福州市学年九年级数学上学期期末试卷
- 格式:pdf
- 大小:500.01 KB
- 文档页数:10
2019-2020学年福建省福州市九年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)下列图标中,是中心对称图形的是()A.B.C.D.2.(4分)下列说法正确的是()A.可能性很大的事情是必然发生的B.可能性很小的事情是不可能发生的C.“掷一次骰子,向上一面的点数是6”是不可能事件D.“任意画一个三角形,其内角和是180°”3.(4分)若关于x的方程x2﹣m=0有实数根,则m的取值范围是()A.m<0B.m≤0C.m>0D.m≥04.(4分)在平面直角坐标系中,点(a,b)关于原点对称的点的坐标是()A.(﹣a,﹣b)B.(﹣b,﹣a)C.(﹣a,b)D.(b,a)5.(4分)从1,2,3,5这四个数字中任取两个,其乘积为偶数的概率是()A.B.C.D.6.(4分)若二次函数y=x2+bx的图象的对称轴是直线x=2,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=57.(4分)如图,点D为线段AB与线段BC的垂直平分线的交点,∠A=35°,则∠D等于()A.50°B.65°C.55°D.70°8.(4分)为了测量某沙漠地区的温度变化情况,从某时刻开始记录了12个小时的温度,记时间为t(单位:h),温度为y(单位:℃).当4≤t≤8时,y与t的函数关系是y=﹣t2+10t+11,则4≤t≤8时该地区的最高温度是()A.11℃B.27℃C.35℃D.36℃9.(4分)如图,五边形ABCDE内接于⊙O,若∠CAD=35°,则∠B+∠E的度数是()A.210°B.215°C.235°D.250°10.(4分)对于反比例函数,如果当﹣2≤x≤﹣1时有最大值y=4,则当x≥8时,有()A.最小值y=B.最小值y=﹣1C.最大值y=D.最大值y=﹣1二、填空题(本题共6小题,每小题4分,共24分)11.(4分)如图,AB∥CD,AD与BC相交于点E,若AE=2,ED=3,则的值是.12.(4分)圆心角为120°,半径为2的扇形的弧长是.13.(4分)如图,E,F,G,H分别是正方形ABCD各边的中点,顺次连接E,F,G,H.向正方形ABCD 区域随机投掷一点,则该点落在阴影部分的概率是.14.(4分)如图,将△ABC绕点A顺时针旋转55°得到△ADE,点B的对应点是点D,直线BC与直线DE 所夹的锐角是.15.(4分)若a是方程x2+x﹣1=0的一个根,则的值是.16.(4分)如图,在直角三角形ABC中,∠C=90°,D是AC边上一点,以BD为边,在BD上方作等腰直角三角形BDE,使得∠BDE=90°,连接AE.若BC=4,AC=5,则AE的最小值是.三、解答题(本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤)17.(8分)解方程:x2﹣6x﹣1=0.18.(8分)在一个不透明的袋子中装有红、黄、蓝三个小球,除颜色外无其它差别.从袋子中随机摸球三次,每次摸出一个球,记下颜色后不放回.请用列举法列出三次摸球的结果,并求出第三次摸出的球是红球的概率.19.(8分)福建省会福州拥有“三山两塔一条江”,其中报恩定光多宝塔(别名白塔),位于于山风景区,利用标杆可以估算白塔的高度.如图,标杆BE高1.5m,测得AB=0.9m,BC=39.1m,求白塔的高CD.20.(8分)如图,已知⊙O,A是的中点,过点A作AD∥BC.求证:AD与⊙O相切.21.(8分)如图,△ABC中,AB=AC>BC,将△ABC绕点C顺时针旋转得到△DEC,使得点B的对应点E 落在边AB上(点E不与点B重合),连接AD.(1)依题意补全图形;(2)求证:四边形ABCD是平行四边形.22.(10分)某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元.(1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款;(2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.23.(10分)如图,双曲线y=上的一点A(m,n),其中n>m>0,过点A作AB⊥x轴于点B,连接OA.(1)已知△AOB的面积是3,求k的值;(2)将△AOB绕点A逆时针旋转90°得到△ACD,且点O的对应点C恰好落在该双曲线上,求的值.24.(12分)如图,△ABC内接于⊙O,BC是⊙O的直径,E是上一点,弦BE交AC于点F,弦AD⊥BE 于点G,连接CD,CG,且∠CBE=∠ACG.(1)求证:CG=CD;(2)若AB=4,BC=2,求CD的长.25.(14分)已知抛物线C:y=ax2﹣4(m﹣1)x+3m2﹣6m+2.(1)当a=1,m=0时,求抛物线C与x轴的交点个数;(2)当m=0时,判断抛物线C的顶点能否落在第四象限,并说明理由;(3)当m≠0时,过点(m,m2﹣2m+2)的抛物线C中,将其中两条抛物线的顶点分别记为A,B,若点A,B的横坐标分别是t,t+2,且点A在第三象限.以线段AB为直径作圆,设该圆的面积为S,求S的取值范围.2019-2020学年福建省福州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意.故选:C.2.【解答】解:A、可能性很大的事情也可能不会发生,故错误,不符合题意;B、可能性很小的事情是也可能发生的,故错误,不符合题意;C、掷一次骰子,向上一面的点数是6”是随机事件,故错误,不符合题意;D、“任意画一个三角形,其内角和是180°”,正确,符合题意,故选:D.3.【解答】解:∵x2﹣m=0,∴x2=m,由x2﹣m=0知m≥0,故选:D.4.【解答】解:点(a,b)关于原点对称的点的坐标是:(﹣a,﹣b).故选:A.5.【解答】解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,其中积为偶数的有6种结果,∴积为偶数的概率是=,故选:C.6.【解答】解:令y=0得:x2+bx=0.解得:x1=0,x2=﹣b.∵抛物线的对称轴为x=2,∴﹣b=4.解得:b=﹣4.将b=﹣4代入x2+bx=5得:x2﹣4x=5.整理得:x2﹣4x﹣5=0,即(x﹣5)(x+1)=0.解得:x1=5,x2=﹣1.故选:D.7.【解答】解:连DA,如图,∵点D为线段AB与线段BC的垂直平分线的交点,∴DA=DB,DB=DC,即DA=DB=DC,∴点A、B、C三点在以D点圆心,DB为半径的圆上,∴∠BDC=2∠BAC=2×35°=70°.故选:D.8.【解答】解:∵y=﹣t2+10t+11=﹣(t﹣5)2+36,∴当t=5时有最大值36℃,∴4≤t≤8时该地区的最高温度是36℃,故选:D.9.【解答】解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=35°,∴∠B+∠E=180°+35°=215°.故选:B.10.【解答】解:由当﹣2≤x≤﹣1时有最大值y=4,得x=﹣1时,y=4.k=﹣1×4=﹣4,反比例函数解析式为y=﹣,当x≥8时,图象位于第四象限,y随x的增大而增大,当x=8时,y最小值=﹣,故选:A.二、填空题(本题共6小题,每小题4分,共24分)11.【解答】解:如图所示:∵AB∥CD,∴∠EAB=∠EDC,∠EBA=∠ECD,∴△EAB∽△EDC,∴,又∵AE=2,ED=3,∴,故答案为.12.【解答】解:l===π.故答案为:π.13.【解答】解:设AD=AB=BC=DC=2,则AH=GD=AE=BE=CF=BF=GC=DG=1,可得四边形HEFG是正方形,边长为:,故阴影部分面积为:2,∵正方形ABCD的面积为:4,∴该点落在阴影部分的概率是:.故答案为:.14.【解答】解:∵将△ABC绕点A顺时针旋转55°得到△ADE,点B的对应点是点D,∴直线BC与直线DE所夹的锐角=旋转角=55°,故答案为:55°.15.【解答】解:==,∵a是方程x2+x﹣1=0的一个根,∴a2+a﹣1=0,∴==1,故答案为1.16.【解答】解:如图,过点E作EH⊥AC于H,∵∠BDE=90°=∠C,∴∠EDA+∠BDC=90°,∠BDC+∠DBC=90°,∴∠DBC=∠EDA,且DE=BD,∠H=∠C=90°,∴△BDC≌△DEH(AAS)∴EH=CD,DH=BC=4,∴AH=DH﹣AD=CD﹣1,∵AE2=AH2+EH2=CD2+(CD﹣1)2=2(CD﹣)2+≥∴当CD=时,AE的最小值为,故答案为.三、解答题(本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤)17.【解答】解:x2﹣6x﹣1=0,移项得:x2﹣6x=1,配方得:x2﹣6x+9=10,即(x﹣3)2=10,开方得:x﹣3=±,则x1=3+,x2=3﹣.18.【解答】解:依题意得,共有6种结果,分别是(红,黄,蓝)(红,蓝,黄)(黄,红,蓝)(黄,蓝,红)(蓝,红,黄)(蓝,黄,红),所有结果发生的可能性都相等,其中第三次摸出的球是红球的结果又2种,则第三次摸出的球是红球的概率是=.19.【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴=,∵BE=1.5,AB=0.9,BC=39.1,∴AC=16,∴=,∴CD=.∴白塔的高CD为米.20.【解答】证明:过点O作OF⊥BC于F,延长OF交⊙O于点E,如图所示:∴=,∠OFB=90°,∴E是的中点,∵A是的中点,∴点E与点A重合,∵AD∥BC,∴∠OAD=∠OFB=90°,∴OA⊥AD,∵点A为半径OA的外端点,∴AD与⊙O相切.21.【解答】解:(1)如图所示:(2)∵△ABC绕点C顺时针旋转得到△DEC,∴△ABC≌△DEC,DC=AC,EC=BC,∵AB=AC,∴DC=AB,∵△ABC≌△DEC,∴∠DCE=∠ACB,∵EC=BC,∴∠CEB=∠B,∵AB=AC,∴∠B=∠ACB,∴∠CEB=∠DCE,∴DC∥AB,又∵DC=AC,AB=AC,∴四边形ABCD是平行四边形.22.【解答】解:(1)∵50<60,∴120×50=6000元,答:这所学校需向园林公司支付的树苗款为6000元.(2)∵购买60棵树苗所需要支付的树苗款为120×60=7200元<8800元,∴该中学购买的树苗超过60棵,∴购买100棵树苗时每棵树苗的售价恰好将至100元,∵购买树苗超过100棵后,每棵树苗的售价为100元,此时所需支付的树苗款超过100000元,而100000>8800,∴该中学购买的树苗不过100棵,设购买了x(60<x≤100)棵,根据题意可知:x[20﹣0.5(x﹣60)]=8800,解得:x=220(舍去)或x=80,答:这所学校购买了80棵树苗23.【解答】解:(1)∵双曲线y=上的一点A(m,n),过点A作AB⊥x轴于点B,∴AB=n,OB=m,又∵△AOB的面积是3,∴mn=3,∴mn=6,∵点A在双曲线y=上,∴k=mn=6;(2)如图,延长DC交x轴于E,由旋转可得△AOB≌△ACD,∠BAD=90°,∴AD=AB=n,CD=OB=m,∠ADC=90°,∵AB⊥x轴,∴∠ABE=90°,∴四边形ABED是矩形,∴∠DEB=90°,∴DE=AB=n,CE=n﹣m,OE=m+n,∴C(m+n,n﹣m),∵点A,C都在双曲线上,∴mn=(m+n)(n﹣m),即m2+mn﹣n2=0,方程两边同时除以n2,得+﹣1=0,解得=,∵n>m>0,∴=.24.【解答】解:(1)如图,∵BC是⊙O的直径,∴∠1+∠2=90°∵AD⊥BE于点G,∴∠1+∠5=90°∴∠2=∠5∵∠CBE=∠ACG.即∠4=∠3∠DGC=∠2+∠3=∠5+∠4=∠ABC∵∠ABC=∠D∴∠DGC=∠D∴CG=CD;(2)如图.连接AE、CE,在Rt△ABC中,∠BAC=90°,AB=4,BC=2,根据勾股定理,得AC==6,∵BC是直径,∴∠BEC=90°,∴∠AGE=∠BEC,∴AD∥CE,∵∠CAE=∠4,∠3=∠4,∴∠CAE=∠3,∴AE∥CG,∴四边形AGCE是平行四边形,∴AF=FC=3,在Rt△ABF中,BF==5,∵S△ABF=BF•AG=AB•AF∴AG=.过点C作CI⊥AD于点I,得矩形GICE,∴EC=GI,∵CG=CD,∴GI=DI∵四边形AGCE是平行四边形,∴EC=AG=,∵∠D=∠ABC,∠CID=∠BAC=90°,∴△CID∽△CAB,∴=,即=,∴CD=.答:CD的长为.25.【解答】解:(1)当a=1,m=0时,抛物线的表达式为:y=x2﹣4x+2,△=8>0,故C与x轴的交点个数为2;(2)当m=0时,判断抛物线C的顶点为:(﹣,﹣+2),假设点C在第四象限,则﹣>0,且﹣+2<0,解得:0>且>0,故a无解,故顶点不能落在第四象限;(3)将点(m,m2﹣2m+2)代入抛物线表达式并整理得:(a﹣2)m2=0,∵m≠0,故a=2;则抛物线的表达式为:y=2x2﹣4(m﹣1)x+(3m2﹣6m+2),则顶点坐标为:(m﹣1,m2﹣2m),当m﹣1=t时,m=t+1,则点A(t,t2﹣1);当m﹣1=t+1时,m=t+3,点B(t+2,t2+4t+3);点A在第三象限,即t<0且t2﹣1<0,解得:﹣1<t<0;y B﹣y A=4t+4>0,故点B在点A的右上方,AB2=22+(4t+4)2=16(t+1)2+4,﹣1<t<0时,4<AB2<20;S=π()2=,故π<S<5π.。
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,⊙O 中,45ABC ∠=︒,则AOC ∠等于( )A .55︒B .80︒C .90︒D .135︒2.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A .1B .2C .3D .43.用配方法解一元二次方程2410x x -+=时,下列变形正确的是( ).A .()221x -=B .()225x -=C .()223x +=D .()223x -= 4.如图,△ABC 中,∠B =70°,则∠BAC =30°,将△ABC 绕点C 顺时针旋转得△EDC .当点B 的对应点D 恰好落在AC 上时,∠CAE 的度数是( )A .30°B .40°C .50°D .60°5.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为()A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=6.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x ,则可列方程( )A .()60.51263%x +=B .()60.51263x +=C .()260.5163%x += D .()260.5163x += 7.甲、乙、丙、丁四人各进行了10次射击测试,他们的平均成绩相同,方差分别是22221.2, 1.1,0.6,0.9S S S S ====甲乙丁丙则射击成绩最稳定的是( )A .甲B .乙C .丙D .丁8.一个不透明的盒子装有m 个除颜色外完全相同的球,其中有4个白球.每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则m 的值约为( ) A .8 B .10 C .20 D .409.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。
准考证号:姓名:(在此卷上答题无效)2023—2024学年第一学期初中毕业班期末考试数学本试卷共6页.满分150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.核对答题卡上粘贴的条形码的“准考证号、姓名”与本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.可以直接使用2B 铅笔作图.一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件中,是确定性事件的是A. 向上一面的点数是2B. 向上一面的点数是奇数C. 向上一面的点数小于3D.向上一面的点数小于72.下列方程中,有两个不相等的实数根的是A.x²=0B.x²-3x-1=0C.x²-2x+5=0D.x²+1=03.如图1,△ABC 内接于◎0,直径AD交BC 于点P, 连接OB.下列角中,等于的是A. ∠OABB. ∠ACBC. ∠CADD. ∠OPB4.关于y=(x-2)²-1(x为任意实数)的函数值,下列说法正确的是图 1A.最小值是-1B.最小值是2C.最大值是-1D. 最大值是25.某学校图书馆2023年年底有图书5万册,预计到2025年年底增加到8万册,设图书数量的年平均增长率为x, 可列方程A.5(1+x)=8B.5(1+2x)=8C.5(1+x)²=8D.5(1+2x)²=86.如图2,直线l 是正方形ABCD的一条对称轴,l 与AB,CD 分别交于点M,N.AN,BC 的延长线相交于点P, 连接BN.下列三角形中,与△NCP 成中心对称的是A.△NCBB.△BMN图2C.△AMND.△NDA数学试题第1页(共6页)7.某个正六边形螺帽需要拧4 圈才能拧紧,小梧用扳手的 卡口卡住螺帽,通过转动扳 手的手柄来转动螺帽(如图3 所示).以此方式把这个螺帽 拧紧,他一共需要转动扳手 的次数是A.4B.16图3C.24D.32 8.某航空公司对某型号飞机进行着陆后的滑行测试.飞机着陆后滑行的距离s (单位:m) 关于滑行的时间t (单位:s )的函数解析式是,则t 的取值范围是A.O≤t≤600B.20≤t≤40C.O≤t≤40 二、填空题(本大题有8小题,每小题4分,共32分)9.不透明袋子中只装有2个红球和1个黄球,这些球除颜色外无其他 差别,从袋子中随机摸出1个球,摸出红球的概率是10.抛物线y=3(x-1)²+4的对称轴是11.已知x=1 是方程x²+mx-3=0 的根,则m 的值为 12.四边形ABCD 内接于◎0,E 为 CD 延长线上一点,如图4所示,则D.O≤t≤20图4图中与∠ADE 相等的角是13. 如图5,在△ABC 中,AB=AC=5,BC=6,AD 是△ABC 的角平分线. 把△ABD 绕点A 逆时针旋转90°得到△AEF, 点B 的对应点是点E, 则点D 与点E 之间的距离是14.在平面直角坐标系xOy 中,□ABCD 的对角线交于点0.若点A 的 图5 坐标为(-2,3),则点C 的坐标为 .15.为了改良某种农作物的基因,培育更加优良的品种,某研究团队开展试验,对该种农作物 的种子进行辐射,使其基因发生某种变异.表一记录了截至目前的试验数据.表一累计获得试验成功的种子数(单位:粒)1 4 6 8 10 12 14累计试验种子数(单位:千粒)15810.5 12.5 14.5 16.5该团队共需要30粒基因发生该种变异的种子,请根据表一的数据,合理估计他们还需要 准备用以辐射的种子数(单位:千粒): 16.有四组一元二次方程:①x²-4x+3=0和3x²-4x+1=0;②x²-x-6=0和6x²+x-1=0;③x²-4=0和4x²-1=0;④4x²-13x+3=0和3x²-13x+4=0. 这四组方程具有共同特征, 我们把具有这种特征的一组一元二次方程中的一个称为另一个的“相关方程”.请写出一个 有两个不相等实数根但没有“相关方程”的一元二次方程:数学试题 第2页(共6页)三、解答题(本大题有9 小题,共86分)17.(本题满分8分解方程x²-5x+2=0.18.(本题满分8分)如图6,四边形ABCD是平行四边形,AC=AD,AE⊥BC,DF⊥AC,垂足分别为E,F.证明AE=DF.图619.(本题满分8分)先化简,再求值:,其中m=√2+1.20.(本题满分8分)如图7,AB与◎0相切于点A,OB交O0 于点C,OC=8,AC的长为2π,求BC的长.图7数学试题第3页(共6页)21.(本题满分8分)在矩形ABCD中,点E 在AD边上,∠ABE=60°, 将△ABE 绕点B 顺时针旋转得到△FBG, 使点A的对应点F 在线段BE上.(1)请在图8中作出△FBG;(要求:尺规作图,不写作法,保留作图痕迹)(2)FG 与BC交于点Q, 连接EQ,EC, 若EC=BQ, 请探究AE 与DE的数量关系.图822.(本题满分10分)某公交公司有一栋4层的立体停车场,第一层供车辆进出使用,第二至四层停车.每层的层高为6m, 横向排列30个车位,每个车位宽为3m, 各车位有相应号码,如:201 表示二层第1个车位.第二至四层每层各有一个升降台,分别在211,316,421,为便于升降台垂直升降,升降台正下方各层对应的车位都留空.每个升降台前方有可在轨道上滑行的转运板(以第三层为例,如图9所示).该系统取车的工作流程如下(以取停在311的车子为例):①转运板接收指令,从升降台316 前空载滑行至311前;②转运板进311,托起车,载车出311;③转运板载车滑行至316前;④转运板进316,放车,空载出316,停在316前;⑤升降台垂直送车至一层,系统完成取车.316转图9 停车场第三层平面示意图升降台升与降的速度相同,转运板空载时的滑行速度为1 m/s, 载车时的滑行速度是升降台升降速度的2倍.(1)若第四层升降台送车下降的同时,转运板接收指令从421 前往401取车,升降台回到第四层40s 后转运板恰好载着401的车滑行至升降台前,求转运板载车时的滑行速度;(说明:送至一层的车驶离升降台的时间、转运板进出车位所用的时间均忽略不计)(2)在(1)的条件下,若该系统显示目前第三层没有车辆停放,现该系统将某辆车随机停放在第三层的停车位上,取该车时,升降台已在316待命,求系统按上述工作流程在1分钟内完成取该车的概率.数学试题第4页 (共6页)23.(本题满分10分)正方形的顶点T 在某抛物线上,称该正方形为该抛物线的“T 悬正方形”.若直线l:y=x+t与“T 悬正方形”以T为端点的一边相交,且点T 到直线l的距离为√2(2-t),则称直线l 为该正方形的“T 悬割线”.已知抛物线M:y=-(x-1)²+m²-2m+4,其中,A(m,3),B(4-3m,3),以AB为边作正方形ABCD(点D在点A的下方).(1)证明:正方形ABCD是抛物线M的“A 悬正方形”;(2)判断正方形ABCD是否还可能是抛物线M的“B悬正方形”,并说明理由;(3)若直线l 是正方形ABCD的“A悬割线”,现将抛物线M 及正方形ABCD进行相同的平移,是否存在直线l 为平移后正方形的“C 悬割线”的情形?若存在,请探究抛物线M 经过了怎样的平移;若不存在,请说明理由.24.(本题满分12分)四边形ABCD是菱形,点O为对角线交点,AD边的垂直平分线交线段OD于点P(P 不与 0重合),连接PC,以点P 为圆心,PC 长为半径的圆交直线BC 于点E,直线AE 与直线CD 交于点F, 如图10所示.(1)当∠ABC=60°时,求证:直线AB与◎P 相切;(2)当AO=2,AF²+EF²=16时,求∠ABC 的度数;(3)在菱形ABCD的边长与内角发生变化的过程中,若点C 与E 不重合,请探究∠AFC与∠CAF 的数量关系.图10数学试题第5页(共6页)25.(本题满分14分)请阅读下面关于运用跨学科类比进行的一次研究活动的材料:【背景】小梧跟同学提到他家附近在规划开一个超市,有同学问道:“你家附近不是已经有一个A 超市了吗?再开一个能吸引顾客吗?”这个问题引起了大家对超市的吸引力展开研究的兴趣.【过程】为了简化问题,同学们首先以“在楼层数相同、同样商品的品质和价格相同、售货服务的品质也大致相同的情况下,影响超市吸引力的主要因素”为主题对该市居民展开随机调查.结果显示:超市的占地面积、住处与超市的距离这两个因素的影响程度显著大于其他因素.大家根据调查进行了总结:①可以把“平均每周到超市购物次数p” 作为超市吸引力指标;②占地面积越大吸引力越大;③距离越大吸引力越小.在此次调查所收集到的居民平均每周到各超市购物次数的基础上,同学们进一步调查了相应超市的占地面积s (单位:m²) 及其与居民住处的距离r (单位:m), 并对p,s,r 之间的关系进行研究.一开始,同学们猜想p可能是的正比例函数,但经过检验,发现与实际数据相差较大. 这时,小梧提出:“我联想到牛顿万有引力定律,这个定律揭示了两个物体之间的引力大小与各个物体的质量成正比,而与它们之间距离的平方成反比,可以表示为 (G是引力常数),我们是不是可以作个类比,试一下看p与的关系如何?”.按他的建议,同学们利用调查所得的数据在平面直角坐标系中绘制了p与对应关系的图11 r²散点图,如图11所示.根据阅读材料思考:(1)观察图11中散点的分布规律,请用一种函数来合理估计p与的对应关系,直接写出它的一般形式;(2)为了清晰表示位置,同学们选A 超市为原点,分别以正东、正北方向为x 轴、y 轴正方向建立平面直角坐标系,规定一个单位长度代表1 m 长,则小梧家的坐标为(400,200). A 超市的占地面积为2000m², 规划中的B 超市在A 超市的正东方向.根据(1)中的对应关系,解决下列问题:① 若B 超市与A 超市距离600 m~800m,且对小梧家的吸引力与A 超市相同,求B超市占地面积的范围;②小梧家在东西向的百花巷,百花巷横向排列着较为密集的居民楼.现规划 B 超市开在距A 超市300m处,且占地面积最大为490m²,要想与A 超市竞争百花巷的居民,该规划是否合适?请说明理由.数学试题第6页(共6页)。
2021-2022学年度第一学期期末考试九年级 数学一、 选择题(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案2.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为A 、8人B 、9人C 、10人D 、11人 3.下列说法中正确的是 A .“打开电视,正在播放《新闻联播》”是必然事件;B .某次抽奖活动中奖的概率为1001,说明每买100张奖券,一定有一次中奖;C .想了解兴仁县城镇居民人均年收入水平,宜采用抽样调查.D .我县未来三天内肯定下雪; 4.若2(1)10x +-=,则x 的值等于A .1±B .2±C .0或2D .0或2- 5.如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点 按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上, 那么这个角度等于A .120°B .90°C .60°D .30°6.将方程2650x x --=化为()2x m n +=的形式,则m ,n 的值分别是A.3和5B.3-和5C.3-和14D.3和14 7.如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°,则∠BDC 的度数是A.110°B.70°C.55°D.125° 8.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A .6cmB .35cmC .8cmD .53cm9.同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则两个骰(10题图) 第7题 第8题 C 1A 1CBA子向上的一面的点数和为8的概率为 A.91 B.365 C.61 D.367 10.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是 A.74 B.73 C.72 D.71 二、填空题(每小题3分,共24分)11.关于x 的方程210mx mx ++=有两个相等的实数根,那么m = . 12. 当a _______ 时,二次根式a -3在实数范围内有意义.14.如图,在同心圆⊙O 中,AB 是大圆的直径,AC 是大圆的弦,AC 与小圆相切于点D ,若小圆的半径为3cm ,则BC= cm .15.在一元二次方程02=++c bx ax 中,若a 、b 、c 满足关系式0=+-c b a ,则这个方程必有一个根值为 .16.布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是 . 17.若两圆相切,圆心距为8cm ,其中一个圆的半径为12cm ,则另一个圆的半径为______. 18.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+=_________三、解答题:19.(8分)解方程:(1)0)2()2(2=-+-x x x (2) 2210x x --=20、(6分)已知:关于x 的方程2210x kx +-=⑴求证:方程有两个不相等的实数根;⑵若方程的一个根是-1,求另一个根及k值.21、(8分)如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆。
2019福建近三年一检试题分类汇编—专题7—反比例函数 林国章-已将2016-2019福建九地市一检整理2019-3-1选择题微专题一:反比例函数定义1、(2017—2018学年上学期仙游期末)2、下列函数中,y 是x 的反比例函数的是( B )A.3x y =B.3y x= C.y =3x D.y =x 22、(2016-2017学年福建省莆田二十五中九(上)期末数学试卷)2.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( C )A .B .C .D .8.如图,点P (﹣3,2)是反比例函数(k ≠0)的图象上一点,则反比例函数的解析式( D ) A .B .C .D .3、(2017—2018学年度莆田秀屿区上学期九年级期末考试)2.若一个反比例函数的图象经过点(-4,6),则它的图象一定也经过点( B ) A .(3,8) B .(3,-8) C .(-8,-3) D .(-4,-6)4、(龙岩市上杭县2017-2018学年第一学期期末学段水平测试)2.下列函数中y 是x 的反比例函数是( B )A.y=3xB.y =x3C.y=x 23D.y =3x+35、(2016-2017学年福州市鼓楼区延安中学九年级(上)期末)1.若反比例函数y=﹣的图象经过点A (3,m ),则m 的值是( C ) A .﹣3 B .3C .﹣D .4. 已知反比例函数8y x=-,则下列各点在此函数图象上的是( D )A .(2,4)B .(-1,-8)C .(-2,-4)D .(4,-2)7、(2016-2017学年福建省南平市九年级(上)期末)4.下列四个关系式中,y 是x 的反比例函数的是( B ) A .y=4xB .y=C .y=D .y=8、(2016-2017学年莆田二十五中九年级(上)期末数学试卷)2.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( C )A .B .C .D .8.如图,点P (﹣3,2)是反比例函数(k ≠0)的图象上一点,则反比例函数的解析式( D ) A .B .C .D .微专题二:反比例函数的性质1、(三明市2018-2019学年上学期期末)7.对于反比例函数y =x2-,下列说法不正确的是( D ) A .图象分布在第二、四象限B .当x >0时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1<y 2..2、(南平市2018-2019学年第一学期九年级期末质量检测)8. 如果点A ),3(1y -,B ),2(2y -,C ),2(3y 都在反比例函数)0(>=k xky 的图象上,那么 1y ,2y ,3y 的大小关系正确的是( B )A. 3y <2y <1yB. 2y <1y <3yC. 1y <2y <3yD .1y <3y <2y3、(漳州市2018-2019学年上学期教学质量抽测)9. 若点A (2m ,1y ),B (22+m ,2y )在反比例函数xy 4=的图象上,则1y ,2y 的大小关系是( A )A .21y y >B .21y y =C .21y y <D .不能确定4、(2016-2017学年福建省莆田二十五中九(上)期末数学试卷)4.函数y=2x 与函数y=﹣在同一坐标系中的大致图象是( B )A .B .C .D .5.已知两点P 1(x 1,y 1)、P 2(x 2,y 2)在反比例函数y=的图象上,当x 1>x 2>0时,下列结论正确的是( C ) A .y 2<y 1<0B .y 1<y 2<0C .0<y 2<y 1D .0<y 1<y 25、(福州市 2017-2018 学年第一学期九年级期末考试)7、已知反比例函数y =kx (k <0)的图象经过点A (-1,y 1),B (2,y 2),C (3,y 3), 则 y 1,y 2,y 3的大小关系是( A )(A )y 2<y 3<y 1 (B )y 3<y 2<y 1 (C )y 1<y 3<y 2 (D )y 1<y 2<y 36、(宁德市2017-2018学年九年级上学期期末考试)2.已知反比例函数xky =,当x >0时,y 随x 的增大而增大.则函数xk y =的图象在(C )A .第一、三象限B .第一、四象限C .第二、四象限D .第二、三象限7、(龙岩市上杭县2017-2018学年第一学期期末学段水平测试)10. 已知P (x 1,1),Q (x 2,2)是一个函数图象上的两个点,其中x 1<x 2<0,则这个函数图象可能是( A )A .B .C .D .8、(南平市2017-2018学年第一学期九年级期末质量检测)8.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xy 1-=的图象上的两点,若x 1<0<x 2,则下列结论正确的是( B )A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<09、(2016-2017学年莆田二十五中九年级(上)期末数学试卷)1.若双曲线y=的图象经过第二、四象限,则k 的取值范围是( B ) A .k >0B .k <0C .k ≠0D .不存在4.函数y=2x 与函数y=﹣在同一坐标系中的大致图象是( B )A .B .C .D .5.已知两点P 1(x 1,y 1)、P 2(x 2,y 2)在反比例函数y=的图象上,当x 1>x 2>0时,下列结论正确的是( C ) A .y 2<y 1<0B .y 1<y 2<0C .0<y 2<y 1D .0<y 1<y 210、(2016-2017学年上学期莆田一中集团成员校九年级数学试卷(A ))6.在函数的图象上有三点A (﹣2,y 1)B (﹣1,y 2)C (2,y 3),则( B )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 1>y 3>y 2D .y 3>y 2>y 111、(2016-2017学年漳州市平和县九年级(上)期末数学试卷)6.已知A (2,y 1),B (﹣3,y 2),C (﹣5,y 3)三个点都在反比例函数y=﹣的图象上,比较y 1,y 2,y 3的大小,则下列各式正确的是( B )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 2<y 3<y 1D .y 3<y 2<y 1微专题三:反比例函数的应用1、(2018-2019学年度福州市九年级第一学期质量调研)9.如图,矩形ABCD 的对角线BD 过原点O ,各边分别平行于坐标轴,点C 在反比例函数31k y x+=的图象上.若点A 的坐标是(2-,2-),则k 的值是( C ) A .-1 B .0C .1D .42、(漳州市2018-2019学年上学期教学质量抽测)6. 如图,过反比例函数xky =(x <0)图象上的一点A 作AB ⊥x 轴于点B , 连接AO ,若2=∆AOB S ,则k 的值是 ( D ) A .2 B .-2 C .4 D .-48.如图,点P (﹣3,2)是反比例函数(k ≠0)的图象上一点,则反比例函数的解析式( D ) A .B .C .D .3、(2016-2017学年福州市鼓楼区延安中学九年级(上)期末)4.如图,直线y=kx 与双曲线y=﹣交于A (x 1,y 1),B (x 2,y 2)两点,D A OBC xyxyOB A则2x 1y 2﹣8x 2y 1的值为( B ) A .﹣6 B .﹣12C .6D .124、(宁德市2016-2017学年度第一学期期末九年级质量检测)10.如图,已知动点A ,B 分别在x 轴,y 轴正半轴上,动点P 在反比例函数6(0)y x x =>图象上,PA ⊥x 轴,△PAB 是以PA 为底边的等腰三角形.当点A 的横坐标逐渐增大时,△PAB 的面积将会( C ) A .越来越小 B .越来越大 C .不变D .先变大后变小5、(2016-2017学年上学期莆田一中集团成员校九年级数学试卷(A ))9、如图,双曲线()0>x xky =经过Rt △OAB 斜边OB 的中点D ,与直角边AB 相交于点C .过作DE ⊥OA 交OA 于点E ,若△OBC 的面积为3,则k 的值是( B ). A.1 B.2 C.3 D.46、(2016-2017学年三明市梅列区九上期末考试)6.反比例函数y =(k >0)在第一象限内的图象如图,点M 是图象上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是( B )A .1B .2C .4D .7、(2016-2017学年漳州市平和县九年级(上)期末数学试卷)10.如图,反比例函数的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC相交于点D 、E .若四边形ODBE 的面积为6,则k 的值为( B ) A .1B .2C .3D .4解:由题意得:E 、M 、D 位于反比例函数图象上,则S △OCE =,S △OAD =,第10题图B Axxyy OOA P C B过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S □ONMG =|k |, 又∵M 为矩形ABCO 对角线的交点,则S 矩形ABCO=4S □ONMG =4|k |,由于函数图象在第一象限,k >0,则++6=4k ,k=2. 故选B .填空题微专题一:反比例函数的定义1、(宁德市2018-2019学年度第一学期期末)2、(2016-2017学年福建省莆田二十五中九(上)期末数学试卷)12.函数y=(m +2)x是反比例函数,则m 的值为 2 .3、(福州市 2017-2018 学年第一学期九年级期末考试)4、反比例函数的图像经过点(2,3)则该函数的解析式为 y =6x5、(龙岩市上杭县2017-2018学年第一学期期末学段水平测试)14.反比例函数y =1−k x的图像经过点(2,3)则k= -56、(上杭县2016-2017学年第一学期期末教学质量监测)12.请写出一个图象在第二、四象限的反比例函数解析式 答案不唯一,如y =−1X .14.反比例函数x k y 1+=的图象经过),(11y x A ,),(22y x B 两点,其中120x x <<且21y y >,则k的范围是 1k <- .7、(2016-2017学年福建省南平市九年级(上)期末)11k y x=22k y x=AxyOBCDC A B Oyx(第11题图)11.若反比例函数y=的图象的两个分支在第二、四象限内,请写出一个满足条件的m 的值. 1(答案不唯一,小于2的任何一个数) .微专题二:反比例函数的性质1、(2017—2018学年度莆田秀屿区上学期九年级期末考试)12.已知函数xm y 32+=,当x <0 时,y 随x 的增大而增大,则m 的取值范围是 m =−32 .2、(上杭县2016-2017学年第一学期期末教学质量监测)14.反比例函数xk y 1+=的图象经过),(11y x A ,),(22y x B 两点,其中120x x <<且21y y >,则k 的范围是 1k <- .3、(2016-2017学年上学期莆田一中集团成员校九年级数学试卷(A ))12.若反比例函数1m y x-=的图象分布在第二、四象限,则m 的取值范围是 m<14、(2016-2017学年三明市梅列区九上期末考试)13.已知P 1(x 1,y 1),P 2(x 2,y 2)两点都在反比例函数y =的图象上,且x 1<x 2<0,则y 1 > y 2(填“>”或“<”).微专题三:反比例函数应用1、(宁德市2018-2019学年度第一学期期末)16.如图,已知直线l :103y x b b =-+ (<)与x ,y 轴分别交于A ,B两点,以AB 为边在直线l 的上方作正方形ABCD ,反比例函数11k y x =和22ky x=的图象分别过点C 和点D .若13k =,则2k 的值为 -9 .2、(三明市2018-2019学年上学期期末)14.如图,在平面直角坐标系中,点A 是函数xky =(x <0)图象上的点, A B ⊥x 轴,垂足为B ,若△ABO 的面积为3,则k 的值为____-6___.3、(南平市2018-2019学年第一学期九年级期末质量检测)15.已知反比例函数xky =(0≠k ),当1≤x ≤2时,函数的 最大值与最小值之差是1,则k 的值为 2± .4、(漳州市2018-2019学年上学期教学质量抽测)16. 如图,Rt △ABC 的直角边BC 在x 轴负半轴上,斜边AC 上的中线BD 的反向延长线交y 轴负半轴于点E ,反比例函数xy 2-=(x <0)的图象过点A ,则△BEC 的面积是 1 .5、(2016-2017学年福建省莆田二十五中九(上)期末数学试卷)16.如图,过点O 作直线与双曲线y=(k ≠0)交于A ,B 两点,过点B 作BC ⊥x 轴于点C ,作BD ⊥y 轴于点D .在x 轴、y 轴上分别取点E ,F ,使点A ,E ,F 在同一条直线上,且AE=AF .设图中矩形ODBC 的面积为S 1,△EOF 的面积为S 2,则S 1,S 2的数学量关系是 2S 1=S 2. .(第14题)xyED CBO A解:过点A 作AM ⊥x 轴于点M ,如图所示. ∵AM ⊥x 轴,BC ⊥x 轴,BD ⊥y 轴, ∴S 矩形ODBC =﹣k ,S △AOM =﹣k . ∵AE=AF .OF ⊥x 轴,AM ⊥x 轴, ∴AM=OF ,ME=OM=OE , ∴S △EOF =OE•OF=4S △AOM =﹣2k , ∴2S 矩形ODBC =S △EOF , 即2S 1=S 2.故答案为:2S 1=S 2.6、(2017—2018学年度莆田秀屿区上学期九年级期末考试)16.如图,在平面直角坐标系中,点A 是函数y =kx (k<0,x<0) 图象上的点,过点A 与y 轴垂直的直线交y 轴于点B ,点C 、D 在x 轴上, 且BC ∥AD .若四边形ABCD 的面积为3,则k 值为 3 .7、(宁德市2017-2018学年九年级上学期期末考试)16.如图,点A ,B 在反比例函数xky =图象上,且直线AB 经过原点,点C 在y 轴正半轴上,直线CA 交x 轴于点E ,直线CB 交x 轴于点F ,若3=AE AC ,则=CFBF 14 .8、(南平市2017-2018学年第一学期九年级期末质量检测)第16题图B Axxyy OOA P CB FE11.如图,在平面直角坐标系xoy 中,矩形OABC ,OA =2, OC =1,写出一个函数()0≠=k xk y ,使它的图象与矩形OABC 的边有两个公共点,这个函数的表达式可以为 如:x y 1=(答案不唯一,0<k <2的任何一个数) (答案不唯一). 9、(2016-2017学年福州市九年级(上)期末)15.已知▱ABCD 的面积为4,对角线AC 在y 轴上,点D 在第一象限内,且AD ∥x 轴,当双曲线y=经过B 、D 两点时,则k= 2 .解:由题意可画出图形,设点D 的坐标为(x ,y ),∴AD=x ,OA=y ,∵▱ABCD 的面积为4,∴AD•AC=2AD•OA=4,∴2xy=4,∴xy=2,∴k=xy=2,故答案为:210、(2016—2017南平市建阳外国语学校科技班九上期末数学试卷)9.如图,一次函数y=x+1的图象交x 轴于点E 、交反比例函数x y 2=的图象于点F (点F 在第一象限),过线段EF 上异于E 、F 的动点A 作x 轴的平行线交xy 2=的图象于点B ,过点A 、B 作x 轴的垂线段,垂足分别是点D 、C ,则矩形ABCD 的面积最大值为 4911、(2016-2017学年莆田二十五中九年级(上)期末数学试卷)yx FE CD BA O16.如图,过点O作直线与双曲线y=(k≠0)交于A,B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴、y轴上分别取点E,F,使点A,E,F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1,S2的数学量关系是2S1=S2.12、(2016-2017学年上学期莆田一中集团成员校九年级数学试卷(A))15.如下图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1= S2.(填“>”或“<”或“=”)13、(2016-2017学年漳州市平和县九年级(上)期末数学试卷)16.已知正比例函数y1=x,反比例函数y2=,由y1,y2构成一个新函数y=x+,其图象如图所示,(因其图象似双钩,我们称之为“双钩函数”)给出下列几个命题:①y的值不可能为1;②该函数的图象是中心对称图形;③当x>0时,该函数在x=1时取得最小值2;④在每个象限内,函数值y随自变量x的增大而增大.其中正确的命题是①②③(填所有正确命题的序号)。
2021-2022学年福建省福州市鼓楼区九年级第一学期期末数学试卷一.选择题(共10小题,每题4分)1.下列汽车标志中,可以看作是中心对称图形的是()A.B.C.D.2.在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是()A.4个B.5个C.不足4个D.6个或6个以上3.抛物线y=﹣(x+1)2+2的顶点坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,2)D.(1,﹣2)4.已知x=1是方程x2﹣2x+c=0的一个根,则实数c的值是()A.﹣1B.0C.1D.25.在平面直角坐标系中,抛物线y=x2经变换后得到抛物线y=x2+2,则这个变换可以()A.向左平移2个单位B.向上平移2个单位C.向下平移2个单位D.向右平移2个单位6.下列说法正确的是()A.概率很小的事件不可能发生B.抛一枚硬币,第一次正面朝上,则正面朝上的概率为1C.必然事件发生的概率是1D.某种彩票中奖的概率是,买1000张这种彩票一定会中奖7.受新冠肺炎疫情影响,某企业生产总值从元月份的300万元,连续两个月降至260万元,设平均降低率为x,则可列方程()A.300(1+x)2=260B.300(1﹣x2)=260C.300(1﹣2x)=260D.300(1﹣x)2=2608.如图,AD、BC相交于点O,由下列条件不能判定△AOB与△DOC相似的是()A.AB∥CD B.∠A=∠D C.D.9.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm10.关于x的一元二次方程ax2+bx+=0有一个根是﹣1,若二次函数y=ax2+bx+的图象的顶点在第一象限,设t=2a+b,则t的取值范围是()A.<t<B.﹣1<t≤C.﹣≤t<D.﹣1<t<二.填空题(共6小题,每题4分)11.小强同学从﹣1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是.12.若点P(m,5)与点Q(3,﹣5)关于原点成中心对称,则m的值是.13.已知一个扇形的圆心角为100°,半径为4,则此扇形的弧长是.14.如图,▱ABCD的对角线AC在y轴上,原点O为AC的中点,点D在第一象限内,AD ∥x轴,当双曲线y=经过点D时,则▱ABCD面积为.15.已知⊙O的内接正六边形的边心距为2.则该圆的的半径为.16.如图,平面直角坐标系中,已知O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为.三.解答题(共9小题)17.解方程:x2﹣2x﹣5=0.18.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.19.如图,直线l1∥l2∥l3,点A,C分别在直线l1,l3上,连接AC交直线l2于E点,AE=EC.(1)尺规作图:在直线l2上从左到右依次确定B,D两点,使得四边形ABCD是矩形(保留作图痕迹,不必写作法及证明);(2)在(1)的情况下,若AE=4,∠AEB=60°,求矩形ABCD的周长.20.已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.21.如图,在Rt△ABC中,∠ABC=90°,直角顶点B位于x轴的负半轴,点A(0,﹣2),斜边AC交x轴于点D,且D(1,0),BC与y轴交于点E,y轴平分∠BAC,反比例函数y=(x>0)的图象经过点C.(1)直接写出点B的坐标;(2)求y=(x>0)的函数表达式.22.生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数;(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为2×2的网格图,它可表示不同信息的总个数为;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n的网格图来表示个人身份信息,若该校师生共492人,则n的最小值为.23.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:每条裤子每降价1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)求出y与x之间的函数关系式(不用写自变量的取值范围);(2)设该网店每月获得的利润为w元,当每条裤子的售价降价多少元时,每月获得的利润最大,最大利润是多少?24.如图,⊙O与等边△ABC的边AC,AB分别交于点D,E,AE是直径,过点D作DF ⊥BC于点F.(1)求证:DF是⊙O的切线;(2)连接EF,当EF是⊙O的切线时,求⊙O的半径r与等边△ABC的边长a之间的数量关系.25.如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.(1)求抛物线的表达式;(2)判断△BCE的形状,并说明理由;(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP 的值最小,若存在,请求出最小值;若不存在,请说明理由.参考答案一.选择题(共10小题,每题4分)1.下列汽车标志中,可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的性质得出图形旋转180°,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可.解:A.旋转180°,与原图形能够完全重合是中心对称图形;故此选项正确;B.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;C.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;D.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;故选:A.2.在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是()A.4个B.5个C.不足4个D.6个或6个以上【分析】由取出红球的可能性大知红球的个数比白球个数多,据此可得答案.解:∵袋子中白球有5个,且从袋中随机取出1个球,取出红球的可能性大,∴红球的个数比白球个数多,∴红球个数满足6个或6个以上,故选:D.3.抛物线y=﹣(x+1)2+2的顶点坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,2)D.(1,﹣2)【分析】直接由抛物线的顶点式即可求得答案.解:∵y=﹣(x+1)2+2,∴抛物线的顶点坐标为(﹣1,2),故选:A.4.已知x=1是方程x2﹣2x+c=0的一个根,则实数c的值是()A.﹣1B.0C.1D.2【分析】将x=1代入x2﹣2x+c=0得到关于c的方程,解之可得.解:根据题意,将x=1代入x2﹣2x+c=0,得:1﹣2+c=0,解得:c=1,故选:C.5.在平面直角坐标系中,抛物线y=x2经变换后得到抛物线y=x2+2,则这个变换可以()A.向左平移2个单位B.向上平移2个单位C.向下平移2个单位D.向右平移2个单位【分析】根据变换前后的两抛物线的顶点坐标找变换规律.解:y=x2的顶点坐标是(0,0).y=x2+2的顶点坐标是(0,2).所以将抛物线y=x2向上平移2个单位长度得到抛物线y=x2+2,故选:B.6.下列说法正确的是()A.概率很小的事件不可能发生B.抛一枚硬币,第一次正面朝上,则正面朝上的概率为1C.必然事件发生的概率是1D.某种彩票中奖的概率是,买1000张这种彩票一定会中奖【分析】根据概率的意义,概率公式,随机事件,必然事件,不可能事件的特点逐一判断即可解:A.概率很小的事件也可能发生,故A不符合题意;B.抛一枚硬币,第一次正面朝上,则正面朝上的概率为,故B不符合题意;C.必然事件发生的概率是1,故C符合题意;D.某种彩票中奖的概率是,买1000张这种彩票不一定会中奖,故D不符合题意;故选:C.7.受新冠肺炎疫情影响,某企业生产总值从元月份的300万元,连续两个月降至260万元,设平均降低率为x,则可列方程()A.300(1+x)2=260B.300(1﹣x2)=260C.300(1﹣2x)=260D.300(1﹣x)2=260【分析】根据该企业元月份及经过两个月降低后的生产总值,即可得出关于x的一元二次方程,此题得解.解:依题意,得:300(1﹣x)2=260.故选:D.8.如图,AD、BC相交于点O,由下列条件不能判定△AOB与△DOC相似的是()A.AB∥CD B.∠A=∠D C.D.【分析】本题中已知∠AOB=∠DOC是对顶角,应用两三角形相似的判定定理,即可作出判断.解:A、由AB∥CD能判定△AOB∽△DOC,故本选项不符合题意.B、由∠AOB=∠DOC、∠A=∠D能判定△AOB∽△DOC,故本选项不符合题意.C、由、∠AOB=∠DOC能判定△AOB∽△DOC,故本选项不符合题意.D、已知两组对应边的比相等:,但其夹角不一定对应相等,不能判定△AOB与△DOC相似,故本选项符合题意.故选:D.9.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm【分析】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48cm,∴BD=AB=×48=24(cm),∵⊙O的直径为52cm,∴OB=OC=26cm,在Rt△OBD中,OD===10(cm),∴CD=OC﹣OD=26﹣10=16(cm),故选:C.10.关于x的一元二次方程ax2+bx+=0有一个根是﹣1,若二次函数y=ax2+bx+的图象的顶点在第一象限,设t=2a+b,则t的取值范围是()A.<t<B.﹣1<t≤C.﹣≤t<D.﹣1<t<【分析】二次函数的图象过点(﹣1,0),则a﹣b+=0,而t=2a+b,则a=,b =,二次函数的图象的顶点在第一象限,则﹣>0,﹣>0,即可求解.解:∵关于x的一元二次方程ax2+bx+=0有一个根是﹣1,∴二次函数y=ax2+bx+的图象过点(﹣1,0),∴a﹣b+=0,∴b=a+,而t=2a+b,则a=,b=,∵二次函数y=ax2+bx+的图象的顶点在第一象限,∴﹣>0,﹣>0,将a=,b=代入上式得:﹣>0,解得:﹣1<t<,﹣>0,解得:t≠,故:﹣1<t<,故选:D.二.填空题(共6小题,每题4分)11.小强同学从﹣1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是.【分析】找到满足不等式x+1<2的结果数,再根据概率公式计算可得.解:在﹣1,0,1,2,3,4这六个数中,满足不等式x+1<2的有﹣1、0这两个,所以满足不等式x+1<2的概率是=,故答案为:.12.若点P(m,5)与点Q(3,﹣5)关于原点成中心对称,则m的值是﹣3.【分析】直接利用关于原点对称点的性质得出m的值.解:若点P(m,5)与点Q(3,﹣5)关于原点成中心对称,则m的值是﹣3.故答案为:﹣3.13.已知一个扇形的圆心角为100°,半径为4,则此扇形的弧长是.【分析】根据弧长公式计算即可.解:此扇形的弧长==,故答案为.14.如图,▱ABCD的对角线AC在y轴上,原点O为AC的中点,点D在第一象限内,AD ∥x轴,当双曲线y=经过点D时,则▱ABCD面积为8.【分析】设点D的坐标为(a,b),即可得到ab=4,再根据AD=a,AO=b,即可得到▱ABCD面积.解:设点D的坐标为(a,b),∵双曲线y=经过点D,∴ab=4,∵AD∥x轴,∴AD=a,AO=b,又∵点O为AC的中点,∴AC=2AO=2b,∴▱ABCD面积=2×AD×AC=a×2b=2ab=8,故答案为:8.15.已知⊙O的内接正六边形的边心距为2.则该圆的的半径为4.【分析】连接OA、OB,证出△AOB是等边三角形,根据锐角三角函数的定义即可求得半径.解:如图所示,连接OA、OB,∵多边形ABCDEF是正六边形,∵OA=OB,∴△AOB是等边三角形,∴∠OAM=60°,∴OM=OA•sin∠OAM,∴OA===4,∴该圆的半径为4.故答案为:4.16.如图,平面直角坐标系中,已知O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为(3,﹣10).【分析】先求出AB=6,再利用正方形的性质确定D(﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D的坐标.解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故答案为:(3,﹣10).三.解答题(共9小题)17.解方程:x2﹣2x﹣5=0.【分析】先利用配方法得到(x﹣1)2=6,然后利用直接开平方法解方程.解:x2﹣2x=5,x2﹣2x+1=6,(x﹣1)2=6,x﹣1=±,所以x1=1+,x2=1﹣.18.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.【分析】(1)由旋转的性质可得AC=AF,利用SAS证明△ABC≌△AEF,根据全等三角形的对应边相等即可得出EF=BC;(2)根据等腰三角形的性质以及三角形内角和定理求出∠BAE=180°﹣65°×2=50°,那么∠FAG=50°.由△ABC≌△AEF,得出∠F=∠C=28°,再根据三角形外角的性质即可求出∠FGC=∠FAG+∠F=78°.【解答】(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC=65°,∴∠BAE=180°﹣65°×2=50°,∴∠FAG=∠BAE=50°.∵△ABC≌△AEF,∴∠F=∠C=28°,∴∠FGC=∠FAG+∠F=50°+28°=78°.19.如图,直线l1∥l2∥l3,点A,C分别在直线l1,l3上,连接AC交直线l2于E点,AE=EC.(1)尺规作图:在直线l2上从左到右依次确定B,D两点,使得四边形ABCD是矩形(保留作图痕迹,不必写作法及证明);(2)在(1)的情况下,若AE=4,∠AEB=60°,求矩形ABCD的周长.【分析】(1)以AC为直径作圆交直线l2于B,D,四边形ABCD即为所求.(2)证明△ABE是等边三角形,利用勾股定理求出AD即可解决问题.解:(1)如图,所作的四边形ABCD是矩形.(2)∵AE=BE,∠AEB=60°,∴△ABE是等边三角形,∴AB=AE=4,又∵∠BAD=90°,∴AD===4,所以,矩形ABCD的周长为:2(AB+AD)=8+8.20.已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.【分析】(1)根据关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,得到Δ=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,于是得到结论;(2)根据x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,代入x12+x22﹣x1x2=16,解方程即可得到结论.解:(1)∵关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,∴Δ=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a为正整数,∴a=1,2;(2)∵x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,∵x12+x22﹣x1x2=16,∴(x1+x2)2﹣3x1x2=16,∴[2(a﹣1)]2﹣3(a2﹣a﹣2)=16,解得:a1=﹣1,a2=6,∵a<3,∴a=﹣1.21.如图,在Rt△ABC中,∠ABC=90°,直角顶点B位于x轴的负半轴,点A(0,﹣2),斜边AC交x轴于点D,且D(1,0),BC与y轴交于点E,y轴平分∠BAC,反比例函数y=(x>0)的图象经过点C.(1)直接写出点B的坐标;(2)求y=(x>0)的函数表达式.【分析】(1)根据已知条件得到OD=1,根据角平分线的定义得到∠BAO=∠DAO,根据全等三角形的性质即可得到结论;(2)过C作CH⊥x轴于H,得到∠CHD=90°,根据余角的性质得到∠DCH=∠CBH,根据三角函数的定义得到==,设DH=x,则CH=2x,BH=4x,列方程即可得到结论.解:(1)∵点A(0,﹣2),∴OA=2,∵D(1,0),∴OD=1,∵y轴平分∠BAC,∴∠BAO=∠DAO,∵∠AOD=∠AOB=90°,AO=AO,∴△AOB≌△AOD(ASA),∴OB=OD=1,∴点B坐标为(﹣1,0);(2)过C作CH⊥x轴于H,∴∠CHD=90°,∵∠ABC=90°,∴∠ABO+∠CBO=∠ABO+∠BAO=90°,∴∠BAO=∠DAO=∠CBD,∵∠ADO=∠CDH,∴∠DCH=∠DAO,∴∠DCH=∠CBH,∴tan∠CBH=tan∠DCH=,∴==,设DH=x,则CH=2x,BH=4x,∴2+x=4x,∴x=,∴OH=,CH=,∴C(,),∴k=×=,∴y=(x>0)的函数表达式为y=.22.生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数;(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为2×2的网格图,它可表示不同信息的总个数为16;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n的网格图来表示个人身份信息,若该校师生共492人,则n的最小值为3.【分析】(1)画出树状图,即可得出答案;(2)画出树状图,即可得出答案;(3)由题意得出规律,即可得出答案.解:(1)画树状图如下:共有4种等可能结果,∴图③可表示不同信息的总个数为4;(2)画树状图如下:共有16种等可能结果,故答案为:16;(3)由图②得:当n=1时,21=2,由图④得:当n=2时,22×22=16,∴n=3时,23×23×23=512,∵16<492<512,∴n的最小值为3,故答案为:3.23.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:每条裤子每降价1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)求出y与x之间的函数关系式(不用写自变量的取值范围);(2)设该网店每月获得的利润为w元,当每条裤子的售价降价多少元时,每月获得的利润最大,最大利润是多少?【分析】(1)根据销售单价每降1元,则每月可多销售5条,写出y与x的函数关系式;(2)该网店每月获得的利润w元等于每件的利润乘以销售量,由此列出函数关系式,根据二次函数的性质求解即可;解:(1)由题意可得:y=100+5(80﹣x)=﹣5x+500,∴y与x的函数关系式为y=﹣5x+500;(2)由题意得:w=(x﹣40)(﹣5x+500)=﹣5x2+700x﹣20000=﹣5(x﹣70)2+4500,∵a=﹣5<0,抛物线开口向下,∴w有最大值,即当x=70时,w最大值=4500,∴降价为80﹣70=10(元),每条裤子的售价降价10元时,每月获得的利润最大,最大利润是4500元.24.如图,⊙O与等边△ABC的边AC,AB分别交于点D,E,AE是直径,过点D作DF ⊥BC于点F.(1)求证:DF是⊙O的切线;(2)连接EF,当EF是⊙O的切线时,求⊙O的半径r与等边△ABC的边长a之间的数量关系.【分析】(1)连结OD,根据已知条件可推出△DOA是等边三角形,利用∠ODA=∠C 即可证明OD∥BC,进而即可知∠DFC=∠ODF=90°,即可求证;(2)用含有a和r的式子分别表示出BE和BF的长,根据BF=2BE列出等式即可找到r与a的数量关系.【解答】(1)证明:连结OD,如图所示:∵∠DAO=60°,OD=OA,∴△DOA是等边三角形,∴∠ODA=∠C=60°,∴OD∥BC,又∵∠DFC=90°,∴∠ODF=90°,∴OD⊥DF,即DF是⊙O的切线;(2)设半径为r,等边△ABC的边长为a,由(1)可知:AD=r,则CD=a﹣r,BE=a﹣2r在Rt△CFD中,∠C=60°,CD=a﹣r,∴CF=,∴BF=a﹣,又∵EF是⊙O的切线,∴△FEB是直角三角形,且∠B=60°,∠EFB=30°,∴BF=2BE,∴a﹣(a﹣r)=2(a﹣2r),解得:a=3r,即r=,∴⊙O的半径r与等边△ABC的边长a之间的数量关系为:r=.25.如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.(1)求抛物线的表达式;(2)判断△BCE的形状,并说明理由;(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP 的值最小,若存在,请求出最小值;若不存在,请说明理由.【分析】(1)运用待定系数法即可求得答案;(2)△BCE是直角三角形.运用勾股定理逆定理即可证明;(3)如图,在CE上截取CF=(即CF等于半径的一半),连结BF交⊙C于点P,连结EP,则BF的长即为所求.解:(1)∵抛物线的顶点坐标为E(2,8),∴设该抛物线的表达式为y=a(x﹣2)2+8,∵与y轴交于点C(0,6),∴把点C(0,6)代入得:a=﹣,∴该抛物线的表达式为y=x2+2x+6;(2)△BCE是直角三角形.理由如下:∵抛物线与x轴分别交于A、B两点,∴令y=0,则﹣(x﹣2)2+8=0,解得:x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),∴BC2=62+62=72,CE2=(8﹣6)2+22=8,BE2=(6﹣2)2+82=80,∴BE2=BC2+CE2,∴∠BCE=90°,∴△BCE是直角三角形;(3)⊙C上存在点P,使得BP+EP的值最小且这个最小值为.理由如下:如图,在CE上截取CF=(即CF等于半径的一半),连结BF交⊙C于点P,连结EP,则BF的长即为所求.理由如下:连结CP,∵CP为半径,∴==,又∵∠FCP=∠PCE,∴△FCP∽△PCE,∴==,即FP=EP,∴BF=BP+EP,由“两点之间,线段最短”可得:BF的长即BP+EP为最小值.∵CF=CE,E(2,8),∴由比例性质,易得F(,),∴BF==.。
福州市2013—2014学年第一学期九年级期末质量检测数学试卷参考答案及评分标准一、选择题(每小题4分,共40分)1.B 2.D 3.A 4.C 5.B 6.C 7.A 8.A 9.D 10.D二、填空题(每小题4分,共20分):11.x ≥1 12. 1 6 13.1 14.100 15.7; 21 4(正确一个得2分) 三、解答题:(满分90分)16.(每小题7分,共14分)解:(1) 8×12×18÷27=22×23×32÷3 3 ……………………………………………………………4分 =8. ……………………………………………………………………………………7分 (2) 9x +6 x 4-2x 1 x=3x +3x -2x ……………………………………………………………………6分=4x . …………………………………………………………………………………7分17.解:(1) △A 1B 1C 1如右下图; ………………………………………………………………3分(2) A 1(1,3),B 1(1,0),C 1(3,0); …………………………………………………6分(3) 由抛物线y =ax 2+bx +c 经过点C 、B 1、C 1,可得:⎩⎪⎨⎪⎧c =3a +b +c =09a +3b +c =0, ………………………………………………………………9分 解得:⎩⎪⎨⎪⎧a =1b =-4c =3, …………………………………10分 ∴抛物线的解析式为:y =x 2-4x +3. ……………11分(答案用一般式或顶点式表示,否则扣2分) (4) 表格填写合理正确得2分,图像正确得2分.x… 0 1 2 3 4 … y =x 2-4x+3 … 3 0 -1 0 3 … 二次函数y =x 2-4x +3的图像如右图. 18.解:(1) 列树状图如下:………………3分由树状图可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中x 与y 的积为偶数有6种. …………………………………………………………………………………4分∴小明获胜的概率P (x 与y 的积为偶数)=6 12 = 1 2. ………………………………6分 (2) 列树状图如下:……………9分A B C O xy A 1 B 1 C 1 y =x 2-4x +3 1 2 35 1 2 3 5 1 2 3 5 1 2 3 5 小明 小强小明 小强 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5由树状图可知,所有可能出现的结果共16种情况,并且每种情况出现的可能性相等.其中x与y的积为偶数有7种. (10)分∴小明获胜的概率P(x与y的积为偶数)=716 <12,……………………………11分(或证明716 ≠916 也可)∴游戏规则不公平.……………………………………………………………………12分19.解:(1) 设这两年该县旅游纯收入的年平均增长率为x.根据题意得:………………1分2000(1+x)2=2880.…………………………………………………………4分解得:x1=0.2=20%,x2=-2.2 (不合题意,舍去).………………………6分答:这两年该县旅游纯收入的年平均增长率为20%.………………………7分(2) 如果到2015年仍保持相同的年平均增长率,则2015年该县旅游纯收入为2880(1+0.2)2=4147.2(万元).………………………9分答:预测2015年该县旅游纯收入约4147.2万元.………………………10分20.解:(1) 连接OC.…………………………………………1分∵AB是⊙O的直径,∴∠ACB=90°,即∠ACO+∠OCB=90°.………2分∵OA=OC,∴∠A=∠ACO,………………………………3分∵∠A=∠PCB,∴∠ACO=∠PCB.………………………………4分∴∠PCB+∠OCB=∠ACO+∠OCB=90°,即∠PCO=90°.∴PC⊥OC.………………………………5分又∵OC为⊙O的半径,∴PC是⊙O的切线.………………………………6分(2) ∵AC=PC,∴∠A=∠P,………………………………………7分∴∠PCB=∠A=∠P.∴BC=BP=1.………………………………………8分∴∠CBO=∠P+∠PCB=2∠PCB.又∵∠COB=2∠A=2∠PCB,∴∠COB=∠CBO,…………………………………9分∴BC=OC.又∵OB=OC,∴OB=OC=BC=1,即△OBC为等边三角形.……10分∴∠COB=60°.………………………………11分∴l⌒BC=1×60π180=13π.……………………………12分21.解:(1) DC+CE=2;…………………………………3分(2) 结论成立.连接PC,如图.…………………………4分∵△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.ABCOPABCDEP∴∠ACP =∠B =45°,∠CPB =90°. …………………5分∴∠BPE =90°-∠CPE .又∵∠DPC =90°-∠CPE ,∴∠DPC =∠EPB . ………………………………6分∴△PCD ≌△PBE .∴DC =EB , …………………………………………7分∴DC +CE =EB +CE =BC =2. ……………………8分(3) △CMN 的周长为定值,且周长为2. …………9分在EB 上截取EF =DM ,如图, …………………10分由(2)可知:PD =PE ,∠PDC =∠PEB , ∴△PDM ≌△PEF , ………………………………11分∴∠DPM =∠EPF ,PM =PF .∵∠NPF =∠NPE +∠EPF =∠NPE +∠DPM =∠DPE -∠MPN=45°=∠NPM .∴△PMN ≌△PFN ,∴MN =NF . ……………………………………………12分∴MC +CN +NM =MC +CN +NE +EF=MC +CE +DM=DC +CE=2.∴△CMN 的周长是2. …………………………………13分22.解:(1) 令y =0,得:x 2-4x +1=0, …………………1分解得:x 1=2+3,x 2=2-3. …………………3分 ∴点A 的坐标为(2-3,0),点B 的坐标为(2+3,0). …4分∴AB 的长为23. ………………………………5分(由韦达定理求出AB 也可)(2) 由已知得点C 的坐标为(0,1),由y =x 2-4x +1=(x ―2)2―3, 可知抛物线的对称轴为直线x =2, ……………………6分设△ABC 的外接圆圆心D 的坐标为(2,n ),连接AD 、CD ,∴DC =DA ,即22+(n -1)2=[2―(2―3)]2+n 2,……………8分解得:n =1, …………………………………………9分∴点D 的坐标为(2,1),∴△ABC 的外接圆⊙D 半径为2. ……………………10分(3) 解法一:由(2)知,C 是弧MN 的中点.在半径DN 上截取EN = MG , ……………………11分又∵DM =DN ,∴DG =DE .则点G 与点E 关于点D 对称,连接CD 、CE 、PD 、PE .由圆的对称性可得:图形PMC 的面积与图形PECN 的面积相等. …………………………………………12分由PC 把图形PMCN (指圆弧⌒MCN 和线段PM 、PN 组成的图形)分成两部分,这两部分面积之差为4.可知△PCE 的面积为4.设点P 坐标为(m ,n ) A B C D E M P N F A BC O x yD A B CO xyD EMP N G∴S △CEP =2S △CDP =2× 1 2·CD ·n -1=4, ∴n 1=3,n 2=-1. ……………………………………13分 由点P 在抛物线y =x 2-4x +1上,得:x 2-4x +1=3,解得:x 1=2+6,x 2=2-6(舍去);或x 2-4x +1=-1,解得:x 3=2+2,x 4=2-2(舍去).∴点P 的坐标为(2+2,-1)或(2+6,3). ……………14分 解法二:设点P 坐标为(m ,n ),点G 坐标为(2,c ),直线PC 的解析式为y =kx +b ,得:⎩⎨⎧b =1n =km +b ,解得:⎩⎪⎨⎪⎧k =n -1 m b =1, ∴直线PC 的解析式为y = n -1 m x +1. …………………11分当x =2时,c = 2(n -1) m +1.由(2)知,C 是弧MN 的中点,连接CD , 图形PCN 的面积与图形PMC 的面积差为:=S 扇形DCN +S △GCD +S △PGN -(S 扇形MCD -S △GCD +S △PMG )=2S △GCD +S △PGN -S △PMG=2×12 ×2(c -1)+1 2 (1+c )(m ―2)―12 (3―c )(m ―2)=2(c -1)+12 (2c ―2)(m ―2)=(c -1)(2+m ―2)=[ 2(c -1) m +1―1]m=2(n -1)=4.∴n 1=3,n 2=-1. ……………………………………13分 由点P 在抛物线y =x 2-4x +1上,得:x 2-4x +1=3,解得:x 1=2+6,x 2=2-6(舍去);或x 2-4x +1=-1,解得:x 3=2+2,x 4=2-2(舍去).∴点P 的坐标为(2+2,-1)或(2+6,3). ……………14分A B C O x y D M P N G。
准考证号: 姓名: 1(在此卷上答题无效)2021-2022学年第一学期九年级期末考数 学 试 卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,完卷时间120分钟,满分150分. 注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.第Ⅰ卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.以下冬奥会图标中,是中心对称图形的是( )A .B .C .D .2.下列事件中属于必然事件的是( ) A .随机翻开课本,恰好翻到奇数页码 B .明天太阳从东方升起C .买一张福利彩票,不会中奖D .掷一枚质地均匀的硬币,正面朝上 3.抛物线21y x =−与y 轴的交点坐标是( ) A .(01)−, B .(01), C .(10)−, D .(10),4.如图,A ,B ,C 是⊙O 上的三个点,58AOB ∠=o ,则∠BCA 的度数为( )A .29oB .32oC .42oD .58o5.方程(2021)(2022)0 x x −+=的根的情况是( )A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .无法判断6.已知反比例函数3y x =−,下列结论中不正确的是( )A .图象经过点(13)−,B .图象在第二、四象限C .图象与x 轴,y 轴都没有交点D .y 随x 的增大而增大第4题7.电影《长津湖》上映以来,全国票房连创佳绩.据不完全统计,长乐区第一天票房约2万元,以后每天票房按相同的增长率增长,三天后累计票房收入达18万元,将增长率记作x ,则方程可以列为( ) A .222218x x ++= B .22(1)18x +=C .2(1)18x +=D .222(1)2(1)18x x ++++=8.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E ,若12AD DB =∶∶, 则△ADE 与四边形BCED 的面积比为( ) A .12∶ B .14∶ C .18∶D .19∶9.如图,在正方形网格中,△EFG 绕某一点旋转某一角度得到△RPQ ,则旋转中心可能是( ) A .点A B .点B C .点C D .点D10.如图,抛物线2119y x =−与x 轴交于A ,B 两点,D 是以点C (0,4)为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接OE ,BD ,则线段OE 的最小值是( ) A .32B .2C .52 D第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效.2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑. 二、填空题(共6小题,每题4分,满分24分)11.在平面直角坐标系中,将点(20)P ,绕原点O 逆时针旋转90o 后得到的点Q 坐标为 . 12.抛物线221y x =+的顶点坐标是 .13.在一个不透明的布袋中装有10个除颜色不同外,其余均相同的小球,小明从中随机摸出一个球,放回摇匀后重复试验了200次,其中摸到白球99次则可估计袋中白球有 个.14.若关于x 的一元二次方程2210x x m ++−=一个根为1−,则m 的值是 . 15.在《九章算术》卷九中记载了一个问题:“今有勾八步,股十五步,问勾 中容圆径几何?”其意思是:“如右图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆(内切圆)的直径是多少步?”根据题意,该内切圆的直径..为 步. A BCD E第8题第9题第15题16.如图,点P 在第二象限,过点P 分别作x 轴,y 轴的平行线,与y 轴,x 轴分别交于点A ,B ,与双曲 线(0)k y k x =>分别交于点C ,D .下面四个结论:①PAO PBO S S =△△;②AOC BOD S S =△△; ③ACD BDC S S =△△;④PCB ACD S S =△△.其中一定正确的结论是 .(填序号) 三、解答题(本题共9小题,共86分.解答应写出过程)17.(本题8分)解方程:(1)220x x −=; (2)2210x x −−=.18.(本题8分)如图,在Rt △ABC 中,CD 是斜边AB 上的高. 求证:△ACD ∽△ABC .19.(本题8分)如图,在△ABC 中,90ACB ∠=o ,AC BC =,将边CB 绕点C 顺时针旋转60o ,得到线段CD ,连接AD ,BD . (1)根据题意,将图形补充完整; (2)求∠ADB 的度数.20.(本题8分)如图,在△ABC 中,90C ∠=o ,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA D .求证:直线BC 是⊙O 的切线.21.(本题8分)如图,有一个竖直的喷水枪AB ,由喷水口A 喷出水流的运动路线是抛物线,如果水流的最高点P 到喷水枪AB 所在直线的距离为3 m ,且到地面BC 的距离为5 m ,水流的落地点C 到喷水枪底部B 的距离为8 m ,求喷水枪AB 的长度.D BCABC22.(本题10分)如图,点(4)A a −,是直线2y x =−−与双曲线k y x =的一个交点.(1)求k 的值;(2)求点A 关于原点的对称点B 的坐标, 并说明点B 在双曲线k y x=上.23.(本题10分)某电视台一档综艺节目中,要求嘉宾参加知识竞答,竞答题共10道.每一题有三个选项,且只有一个选项正确,规定每题答对得2分,答错扣1分,不答得0分,若10道题全部答对则另外再奖励2分.某位嘉宾已经答对了8道题,剩下2道题他都不确定哪个选项. (1)若这位嘉宾随机选择一个选项,求他剩下的2道题一对一错的概率;(2)这位嘉宾对剩下2题可以都不答,或只随机答1题,或随机答2题,请你从统计与概率的角度分析,采用哪种做法解答剩下2道题才能总得分更高?24.(本题12分)在平面直角坐标系xOy 中,抛物线2(1)(0) y x m x m m =+−−>与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C . (1)求线段AB 的长(用含m 的代数式表示);(2)当24m ≤≤时,抛物线过点()a b ,和()a b +5 ,,求a 的取值范围; (3)如图,在y 轴上有一点(03)P ,,当APB ABC ∠=∠时,求m 的值.25.(本题14分)如图1,CD 是⊙O 的弦,半径OA ⊥CD ,垂足为B ,过点C 作⊙O 的切线l .(1)若点E 在⊙O 上,且»»CE CA =,连接OE . ①连接AE ,求证:AE ∥l ;②如图2,若B 是OA 的中点,连接OD ,求证:DE 是⊙O 的直径;(2)如图3,过点B 作BF ⊥l ,垂足为F ,若⊙O 的半径是4,求BC BF −的最大值.图1图2图32021-2022学年度第一学期九年级期末考数学试卷参考答案一、选择题(满分40分)1.C2.B3.A4.A5.B6.D7.D8.C9.C 10.B 二、填空题(满分24分)11.(0 12. 13.5 14. 15.6 16.①②③ 2),(01),1±三、解答题(满分86分) 17.(本题8分)九年级数学 - 1 -(共 5 页)2解:(1) ……………2分(2)0x x −=∴或……………3分 0x =20x −=∴; ……………4分120x x ==,(2)221x x −=2211x x −+=+1 ……………1分 2(1)2x −= ……………2分∴1x −= ……………3分 ∴11x =+,21x =.……4分 18.(本题8分)证明:∵在Rt △ABC 中,CD 是斜边AB 上的高 D A BC∴……………4分90ADC ACB ∠=∠=o∵A ∠是公共角 ……………6分 ∴△ACD ∽△ABC . ……………8分19.(本题8分)解:(1)补充图形正确;……………3分(可以不要尺规作图,基本准确即可给分) (2)根据画图,可知CB ,CD =60BCD ∠=o ABCD∴△BDC 是等边三角形 ……………4分 ∴ ……………5分 60CDB ∠=o ∵,90ACB ∠=o AC BC =∴AC CD =, (6)分 150ACD BCD ACB ∠=∠+∠=o ∴1(180150)152ADC DAC ∠= ……………7分∠=×−=o o o o ∴∠=. ……………8分 601545ADB CDB ADC ∠−∠=−=o o (注:本题用△ABD 内角和来计算也可)20.(本题8分)12∴……………3分 OAD CAD ∠=∠∴……………4分ODA CAD ∠=∠∴OD ∥AC ……………5分(注:由DOB CAB ∠=∠得到也可) ∴ ……………6分 90ODB C ∠=∠=o 即OD ⊥BC∵OD 为⊙O 的半径 (注:该步没写不扣分) ∴直线BC 是⊙O 的切线;……………8分21.(本题8分)解:如图,以所在直线为BC x 轴,AB 所在直线为轴建立直角坐标系……1分y (注:直接写以B 为原点建立直角坐标系也可)由题意知,抛物线的顶点P (35),,点……………3分 (80)C ,设抛物线的解析式为 …………4分 2(3)5y a x =−+九年级数学 - 2 -(共 5 页)将点代入,得25 ……………5分 (80)C ,50a +=解得51a =− ……………6分则抛物线的解析式为21355()y x =−−+当时,0x =21(0355)3y =−×−+=.2……………7分∴3.2AB =答:喷水枪AB 的长度为. ……………8分3.2m (注:本题其他建系也可)22.(本题10分)解:(1)∵点(4)A a −,在直线上2y x =−−∴ ……………2分 422a =−=即点(42)A −,∵点在双曲线(42)A −,k y x=上∴; ……………4分428k =−×=−(2)作点A 关于点O 的对称点B ,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D ……………5分 ∴,90BDO ACO ∠=∠=o BOD AOC ∠=∠,OB OA =∴△BOD ≌△AOC (AAS) ……………7分 ∴,4OD OC ==2BD AC ==∴点的坐标为(4 ……………8分 B 2) −,当时,4x =824y −==− ……………9分∴点在双曲线上. ……………10分B 223.(本题10分)解:(1)因为每小题有三个选项,且只有一个选项就正确的,所以有两个选项是错误的,不妨用“对,错,错”来表示.因此可列表如下:(列表或画树状图正确……………2分)对 错 错 对 (对,对) (错,对) (错,对) 错 (对,错) (错,错) (错,错) 错(对,错)(错,错)(错,错)共有9种等可能的结果,其中一对一错的有4种结果 ……………3分 ∴4(9P =两小题一对一错); ……………4分(2)有3种可能的解答方式,分别为①2题都不答;②只随机答1题;③随机答2题.①当2题都不答时,得分为0分; ……………5分 ②当只随机答1题时, ∵13P =(对),23P =(错)∴预期得分为:1221033×−×+=0(分); ……………7分③当随机答2题时,有2题都对,1对1错,2题都错三种可能,所得的分数分别为6分,1分,分,相应的概率分别为: 2−∴预期得分为:九年级数学 - 3 -(共 5 页)14426+129999××−×=(分) ……………9分 ∴这位嘉宾采用随机答2题的解答方式才能总得分更高.………10分24.(本题12分)解:(1)解方程得,2(1)0x m x m +−−=11x =−2x m =……………2分∴点,点(10)A −,(0B m ,)∴; ……………4分(1)1AB m m =−−=+(2)抛物线的对称轴为直线2(1)y x m x m =+−−122m m x −=−= 1−) ……………5分 ∵抛物线过点()a b ,和()a b +5,∴点关于直线()a b ,和(a b +5,12m x −= 对称∴11522m m a −−+−= −a ……………6分(注:写5122a a m ++−=也可) ∴32m a =− ……………7分 ∵24m ≤≤82139∴点M 在抛物线的对称轴直线12m x −= 上九年级数学 - 4 -(共 5 页)∵ 45APB ∠=o ∴90AMB ∠=o ∴点M 到x 轴的距离11(122AB m ==+)∴点M 的坐标为11(22m m D + −, ……………10分 在中,PMC Rt△222211[3(1)][(1)22PM PC MC m m =+=−++−在ABM Rt△中, 222(1)AM BMABm +==+2∵PM AM =即22PM AM =∴221112(1)][(1)](1)222m m m −++−=+[3 ……………11分解得32m =即m 的值为32. ……………12分另解:过点B 作BC ⊥P A ,垂足为C ………9分∵, 1AB m =+AP ==, BP ==在中,PBC Rt△45BPC ∠=°∴BC == ………10分由面积公式(或△APO ∽△ABC )得3(1)m +=………11分解得32m =,(m 是增根不写不扣分)6=−即m 的值为32. ……………12分(也可过点A 作AD ⊥PB ,垂足为D )25.(本题14分)(1)①证明:连接 ……………1分OC ∵l 是⊙的切线,是半径, O OC ∴OC ……………2分l ⊥∵ CECA = ∴∠=COE COA ∠3 41②证明:连接,ADOC ∵B 是OA 的中点,OA CD ⊥∴OD ,AD =AD AC = ……………5分 又∵ OD OA =∴ODAD OA ==∴是等边三角形 ……………6分OAD △∴ ……………7分 60DOA ∠=°图2∵ AD AC EC== ∴…………8分 60DOA AOC EOC ∠==∠=∠°∴180DOE ∠=o ∴DE 是⊙O 的直径; ……………9分 (本小题若用三角函数求出也可给分)60DOA ∠=°(2)解:连接OC∵是⊙的切线,OC 是半径, l O ∴ OC l ⊥∵BF ⊥l∴OC ∥BF (10)图3∴ OCB CBF ∠=∠∵90OBC CFB ∠==∠°∴△OCB ∽△CBF ……………11分 ∴OC CB CB BF=设BC x =,则2214CB BF x OC == ……………12分 ∴211(2)44BC BF x x x −=−=−−+21……………13分∴BC BF −的最大值为1. ……………14分。
2023-2024学年福建省福州市九年级上学期数学月考试题及答案一、选择题(本题共10小题,每小题4分,共40分.在每小题给出四个选项中,只有一项是符合要求的)1. 如图,A ,B ,C 是⊙O 上三点,且∠ABC=70°,则∠AOC 的度数是( )A. 35°B. 140°C. 70°D. 110°【答案】B【解析】【分析】根据同弧所对的圆心角与圆周角之间的关系定理即可解决.【详解】解:∵∠ABC 是圆周角,所对的弧是 AC ,∠AOC 是圆心角,所对的弧是 AC ,∴∠AOC=2∠ABC=2×70°=140°.故选:B .【点睛】本题考查同弧所对的圆周角、圆心角之间的关系定理,记住同弧所对圆心角是圆周角的两倍,属于中考常考题型.2. 如图,⊙O 的直径AB =4,点C 在⊙O 上,∠ABC=30°,则AC 的长是( )A. 1D. 2【答案】D【解析】【详解】解:∵AB 是⊙O 直径,∴∠ACB=90°;的的Rt△ABC 中,∠ABC=30°,AB=4;∴AC=12AB=2.故选D .考点:圆周角定理.3. 已知O 的半径为3,点P 到圆心O 的距离为4,则点P 与O 的位置关系是( )A. 点P 在O 外B. 点P 在O 上C. 点P 在O 内D. 无法确定【答案】A【解析】【分析】根据点与圆的位置关系进行判断即可得到答案.【详解】解:O 的半径分别是3,点P 到圆心O 的距离为4,d r ∴>,∴点P 与O 的位置关系是:点在圆外,故选:A .【点睛】本题主要考查了点与圆的位置关系,设点到圆心的距离为d ,半径为r ,当d r =时,点在圆上,当d r <时,点在圆内,当d r >时,点在圆外.4. A ,B 是切点,若70P ∠=︒,则ABO ∠=( )A. 30°B. 35°C. 45°D. 55°【答案】B【解析】【分析】连接OA ,根据切线的性质和四边形的内角和为360︒,求出AOB ∠的度数,等边对等角求出ABO ∠的度数即可.【详解】解:连接OA ,则:OA OB =,∵A,B 是切点,∴,OA PA OB PB ⊥⊥,∴90OBP OAP ∠=∠=︒,∴360110AOB APB OBP OAP ∠=︒-∠-∠-∠=︒,∵OA OB =,∴()1180352ABO AOB ∠=︒-∠=︒;故选B .【点睛】本题考查切线的性质.熟练掌握切线垂直于过切点的半径,是解题的关键.5. 如图,AB 是O 的直径,点C 是O 上的一点,若6BC =,10AB =,OD BC ⊥于点D ,则OD 长为( )A. 1B. 2C. 3D. 4【答案】D【解析】【分析】利用圆周角定理和勾股定理求出AC 的长,再利用垂径定理和三角形的中位线定理求出OD 的长即可.【详解】解:∵AB 是O 的直径,∴90BCA ∠=︒,∵6BC =,10AB =,∴8AC ==,∵OD BC ⊥,∴BD CD =,∵OA OB =,∴OD 是三角形ABC 的中位线,∴142OD AC ==;故选D .【点睛】本题考查圆周角定理,垂径定理和三角形的中位线定理,解题的关键是熟练掌握相关定理,正确的计算.6. 正n 边形的中心角是30°,n =( )A 6 B. 8 C. 10 D. 12【答案】D【解析】【分析】根据正n 边形的中心角是360n ︒,进行求解即可.【详解】解:由题意,得:36030n ︒=︒,∴12n =;故选D .【点睛】本题考查正多边形的中心角.熟练掌握正n 边形的中心角是360n︒,是解题的关键.7. 如图,⊙O 的弦AB=6,M 是AB 上任意一点,且OM 最小值为4,⊙O 的半径为( )A. 5B. 4C. 3D. 2【答案】A【解析】分析】当OM⊥AB 时值最小.根据垂径定理和勾股定理求解..【【详解】解:根据直线外一点到直线的线段中,垂线段最短,知:当OM⊥AB时,为最小值4,连接OA,AB=3,根据垂径定理,得:BM=12根据勾股定理,得:=5,即⊙O的半径为5.故选:A.【点睛】本题考查了垂径定理,主要运用了垂径定理、勾股定理求得半径.特别注意能够分析出OM的最小值.8. 如图,点A、B、C在⊙O上,且∠ACB=100o,则∠α度数为()A. 160oB. 120oC. 100oD. 80o 【答案】A【解析】AD BD利用圆的内接四边形的性质与一条弧所对的圆心角【分析】在⊙O取点D,连接,.是它所对的圆周角的2倍,可得答案.AD BD【详解】解:如图,在⊙O取点D,连接,.四边形ACBD为⊙O的内接四边形,180,∴∠+∠=︒ACB ADB∠=︒100,ACB80,D ∴∠=︒160.AOB ∴∠=︒ .故选A【点睛】本题考查的是圆的内接四边形的性质,同弧所对的圆心角是它所对的圆周角的2倍,掌握相关知识点是解题的关键.9. 圆锥底面圆的半径为3cm ,其侧面展开图是半圆,则圆锥母线长为( )A. 3cmB. 6cmC. 9cmD. 12cm 【答案】B【解析】【详解】试题分析:首先根据圆的周长公式求得圆锥的底面周长=6π,然后根据圆锥的侧面展开图(扇形)的弧长等于底面周长,根据弧长公式180n r l π=即可求得母线长6l ππ=,可得母线长为6.故选B .考点:圆锥的计算10. 如图,ABC 内接于O ,120BAC ∠=︒,AB AC =,BD 为O 的直径,6AD =,则BC 长为( )A. 4B.C. 6D. 【答案】C【解析】【分析】等边对等角,得到30ABC ACB ∠=∠=︒,圆周角定理,得到30ADB ∠=︒,90BAD BCD ∠=∠=︒,利用含30 度角的直角三角形的性质,求出BD 的长,再根据含30 度角的直角三角形的性质,求出BC 的长即可.【详解】解:∵120BAC ∠=︒,AB AC =,∴30ABC ACB ∠=∠=︒,∴30ADB ACB ∠=∠=︒连接CD ,则:18060BDC BAC ∠=︒-∠=︒,∵BD 为O 的直径,∴90BAD BCD ∠=∠=︒,在Rt BAD 中,30ADB ∠=︒,∴2,6BD AB AD ===,∴AB =BD =,在Rt BCD 中,BD =,60BDC ∠=︒,∴30CBD ∠=︒,12CD BD ==,∴6BC ==;故选C .【点睛】本题考查圆周角定理,等边对等角,含30度角的直角三角形.熟练掌握圆周角定理,是解题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11. 如图,已知点A ,B ,C 在O 上,AC OB ∥,40BOC ∠=︒,则ABO ∠=________.【答案】20︒##20度【解析】【分析】先根据圆周角定理求出20BAC =︒∠,再根据平行线的性质可证20ABO BAC ∠=∠=︒.【详解】解:∵40BOC ∠=︒,∴20BAC =︒∠,∵AC OB ∥,∴20ABO BAC ∠=∠=︒.故答案为:20︒【点睛】本题考查的是圆周角定理的应用,平行线的性质,熟记圆周角定理的含义是解本题的关键.12. 用反证法证明:“a 与b 不平行”,第一步假设为________.【答案】a 与b 平行【解析】【分析】反证法的第一步假设结论的对立面成立,作答即可.【详解】解:用反证法证明:“a 与b 不平行”,第一步假设为a 与b 平行;故答案为:a 与b 平行.【点睛】本题考查反证法,熟练掌握反证法的第一步为假设结论的对立面成立,是解题的关键.13. 在半径为3的圆中,150°的圆心角所对扇形的面积是________.【答案】154π【解析】【分析】根据扇形的面积公式进行计算即可.【详解】解:由题意,得:150°的圆心角所对的扇形的面积是21501533604ππ⨯=;故答案为:154π.【点睛】本题考查求扇形面积.熟练掌握扇形的面积公式,是解题的关键.14. 如图,点A ,B ,C ,D 都在⊙O 上,∠ABC=90°,AD =3,CD =2,则⊙O 的直径的长是________.【解析】【详解】连接AC ,根据∠ABC=90°可得AC 为直径,则∠ADC=90°,根据Rt△ACD 的勾股定理可得:=15. 如图,AB 为⊙O 的直径,弦CD AB ⊥于点E ,已知6,1CD EB ==,则⊙O 的半径为__________.【答案】5【解析】【详解】解:设圆的半径为r ,连接OC ,根据垂径定理可知CE=3,OE=r-1,()22231r r \+-=,解得r=5.故答案为5.16. 平面直角坐标系内,A(-1,0),B(1,0),C(4,﹣3),P 在以 C 为圆心 1 为 半径的圆上运动,连接 PA ,PB ,则22PA PB +的最小值是_______ .【答案】34【解析】【分析】设点P (x, y ),表示出22PA PB +的值,从而转化为求OP 的最值,画出图形后可直观得出OP 的最值,代入求解即可.【详解】解:设P (x ,y)∴222,OP x y =+∵A(-1,0),B(1,0),∴()()2222221, 1,PA x y PB x y =++=-+∴()22222222222PA PB x y x y+=++=++ ,∴22222,PA PB OP +=+当点P 处于OC 与圆的交点上时,OP 取得最值,∴OP 的最小值为OC-PC=5-1=4.∴22PA PB +最小值为22222224234,PA PB OP +=+=⨯+=.故答案为: 34.【点睛】本题考查了点与圆的位置关系,解答本题的关键是设出点P 坐标,将所求代数式的值转化为求解OP 的最小值,难度较大.三、解答题(共86分)17. 如图,在O 中,弦AC ∥半径OB ,40BOC ∠=︒,求AOC ∠的度数.【答案】100︒.【解析】【分析】先根据平行线的性质得到40OCA BOC ∠=∠=︒,然后根据等腰三角形的性质和三角形内角和定理计算AOC ∠的度数.【详解】解:AC ∥半径OB ,40OCA BOC ∴∠=∠=︒,OA OC = ,40A OCA ∴∠=∠=︒,1801804040100AOC A OCA ∴∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查了三角形内角和:三角形内角和是180︒.也考查了等腰三角形的性质和圆的认识.18. 如图,5OA OB ==,8AB =,O 的直径为6.求证:直线AB 是O 的切线.【答案】见解析【解析】【分析】过点O 作OD AB ⊥于点D ,根据三线合一和勾股定理求出OD 的长,即可.【详解】解:过点O 作OD AB ⊥于点D ,∵5OA OB ==,8AB =,∴4AD BD ==,∴3OD ==,∵O 的直径为6,∴OD 为O 的半径,又OD AB ⊥,∴直线AB 是O 的切线.【点睛】本题考查切线的判定.熟练掌握切线的判定方法,是解题的关键.19. 如图,A 、B 、C 、D 为⊙O 上四点,若AC⊥OD 于E ,且 =2AB AD .请说明AB =2AE .【答案】证明见解析【解析】【分析】根据垂径定理得到 2AC AD =,AC =2AE ,从而得到 AC AB =,得到AC=AB ,故可求解.【详解】解:∵AC⊥OD,∴AC AD=,AC=2AE,2∵=,2AB AD∴AC AB=,∴ AC=AB,∴ AB=2AE.【点睛】此题主要考查垂径定理,弧、弦、圆心角的关系,解题的关键是熟练掌握相关知识并能灵活运用.20. 如图,AB是⊙O的切线.A为切点,AC是⊙O的弦,过O作OH⊥AC于点H.若OH=2,AB=12,BO=13,求⊙O的半径和AC的值【答案】5,.【解析】【分析】根据切线的性质可得△AOB是直角三角形,由勾股定理可求得OA的长,即⊙O的半径;在Rt△OAH中,由勾股定理可得AH的值,进而由垂径定理求得AC的长.【详解】解:①∵AB是⊙O的切线,A为切点,∴OA⊥AB,在Rt△AOB中,=5,∴⊙O的半径为5;②∵OH⊥AC,∴在Rt△AOH中,,又∵OH⊥AC,.【点睛】本题考查:切线的性质、勾股定理及垂径定理的综合运用等知识,解题关键是勾股定理的应用.21. 如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C.∠DAB=∠B=30°.(1)直线BD是否与⊙O相切?为什么?(2)连接CD,若CD=5,求AB的长.【答案】(1)相切,理由见解析;(2)AB=15.【解析】【分析】(1)连接OD,通过计算得到∠ODB=90°,证明BD与⊙O相切.(2)△OCD是边长为5的等边三角形,得到圆的半径的长,然后求出AB的长【详解】解:(1)直线BD与⊙O相切.如图连接OD,CD,∵∠DAB=∠B=30°,∴∠ADB=120°,∵OA=OD,∴∠ODA=∠OAD=30°,∴∠ODB=∠ADB﹣∠ODA=120°﹣30°=90°.所以直线BD与⊙O相切;(2)连接CD,∠COD=∠OAD+∠ODA=30°+30°=60°,又OC=OD∴△OCD是等边三角形,即:OC=OD=CD=5=OA,∵∠ODB=90°,∠B=30°,∴OB=10,∴AB=AO+OB=5+10=15.22. 如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接OC,交⊙O于点E,弦AD∥OC.(1)求证:点E是弧BD的中点;(2)求证:CD是⊙O的切线.【答案】(1)见解析;(2)见解析【解析】【分析】(1)连接OD.根据相等的圆心角所对的弧相等,证明∠COD=∠COB后得证;(2)证明OD⊥CD即可.通过证明△COD≌△COB得∠ODC=∠OBC=90°得证.【详解】证明:(1)连接OD.∵AD∥OC,∴∠ADO=∠COD,∠A=∠COB.∵OA=OD,∴∠A=∠ADO.∴∠COD=∠COB.∴弧BE=弧DE,即点E是弧BD的中点.(2)由(1)可知∠COD=∠COB,在△COD 和△COB 中,0OD OB COD COB OC C =⎧⎪∠=∠⎨⎪=⎩,∴△COD≌△COB,∴∠CDO=∠CBO.∵BC 与⊙O 相切于点B ,∴BC⊥OB,即∠CBO=90°.∴∠CDO=90°,即DC⊥OD.∴CD 是⊙O 的切线.【点睛】此题考查了圆的有关性质及切线的判定方法等知识点.①相等的圆心角所对的弧相等,必须在同圆或等圆中成立;②要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.23. 如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC ,BC 分别交于点D ,E ,过点D 作DF⊥BC,垂足为点F.(1)求证:DF 为⊙O 的切线;(2)若等边三角形ABC 的边长为4,求DF 的长;(3)求图中阴影部分面积.【答案】(1)证明见解析;(2;(323π-. 【解析】【分析】(1)连接DO ,要证明DF 为⊙O 的切线只要证明∠FDP=90°即可;(2)由已知可得到CD ,CF 的长,从而利用勾股定理可求得DF 的长;(3)连接OE ,求得CF ,EF 的长,从而利用S 直角梯形FDOE -S 扇形OED 求得阴影部分的面积.的【详解】(1)连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形,∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°-∠C=30°,∴∠FDO=180°-∠ADO-∠CDF=90°,∴DF为⊙O的切线;(2)∵△OAD是等边三角形,∴AD=AO=12AB=2,∴CD=AC-AD=2.在Rt△CDF中,∵∠CDF=30°,∴CF=12CD=1,;(3)连接OE.由(2)同理可知CE=2,∴CF=1,∴EF=1,∴S 直角梯形FDOE =12 ∴S 扇形OED =26022=3603ππ⨯∴S 阴影=S 直角梯形FDOE -S 扇形OED 23π-24. 已知二次函数22y ax ax c =-+图象与x 轴交于坐标原点O 和点A ,顶点为点P .(1)求点P 的坐标(用含a 的式子表示);(2)已知点P 纵坐标与点A 横坐标相同,直线6y kx =-与抛物线交于M ,N 两点(点M 在点N 左侧),连接AM AN ,设直线AM 为11y k x m =+,直线AN 为22y k x n =+;①求P 点坐标.②求证:当3k ≠时,12k k 的值不变.【答案】(1)()1,a -(2)①点P 坐标为()1,2;②1212k k ⋅=-.【解析】【分析】(1)由抛物线经过原点可得0c =,将抛物线解析式化为顶点式求解.(2)①由点P 纵坐标与点A 横坐标相同可求出A ,P 坐标;②由直线AM ,AN 经过点A 可得m ,n 与1k ,2k 的关系,设点M ,N 横坐标分别为1x ,2x ,令2624kx x x -=-+可得1242k x x -+=,213x x ⋅=-,用含1x ,2x 及k 的代数式分别表示1k ,2k ,进而求解.【小问1详解】抛物线经过原点,0c ∴=,()2221y ax ax a x a ∴=-=--,∴点P 坐标为()1,a -.【小问2详解】① 抛物线对称轴为直线1x =,∴点A 坐标为()2,0,点P 纵坐标与点A 横坐标相同,2a ∴-=,2a ∴=-,∴点P 坐标为()1,2.②令2624kx x x -=-+,整理得()22460x k x +--=,设点M 横坐标为1x ,点N 横坐标为2x ,1242k x x -∴+=,213x x ⋅=-, 点M 在直线6y kx =-与直线AM 上,把(2,0)代入11y k x m =+得12m k =-,1112y k x k ∴=-,令111162kx k x k -=-,可得11162kx k x -=-, 点N 在直线6y kx =-与直线AN 上,把(2,0)代入22y k x n =+得22n k =-,2222y k x k ∴=-,令222262kx k x k -=-,可得22262kx k x -=-,()()212121212121212636662224k x x k x x kx kx k k x x x x x x -++--∴⋅=⋅=---++,把1242k x x -+=,213x x ⋅=-代入()()21212121263624k x x k x x x x x x -++-++得1236123k k k k-⋅=-+,3k ∴≠时,1212k k ⋅=-.【点睛】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数和方程的关系,掌握一元二次方程根与系数的关系.25. ABC 内接于O ,点D 在BC 边上,射线AD 交O 于点E ,点F 在弧BE 上,连接AF ,ADB AFE ∠=∠.(1)如图1,求证:AB AC =;(2)如图2,BE 交弦AF 于点G ,BC 经过O 点,2AGE EAF ∠=∠,求证:AF BE =;(3)如图3,在(2)的条件下,H 为EG 的中点,连接OH 、CH ,若2180ACH ABE ∠+∠=︒,AB =,求线段OH 的长.【答案】(1)证明见解析(2)证明见解析 (3【解析】【分析】(1)连接CF ,得到CFE CAE ∠=∠,AFC ABC ∠=∠,即AEF ABC CAE ∠=∠+∠,然后根据ADB CAE ACB ADB AFE ∠=∠+∠∠=∠,,可得到结果;(2)连接BF ,找到角度之间的关系,结合(1)中的结论,可得到AG EG =,通过同弧所对的圆周角相等,可得到AFB EBF ∠=∠,进而得到BG GF =,即可求得结果;(3)延长CH 交FG 于点K ,过O 作OM BE ⊥于点M ,过A 作AN CE ⊥于点N ,则90N AGB ∠=︒=∠,然后根据(1)(2)中的条件判断出四边形CKFE 是平行四边形,四边形ANEG 是矩形,得到MH =【小问1详解】证明:连接CF ,,∵ CECE =,∴CFE CAE ∠=∠,∵ AC AC =,∴AFC ABC ∠=∠,∴AEF AFC CFE ABC CAE ∠=∠+∠=∠+∠,∵ADB CAE ACB ADB AFE ∠=∠+∠∠=∠,,∴A ABC CB =∠∠,∴AB AC =;【小问2详解】证明:连接BF ,,∵BC 是直径,∴90BAC ∠=︒,∵AB AC =,∴45ABC ACB ∠==︒,∴18045135AGE EAF ∠+∠=︒-︒=︒,∵2AGE EAF ∠=∠,∴90AGE ∠=︒,45EAF ∠=︒,∴AG EG =,∵ AB AB =, EFEF =,∴45AFB AEB ∠=∠=︒,45EBF EAF ∠=∠=︒,∴AFB EBF ∠=∠,∴BG GF =,∴AG GF EG GB +=+,∴AF BE =;【小问3详解】解:延长CH 交FG 于点K ,过O 作OM BE ⊥于点M ,过A 作AN CE ⊥于点N ,则90N AGB ∠=︒=∠,,∵»»AE AE =,∴45AFE ABE ABC CBE CBE ∠=∠=∠+∠=︒+∠,∵45ACH ACB BCH BCH ∠=∠+∠=︒+∠,∴()245245ACH ABE BCH CBE ∠+∠=︒+∠+︒+∠1352180BCH CBE =︒+∠+∠=︒,∴245BCH CBE ∠+∠=︒,∴45CHE CBE ∠+∠=︒,∵45BEF CBE BAF CAE ∠+∠=∠+∠=︒,∴CHE BEF ∠=∠,∴CK EF =,∵BC 是直径,∴90CEB AGB ∠=︒=∠,∴AF CE ∥,∴四边形CKFE 是平行四边形,∴CK KF =,∵H 是GE 的中点,∴CH KH =,∵90CEG KGH ∠=∠=︒,∴CHE KHG ∠=∠,∴CHE KHG ≌△△,∴CE KG KF ==,设CE x =,则2FG x =,由(2)得2BG x =,∵90N CEG AGE ∠=∠=∠=︒,∴四边形ANEG 是矩形,∵AG EG =,∴四边形ANEG 是正方形,∴AG AN EN EG ===,∵AB AC =,∴Rt AGB Rt ANC △≌△,∴2BG CN x ==,∴3AN EN x ==,∵AB AC ==,∴在Rt ACN V 中,由勾股定理可得()()22232x x +=,∴x =(舍)或x ,∴CE =EG =,则BE BG EG =+=,∴GH HG ==,∵OM BE ⊥,∴BM ME ==∴MH ==,∵OB OC =,∴OM 是BCE 的中位线,∴12OM CE ==,在Rt OMH 中,OH ===【点睛】本题考查了圆与三角形的综合问题,其中有同弧所对的圆周角相等,垂线定理,等腰三角形的性质,勾股定理等知识点,解题的关键是找到各个角度、边长之间的关系.。
2022-2023学年九上数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)1.下列事件的概率,与“任意选2个人,恰好同月过生日”这一事件的概率相等的是( )A .任意选2个人,恰好生肖相同B .任意选2个人,恰好同一天过生日C .任意掷2枚骰子,恰好朝上的点数相同D .任意掷2枚硬币,恰好朝上的一面相同2.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .3.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( )A .y =(x +3)2+2B .y =(x ﹣3)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+34.已知菱形的周长为40 cm ,两对角线长度比为3:4,则对角线长分别为( )A .12 cm .16 cmB .6 cm ,8 cmC .3 cm ,4 cmD .24 cm ,32 cm5.已知反比例函数3m y x -=的图象在二、四象限,则m 的取值范围是( ) A .3m ≥ B .3m >C .3m ≤D .3m < 6.下列不是中心对称图形的是( )A .B .C .D .7.抛物线y =ax 2+bx +c (a ≠1)如图所示,下列结论:①abc <1;②点(﹣3,y 1),(1,y 2)都在抛物线上,则有y 1>y 2;③b 2>(a +c )2;④2a ﹣b <1.正确的结论有( )A .4个B .3个C .2个D .1个8.一元二次方程mx 2+mx ﹣12=0有两个相等实数根,则m 的值为( ) A .0 B .0或﹣2C .﹣2D .2 9.下列运算正确的是( )A .x 6÷x 3=x 2B .(x 3)2=x 5C .2(2)2-=±D .33(2)2-=-10.如图,△ABC 内接于⊙O ,∠ABC=71°,∠CAB=53°,点D 在AC 弧上,则∠ADB 的大小为A .46°B .53°C .56°D .71°11.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,则在下列五个条件中:①∠AED =∠B ;②DE ∥BC ;③AD AC =AE AB;④AD ·BC =DE ·AC ;⑤∠ADE =∠C ,能满足△ADE ∽△ACB 的条件有( )A .1个B .2C .3个D .4个12.抛物线y=x 2+2x ﹣3的最小值是( )A .3B .﹣3C .4D .﹣4二、填空题(每题4分,共24分)13.如图,ABC 是等腰直角三角形,ACB 90∠=,以BC 为边向外作等边三角形BCD ,CE AB ⊥,连接AD 交CE 于点F ,交BC 于点G ,过点C 作CH AD ⊥交AB 于点H.下列结论:CF CG =①;CFG ②∽DBG ;()CF 31EF =-③;tan CDA 2 3.∠=-④则正确的结论是______.(填序号)14.若两个相似三角形的面积比是9:25,则对应边上的中线的比为 _________.15.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。