着市民环保意识的增强,节庆期间烟花爆竹销售量逐年下降.某市2011年销售烟花爆竹20万箱,到2013年烟花爆竹销售量为9.8万箱.求该市2011年到2013年烟花爆竹年销售量的平均下降率. 21.(本小题满分8分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛. (1)请用树状图法或列表法,求恰好选中甲、丙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.22.(本小题满分8分)如图,在△ABC 中,90C ∠︒=,ABC ∠的平分线BE 交AC 于点E ,过点E 作直线BE 的垂线交AB 于点F ,⊙O 是△BEF 的外接圆. (1)求证:AC 是⊙O 的切线;(2)过点E 作EH AB ⊥于点H ,求证:CD HF =.23.(本小题满分9分)如图,已知抛物线的对称轴为直线l :4,x =且与x 轴交于点(2,0),A 与y 轴交于点C (0,2).(1)求抛物线的解析式;(2)试探究在此抛物线的对称轴l 上是否存在一点P ,使AP CP +的值最小?若存在,求AP CP +的最小值,若不存在,请说明理由;ABCDEFH O 第22题第18题A BC 第19题(3)以AB 为直径作⊙M ,过点C 作直线CE 与⊙M 相切于点E ,CE 交x 轴于点D ,求直线CE 的解析式.以下为附加题(共2大题,每题10分,共20分,可记入总分)24.(本小题满分10分)已知11)Ax ,y (,22)B x ,y (是反比例函数2y x=-图象上的两点,且212x x -=-,123x x ⋅=.(1)在图中用“描点”的方法作出此反比例函数的图象; (2)求12y y -的值及点A 的坐标;(3)若-4<y ≤-1,依据图象写出x 的取值范围. 25.(本小题满分10分)一出租车油箱的容积为70升,某司机将该车邮箱加满油后,将客人送达340km 外的某地后立即返回.设出租车可行驶的总路程为y (单位:km ),行驶过程中平均耗油量为x (单位:升/km ).(1)写出y 与x 之间的函数解析式,并写出自变量x 的取值范围;(2)若该车以每千米耗油0.1升行驶送达客人至目的地,返程时由于堵车,油耗平均增加了50%,该车返回出发地是否需要加油?若需要,试求出至少需加多少油,若不需要,请说明理由。
向阳中学九年级第一学期期末考试数学模拟试题答案
一、选择题(共30分)
(1)等腰三角形的对称轴是( C )
A.底边上的高
B.底边上的中线
C.底边的垂直平分线 D.顶角平分线
(2)据考证,单个雪花的质量在0.000 25克左右,这个数用科学记数法表示为( B )
A.2.5×10-3
B.2.5×10-4
C.2.5×10-5
D.-2.5×10-4
(3)分式:计算
111
a a a ---的结果为( C ) A .11a a +- B .1
a a -- C .-1 D .2
(4)对称点:若点)2,(a M 和点),3(b a N +关于y 轴对称,则b a ,的值为( C ) A. 3,5 B. 3,-5 C.-3,5 D.-3,-5 (5)一次函数性质一次函数13-=x y 的图象不经过的象限是 ( B )
A.第一象限
B.第二象限
C.第三象限
D.第四象限 (6)如下图,△ABC 中,AB 的垂直平分线交AC 于D ,
如果AC=5 cm ,BC=4cm ,那么△DBC 的周长是( D )
A .6 cm
B .7 cm
C .8 cm
D .9 cm
(7)若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( C ).
A .11cm
B .7.5cm
C .11cm 或7.5cm
D .以上都不对 (8)一列客车已晚点6分钟,如果将速度每小时加快10千米,那么继续行驶20千米便可正点运行,如果设客车原来行驶的速度是x 千米/小时,可列出分式方程为( A )
A.6102020=+-x x
B. 101102020=+-x x
C. 6201020=-+x x
D. 10
1
201020=-+x x
(9)如图,将△ABC 沿DE 、HG 、EF 翻折,三个顶点均落在点O 处.若1129∠=︒,则2∠的度数为( C )
(A )49° (B )50° (C )51° (D )52°
(10)函数图象:若一次函数y kx b =+
则关于x 的不等式10<
+≤b kx 的解集为( A.21<≤x B.10≤<x C.20≤<x D.20<≤x
二、填空题(共18分) (11)函数2
1-=
x y 的自变量x 取值范围是 .x (12)一次函数 :若直线y =2x +b 与x 轴交于点 X=-3 .
(13)三角形全等的条件:如图,已知BC=EC ,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为 AC=DC 或者∠A=∠D 或者∠B=∠E __.(答案不唯一,只需填一个)
(14)角分线的性质:如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于
(15).函数11y x =+与2y ax b =+(0a ≠)的图象如图所示,这两个函数图象的交点在y 轴上,那么使1y ,2y 的值都大于零的x 的取值范围是
21<<-x
(16)一次函数y kx b =+的图象过点(,1)m 和(1,)m 两点,且1m >,则k = -1 ,b 的取值范围是 b>2
三、解答题(共23分)
(17)化简:(4分)⋅
-÷+--+11
)1211(22x x x x
答案:2x
(18)解分式方程.(4分)
9
1232312-=--+x x x 解:方程变形为9
1232312-=-++x x x 两边同时乘以(x 2
-9)得,x -3+2x +6=12,x =3,经检验x =3是原方程的增根,故原方程无解. (19)(5分)三角形全等的证明.如图,已知点E C ,在线段BF
上,BE CF AB DE ACB F =∠=∠,∥,.
求证:ABC DEF △≌△.
答案略 (20)(6分)已知,一条直线经过点A (1,3)和B (2,5).求:
(1)这个一次函数的解析式; (2)当x=﹣3时,y 的值;
(3)若点(a ,2)在这个一次函数图象上,求a 的值. 答:(1)y=2x+1 (2)当x=﹣3时,y=-5 (3)a=
2
1
(21)(4分)代数式化简求值.先化简,再求值:⎪⎭⎫
⎝
⎛+---÷--11211222x x x x x x ,其中21=x 。
解:原式=
11-x ,当2
1
=x 时,原式=-2 四、解答题(共16分)
(22)(5分)一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度。
解:设这列火车的速度为x 千米/时 根据题意,得
450312450312x x
x
=+-. 方程两边都乘以12x ,得540042450030=+-x x
解得x =75
经检验,x =75是原方程的根
B
答:这列火车原来的速度为75千米/时。
(23)(5分)全等与轴对称.如图,在△ABC 中,点D 、E 、F 分别在BC 、AB 、AC 上,BD=CF,BE=CD,AB=AC,DG ⊥EF 于点G.。
求证:EG=FG 答案提示:连结DE 和DF.
(24)尺规作图(6分)
(1)如图,已知△ABC ,求作一点P ,使P 到∠A 的两边的距离相等,且PA =PB . 要求:尺规..
作图,保留作图痕迹,不写作法。
(2) 如图,已知在∠AOB 的内部有一点P ,在OA 上求作一点M ,在OB 上求作一点N ,使△
PMN 的周长最小。
五、解答题(共13分)
(25)几何综合探究(7分)
(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m , CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE . 答案略
(2) 如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =a ,其中a 为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由. 答案:成立,略
(3) 拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,试判断△DEF 的形状.
答案提示: △ABD ≌△AEC
∠1=∠2
∠F BD =∠F AE=60°+∠1==60°+∠2
△FBD ≌△FAE FD=FE, ∠3=∠4
∠BFA=∠DFE=60° △DEF 是等边三角形。
(26)在平面直角坐标系中,点A (4,0),点P (x ,y )是直线32
1
+-=x y 在第一象限的一点.(6分)
(1)设△OAP 的面积为S ,用含x 的解析式表示S ,并写出自变量取值范围. (2)在直线32
1
+-
=x y ,求一点Q ,使△OAQ 是以OA 为底的等腰三角形. (3)若第(2
答案:(1) s=-x+6
(2) Q(2,2)
(3)5个
(第25题图)
A
B
C
m (图1)
(图2) (图3)
m A
B
C
E。