人教版高中数学必修三 第三章 概率随机事件的概率学案(高三数学)
- 格式:doc
- 大小:40.00 KB
- 文档页数:3
随机事件的概率教案1(高三数学)教学目的:1进一步掌握等可能性事件概率的计算公式;2.能灵活运用各种方法求,m n ,提高分析问题、解决问题的能力 教学重点:复杂的等可能性事件的概率的求解 教学难点:复杂的等可能性事件的概率的求解 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 教学过程:一、复习引入:1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形5 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n= 8.等可能性事件的概率公式及一般求解方法 二、讲解范例:例1.(1)一块各面均涂有油漆的正方体被锯成27个同样大小的小正方体,将这些小正方体均匀地搅混在一起,从中随机地取出一个小正方体,其两面漆有油漆的概率是 .(2)把一个大正方体表面涂成红色,然后按长、宽、高三个方向均匀地切1n -刀,分割成若干个小正方体,任意搅混在一起,求从中任取一块是各面都没有涂红色的概率为 . 解:(1)两面漆有油漆的小正方体共有2761812---=个, 所以,所求概率为124279=. (2)中间的3(2)n -块都没有涂红色,所以,所求概率为33(2)n n -.例2.袋中有红、黄、白色球各1个,每次任取1个,有放回地抽三次,求基本事件的个数,写出所有基本事件的全集,并计算下列事件的概率: (1)三次颜色各不相同; (2)三次颜色不全相同;(3)三次取出的球无红色或黄色解:每次取球都有3种方法,∴共有3327=种不同结果,即27个基本事件, (1)记事件A =“三次颜色各不相同”,∴332()279A P A ==.(2)记事件B =“三次颜色不全相同”,∴2738()279P B -==. (3)记事件C =“三次取出的球无红色或无黄色”,∴3221155()27279P C ⨯-===. 例3.猪八戒说:“我与孙悟空、沙和尚三人中恰有两人是同一天生的”,一年按365天计算,求这一事件的概率解:三人的生日都有365种情况,∴共有3365种不同结果, 三人中恰有两人同一天生,共有23365364C ⨯⨯种不同结果, ∴记事件A =“三人中恰有两人同一天生”,∴233365364()365C P A ⨯⨯=. 例4.已知10只晶体管中有8只正品,2只次品,每次任抽一个测试,求下列事件的概率, (1)测试后放回,抽三次,第三只是正品;(2)测试后不放回,直到第6只才把2只次品都找出来 解:(1)记事件A =“抽三次,第三只是正品”,∴1111010834()105C C C P A ⋅⋅==. (2)记事件B =“直到第6只才把2只次品都找出来”,∴1142586101()9C C A P B A ⋅⋅==. 例5.有一个摆地摊的赌主,他拿了8个白的和8个黑的围棋子,放在1个口袋里,他规定:凡愿赌者,每人交1元钱作“手续费”,然后从口袋里摸5个棋子,中奖情况如下:若摸到5个白子,奖金为20元,若摸到4个白子,奖金为2元,若摸到3个白子,奖金为5角,试计算: (1)能获得20元奖金的概率; (2)能获得2元奖金的概率;(3)按摸1000次统计,赌主可赚多少钱? 解:(1)记事件=A “摸5个棋子,5个都是白的”,∴%28.1781)(61658≈==C C A P .(2)记事件=B “摸5个棋子,4个是白的”,∴%8.12395)(6161848≈=⋅=C C C A P . (3)记事件=C “摸5个棋子,3个是白的”,∴%9.35)(6162838≈⋅=C C C C P , 摸奖1000次,赌主获手续费1000元,支付奖金为:13人获20元,128人获2元,359人获5角, 所以,赌主总共可赚钱5.3045.0359212820131000=⨯-⨯-⨯-元三、课堂练习:1.在100张奖券中,有4中奖,从中任取2张,则2张都中奖的概率是( )()A 150()B 125()C 1825()D 149502.从标有1,2,3,…,9的九张卡片中任取2张,这2张卡片上数字之和为偶数的概率是( )()A 1318()B 718()C 1118()D 493.一班级有50名学生,生日均不相同的概率为( )()A 5036450365A ()B 5036550365A ()C 50364()365()D 503654.从5个男生,4个女生中任意选两人,则至少有一个女生的概率是( )()A 1318()B 13 ()C 1736()D 14 5.设三位数abc ,若b a <,b c <(即十位数上的数字比百位数上的数字和个位数上的数字都小),则称此三位数为凹数,现从0,1,2,3,4,5这6个数字中任取三个不同的数字,组成三位数,其中是凹数的概率 .6.一个口袋内装有带标号的7个白球、3个黑球,事件A :从袋中摸出1个黑球,放回后再摸出1个白球的概率是 .7.10件产品中有6件一等品,4件二等品,从中任取4件,则抽不到二等品的概率是 .8.某人有6把钥匙其中仅有一把钥匙可以打开房门,则前3次试插成功的概率为 .9.一年按365天计算,两名学生的生日相同的概率是多少?10.有十张标有1,2,3,…,10的卡片,从中任取三张,要求取出的三张卡片中,所标的数一个小于5,一个等于5,另一个大于5,求在下列两种抽取方式下的概率:(1)一次抽取三张;(2)连续抽取三张,每次一张.11.在一次口试中,要从20道题中随机抽出6道题进行回答,答对了其中的5道就获得优秀,答对其中的4道就获得及格,某考生能够答对20道题中的8道题,试求:(1)他获得优秀的概率是多少?(2)他获得“及格和及格以上”的概率是多少? 答案:1. C 2. D 3. B 4. A 5. 256.21100 7. 1148. 12 9. P=23651365365= 10.(1)114531016C C C =; (2)333104516A A ⨯= 11. (1)5168128620351938C C C C +=; (2)514268128128620133796951C C C C C C ++== 四、小结 :复杂的等可能性事件的概率的求解方法五、课后作业: 六、板书设计(略) 七、课后记:。
3.1.1 《随机事件的概率》导学案一、学习目标:1.通过实例理解确定性现象与随机现象的含义和随机事件、必然事件、不可能事件的概念及其意义;2.根据定义判断给定事件的类型,明确事件发生的条件是判断事件的类型的关键;3.理解随机事件的频率定义及概率的统计定义,知道根据概率的统计定义计算概率的方法, 理解频率和概率的区别和联系;4.通过对概率的学习,使学生对对立统一的辨证规律有进一步的认识.二、学习重、难点:重点:根据随机事件、必然事件、不可能事件的概念判断给定事件的类型,并能用概率来刻画实际生活中发生的随机现象, 理解频率和概率的区别和联系.难点:理解随机事件的频率定义及概率的统计定义及计算概率的方法, 理解频率和概率的区别和联系.三、使用说明及学法指导:1.要求学生先阅读教材118—120页,然后仔细审题,认真思考、小组配合规范作答。
2. 不会的,模棱两可的问题标记好。
四、知识链接:日常生活中,有些问题是能够准确回答的.例如,明天太阳一定从东方升起吗?明天上午第一节课一定是9:50上课吗?等等,这些事情的发生都是必然的.同时也有许多问题是很难给予准确回答的.例如明天中午13:30有多少人在学校食堂用餐?你购买的本期福利彩票是否能中奖?等等,这些问题的结果都具有偶然性和不确定性.五、教学过程:(结合生活实际并阅读教材P108-112,解决下列问题)知识点一:必然事件、不可能事件和随机事件1、(1)必然事件:一般地,___________________会发生的事件,叫相对于条件S的事件;(2)不可能事件:____________下,________会发生的事件,叫相对于条件S的事件;(3)确定事件:_ ___事件和_________事件统称为相对于条件S的事件;(4)随机事件:___________下,_____ ___发生的事件,叫相对于条件S的事件;(5)事件:和统称为事件,一般用表示.例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1) “抛一石块,下落”; (2) “明天天晴”; (3) “某人射击一次,中靶”;(4) “如果a>b,那么a-b>0”; (5) “掷一枚硬币,出现正面”;(6) “木材燃烧后,发热”; (7) “手电筒的的电池没电,灯泡发亮”;(8)“某电话机在1分钟内收到2次呼叫”; (9)“没有水份,种子能发芽”;(10) “随机选取一个实数x,得|x|≥0”.必然事件有;不可能事件有;随机事件有知识点二:事件A发生的频率与概率2、(1)频数:在相同的条件S下重复n次试验,观察某一事件A是否出现,称(2)频率:称事件A出现的为事件A出现的频率;(3)必然事件出现的频率为 ;不可能事件出现的频率为 ;(4)频率的取值范围是_______历史上曾有人作过抛掷硬币的大量重复试验,结果如课本P112页表3-2所示。
随机事件的概率教案第三章概率本章教材分析在自然界与人类的社会活动中会出现各种各样的现象,既有确定性现象,又有随机现象.随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法.概率统计的应用性强,有利于培养学生的应用意识和动手能力.我们知道,概率是统计学的理论基础,但本书的内容安排是先统计后概率.这样的安排,一方面是考虑到统计与概率学科发展的历史是先有统计,为了研究统计结论的可靠性问题,概率得到了发展;另一方面是考虑到学生的学习心理,统计在前,使得学生在学习过程中可以接触到大量统计案例,学习过程中的实践性可以大大增强.本章包括随机事件的概率的统计定义,概率的意义及其基本性质;古典概型的特征及概率的计算公式;几何概型的特征及概率的计算公式;利用随机模拟的方法估计随机事件的概率.§3.1 随机事件的概率§3.1.1 随机事件的概率一、教材分析概率是描述随机事件发生可能性大小的量度,它已渗透到人们的日常生活中,例如:彩票的中奖率,产品的合格率,天气预报、台风预报等都离不开概率.概率的准确含义是什么呢?我们用什么样的方法获取随机事件的概率,从而激发学生学习概率的兴趣?本节课通过学生亲自动手试验,让学生体会随机事件发生的随机性和随机性中的规律性,通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,体现了试验、观察、探究、归纳和总结的思想方法,是新课标理念的具体实施.二、教学目标1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A发生的频率f n(A)与事件A 发生的概率P(A)的区别与联系;(4)利用概率知识正确理解现实生活中的实际问题.2、过程与方法:(1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.三、重点难点教学重点:1.理解随机事件发生的不确定性和频率的稳定性.2.正确理解概率的意义.教学难点:1.对概率含义的正确理解.2.理解频率与概率的关系.四、课时安排1课时五、教学设计(一)导入新课思路1日常生活中,有些问题是很难给予准确无误的回答的.例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等.尽管没有确切的答案,但大体上围绕一个数值在变化,这个数值就是概率.教师板书课题:随机事件的概率.思路21名数学家=10个师在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.在自然界和实际生活中,我们会遇到各种各样的现象.如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象.随机现象是我们研究概率的基础,为此我们学习随机事件的概率.(二)推进新课、新知探究、提出问题(1)什么是必然事件?请举例说明.(2)什么是不可能事件?请举例说明.(3)什么是确定事件?请举例说明.(4)什么是随机事件?请举例说明.(5)什么是事件A的频数与频率?什么是事件A的概率?(6)频率与概率的区别与联系有哪些?活动:学生积极思考,教师引导学生考虑问题的思路,结合实际的情形分析研究.(1)导体通电时,发热;抛一块石头,下落;“如果a>b,那么a-b>0”;这三个事件是一定要发生的.但注意到有一定的条件.(2)在常温下,焊锡熔化;在标准大气压下且温度低于0 ℃时,冰融化;“没有水,种子能发芽”;这三个事件是一定不发生的.但注意到有一定的条件.(3)抛一块石头,下落;“如果a>b,那么a-b>0”;在标准大气压下且温度低于0 ℃时,冰融化;“没有水,种子能发芽”;这四个事件在一定的条件下是一定要发生的或一定不发生的.是确定的,不是模棱两可的.(4)掷一枚硬币,出现正面;某人射击一次,中靶;从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;“某电话机在1分钟内收到2次呼叫”;这四个事件在一定的条件下是或者发生或不一定发生的,是模棱两可的.(5)做抛掷一枚硬币的试验,观察它落地时哪一个面朝上.通过学生亲自动手试验,突破学生理解的难点:“随机事件发生的随机性和随机性中的规律性”.通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,重视了掌握知识的过程,体现了试验、观察、探究、归纳和总结的思想方法,也体现了新课标的理念.具体如下:第一步每个人各取一枚硬币,做10次掷硬币试验,记录正面向上的次数和比例,试验结果与其他同学比较,你的结果和他们一致吗?为什么?与其他小组试验结果比较,正面朝上的比例一致吗?为什么?通过学生的实验,比较他们实验结果,让他们发现每个人实验的结果、组与组之间实验的结果不完全相同,从而说明实验结果的随机性,但组与组之间的差别会比学生与学生之间的差别小,小组的结果一般会比学生的结果更接近0.5.第三步用横轴为实验结果,仅取两个值:1(正面)和0(反面),纵轴为实验结果出现的频率,画出你个人和所在小组的条形图,并进行比较,发现什么?第四步把全班实验结果收集起来,也用条形图表示.思考这个条形图有什么特点?引导学生在每组实验结果的基础上统计全班的实验结果,一般情况下,班级的结果应比多数小组的结果更接近0.5,从而让学生体会随着实验次数的增加,频率会稳定在0.5附近.并把实验结果用条形图表示,这样既直观易懂,又可以与第二章统计的内容相呼应,达到温故而知新的目的.第五步请同学们找出掷硬币时“正面朝上”这个事件发生的规律性.思考如果同学们重复一次上面的实验,全班汇总结果与这一次汇总结果一致吗?为什么?引导学生寻找掷硬币出现正面朝上的规律,并让学生叙述出现正面朝上的规律性:随着实验次数的增加,正面朝上的频率稳定在0.5附近.由特殊事件转到一般事件,得出下面一般化的结论:随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上.从而得出频率、概率的定义,以及它们的关系.一般情况下重复一次上面的实验,全班汇总结果与这一次汇总结果是不一致的,这更说明随机事件的随机性.进一步总结事件的频数与频率,概括出概率的概念.(6)通过(5)的概括和总结写出频率与概率的区别与联系.讨论结果:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件(certain event ),简称必然事件.(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件(impossible event ),简称不可能事件.(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件.(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件(random event ),简称随机事件;确定事件和随机事件统称为事件,用A,B,C,…表示.(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n a 为事件A 出现的频数(frequency );称事件A 出现的比例f n (A)=nn A 为事件A 出现的频率(relative frequency );对于给定的随机事件A,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率(probability ).(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n a 与试验总次数n 的比值nn A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率.频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.在实际问题中,通常事件的概率未知,常用频率作为它的估计值.频率本身是随机的,在试验前不能确定.做同样次数的重复实验得到事件的频率会不同.概率是一个确定的数,是客观存在的,与每次试验无关.比如,一个硬币是质地均匀的,则掷硬币出现正面朝上的概率就是0.5,与做多少次实验无关.(三)应用示例思路1例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”;(3)“某人射击一次,中靶”;(4)“如果a>b,那么a-b>0”;(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(8)“某电话机在1分钟内收到2次呼叫”;(9)“没有水分,种子能发芽”;(10)“在常温下,焊锡熔化”.分析:学生针对有关概念,思考讨论,教师及时指点,为后续学习打下基础.根据自然界的规律和日常生活的经验积累,根据定义,可判断事件(1)(4)(6)是必然事件;事件(2)(9)(10)是不可能事件;事件(3)(5)(7)(8)是随机事件.答案:事件(1)(4)(6)是必然事件;事件(2)(9)(10)是不可能事件;事件(3)(5)(7)(8)是随机事件.点评:紧扣各类事件的定义,结合实际来判断.例2 某射手在同一条件下进行射击,结果如下表所示:(2)这个射手射击一次,击中靶心的概率约是多少?分析:学生回顾所学概念,教师引导学生思考问题的思路,指出事件A出现的频数n a与试验次数n的比值即为事件A的频率,当事件A发生的频率f n(A)稳定在某个常数上时,这个常数即为事件A的概率.解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91.(2)由于频率稳定在常数0.89,所以这个射手击一次,击中靶心的概率约是0.89.点评:概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而得之.变式训练(1)填写表中男婴出生的频率(结果保留到小数点后第3位);(2)这一地区男婴出生的概率约是多少?答案:(1)0.520 0.517 0.517 0.517(2)由表中的已知数据及公式f n (A )=nn A 即可求出相应的频率,而各个频率均稳定在常数0.518上,所以这一地区男婴出生的概率约是0.518.思路2例1 做掷一枚骰子的试验,观察试验结果.(1)试验可能出现的结果有几种?分别把它们写出;(2)做60次试验,每种结果出现的频数、频率各是多少?分析:学生先思考或讨论,教师提示学生注意结果的可能情况,因为每一枚骰子有六个面,每个面上的点数分别是1,2,3,4,5,6,所以应出现六种结果,试验结果可列表求之.解:(1)试验可能出现的结果有六种,分别是出现1点、2点、3点、4点、5点、6点.(2)根据实验结果列表后求出频数、频率,表略.例2 某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?分析:学生先思考或讨论,教师提示学生注意结果的可能情况,中靶的频数为9,试验次数为10,所以中靶的频率为109=0.9,所以中靶的概率约为0.9. 解:此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;中10环的概率约为0.2.(四)知能训练1.指出下列事件是必然事件、不可能事件、还是随机事件.(1)某地1月1日刮西北风;(2)当x 是实数时,x 2≥0;(3)手电简的电池没电,灯泡发亮;(4)一个电影院某天的上座率超过50%.答案:(1)随机事件;(2)必然事件;(3)不可能事件;(4)随机事件.2.大量重复做掷两枚硬币的实验,汇总实验结果,你会发现什么规律?解答:随机事件在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件发生的频率会逐渐稳定在区间[0,1]中的某个常数上,从而获取随机事件的概率.点评:让学生再一次体会了试验、观察、探究、归纳和总结的思想方法.(五)拓展提升1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是()A.必然事件B.随机事件C.不可能事件D.无法确定答案:B提示:正面向上恰有5次的事件可能发生,也可能不发生,即该事件为随机事件.2.下列说法正确的是()A.任一事件的概率总在(0,1)内B.不可能事件的概率不一定为0C.必然事件的概率一定为1D.以上均不对答案:C提示:任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1..(2)该油菜子发芽的概率约是多少?解:(1)填入表中的数据依次为1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.903,0.905.(2)该油菜子发芽的概率约为0.897.(2)这位运动员投篮一次,进球的概率约为多少?解:(1)填入表中的数据依次为0.75,0.8,0.8,0.83,0.8,0.8,0.76.(2)由于上述频率接近0.80,因此,进球的概率约为0.80.(六)课堂小结本节研究的是那些在相同条件下,可以进行大量重复试验的随机事件,它们都具有频率稳定性,即随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率逐渐稳定在区间[0,1]内的某个常数上(即事件A的概率),这个常数越接近于1,事件A发生的概率就越大,也就是事件A发生的可能性就越大.反之,概率越接近于0,事件A发生的可能性就越小.因此说,概率就是用来度量某事件发生的可能性大小的量.(七)作业完成课本本节练习.。
3.1.1随机事件教学目标1、知识与技能目标(1)理解必然事件、不可能事件、随机事件的概念;(2)区分必然事件、不可能事件和随机事件;(3)在改变条件的情况下,必然事件、不可能事件和随机事件可以互相转化。
. 2、过程与方法目标经历活动、试验、猜测、收集、整理和分析试验结果、听故事等过程,会判断必然事件、不可能事件、随机事件。
3、情感与态度目标(1)学生通过亲身体验,亲自演示,感受数学就在身边,促进学生乐于亲近数学,喜欢数学;(2)让学生在与他人合作中增强互助、协作的精神;(3)培养学生的数学素养,体验数学与生活密切相关,激发学生学以致用的热情。
教学重难点重点:能对必然事件、不可能事件、随机事件的类型作出正确判断。
难点:必然事件、不可能事件、随机事件的区别与转化关系。
教法、学法和辅助手段教法分析情境引人,游戏探索,游戏体验,拓展新知。
学法分析参与活动,发现新知;探究合作,体验新知;抢答活动,巩固新知;听故事,拓展新知。
教学辅助手段红、白球若干,不透明盒子两个,透明杯子一个,签筒一个,笔签五支,骰子若干。
教学过程:一、创设情境,导入新课:师:同学们,你们买过彩票吗?中过奖吗?(学生有的说买过,绝大部分的同学说没有买过,没有中过奖)师:你们想买彩票吗?想中奖吗?生:想。
师:我们来模拟买彩票中大奖,请你们在纸上写出一个你认为幸运的三位数,老师立即开奖。
学生写好后,展示开奖结果。
师:有中奖的吗?请举手,我为中奖的同学准备了奖品。
(为个别中了奖的同学发奖品,安慰没有中奖的同学)师:买一注彩票一定能中奖还是可能中奖?生:可能中奖。
师:我们这个游戏中一定要中奖,你能算出至少要买多少注彩票吗?(少数同学在算,很多同学不知道怎样算)师:《概率初步》会告诉我们怎样计算。
我们今天就学习第一节《随机事件》。
请打开教材。
(多媒体展示课题)二、试验运气好坏,发现新知(摸出红球表示运气好)1、教师拿出事先准备好的一只装的全部是红球的不透明盒子,让坐在教室左边部分的三四位同学摸球,显然学生摸到的全是红球,摸到红球的学生个个惊叹自己运气好啊。
《3.1.1随机事件的概率》教学设计一、教材分析随机事件的概率主要研究事件的分类,概率的定义、概率的意义及统筹算法。
现实生活中存在大量不确定事件,而概率正是研究不确定事件的一门学科,它在人们的生活和生产建设中有着广泛的应用,也是今后学习概率统计的预备知识,所以它在教材中处于非常重要的地位。
概率是新课程高考的新增内容,由于概率问题与人们的实际生活有着紧密的联系,所以概率也成为了近几年新课程高考的一个热点。
二、学情分析概率所研究的对象具有抽象和不确定性等特点,学生很难用已获得的解决确定性数学问题的思维方法,去求的“活”的概率问题的解,这就决定了概率教学中教师的教学方式和学生的学习方式的转变,学生不能沿用传统的记忆加形成性训练的机械学习方法去学习,教师不能沿用传统的给予加示范性的灌输式教学方法去教学,教师必须引导学生经历概率模型的构建过程和模型的应用过程,从中获得问题情境性的情境体验和感悟,才能面对“活”的概率问题。
三、目标定位1、知识与技能:(1)结合实例了解必然事件,不可能事件,随机事件的概念;(2)通过试验了解随机事件的发生在大量重复试验下,呈现规律性,从而理解频率的稳定性及概率的统计定义;(3)结合概率的统计定义理解频率与概率的区别和联系.2、过程与方法:通过在抛硬币的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高。
3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识。
四、学习重难点学习重点:事件的分类;理解频率的稳定性及概率的统计定义。
学习难点:频率与概率的区别和联系;用概率的知识解释现实生活中的具体问题。
五、教法学法分析:针对本节课的特点,在教法上,我采用以教师引导为主,学生合作探索、积极思考为辅的探究式教学方法;在教学过程中,我注重启发式引导、反馈式评价,充分调动学生的学习积极性,鼓励同学们动手试验,让同学们积极主动分享自己的发现和感悟;在学法上,通过对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;做简单易行的实验,发现随机事件的某一结果发生的规律性;通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高。
随机事件及其概率【知识要点】1、 随机事件:① 一般地,在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件,用字母Ω表示。
P (Ω)=1.② 在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件,用字母φ表示。
P (φ)=0.③ 在条件S 下,可能发生也可能不发生的事件,叫做相对于条件S 的随机事件,简称随见事件。
0P A 1≤≤()④ 必然事件和不可能事件统称为相对于条件S 的确定事件,简称确定事件。
事件:对于某个现象,如果能让其条件实现一次,就是进行了一次试验,而试验的每一种可能的结果,都是一个事件。
2、 频率:在相同的条件S 下重复n 次试验,观察某一个事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 的出现频数,称事件A 出现的比例(A)=A n n f n 为事件A 出现的频率。
3、 概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率(A)n f 稳定在某个常数上,把这个常数记作(A)P ,称为事件A 的概率,简称为A 的概率。
(1)频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率。
(2)频率本身是随机的,在试验前是不确定的。
(3)概率是一个确定的常数,是客观存在的,与试验的次数无关。
4、概率的基本性质:(1)事件的关系与运算①对于事件A 与事件B ,如果事件A 发生,事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B ),记作BA ⊇或AB ⊆ ② 一般地,若A B ⊆且B A ⊆,那么称事件A 与事件B 相等,记作A=B③ 若某事件发生当且仅当事件A 发生或者事件B 发生,则称此事件为事件A 与事件B 的并事件(或和事件),记作A B ⋃(或A+B )。
④ 若某事件发生当且仅当A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件),记作A B ⋂(或AB )⑤ 若A B ⋂为不可能事件,即=A B ⋂∅,那么我们称事件A 与事件B 互斥,其含义就是事件A 与事件B 在任何一次试验中都不会同时发生。
3.1.1《随机事件的概率》教材分析在现实世界中,随机现象是广泛存在的,而随机现象中存在着数量规律性,从而使我们可以运用数学方法来定量地研究随机现象;本节课正是引导学生从数量这一侧面研究随机现象的规律性。
随机事件的概率在实际生活中有着广泛的应用,诸如自动控制、通讯技术、军事、气象、水文、地质、经济等领域的应用非常普遍;通过对这一知识点的学习运用,使学生了解偶然性寓于必然之中的辩证唯物主义思想,学习和体会数学的奇异美和应用美.【学习目标】1.(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系2.发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高。
3.(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.【重点难点】重点:事件的分类;概率的定义以及和频率的区别与联系;难点:随机事件发生存在的统计规律性.【学法指导】求随机事件的概率主要要用到排列、组合知识,学生没有基础,但学生在初中已经接触个类似的问题,所以在教学中学生并不感到陌生,关键是引导学生对“随机事件的概率”这个重点、难点的掌握和突破,以及如何有具体问题转化为抽象的概念。
教学方法1.引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→【学习反思】、【基础达标】→发导学案、布置预习课前准备多媒体课件,硬币数枚课时安排:1课时【知识链接】(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
第一课时 3.1.1 随机事件的概率教学要求:了解随机事件、必然事件、不可能事件的概念;正确理解事件A 出现的频率的意义;正确理解概率的概念,明确事件A 发生的频率f n (A)与事件A 发生的概率P (A )的区别与联系;利用概率知识正确理解现实生活中的实际问题.教学重点:事件的分类;概率的定义以及概率和频率的区别与联系.教学难点:随机事件及其概率,概率与频率的区别和联系.教学过程:1. 讨论:①抛一枚硬币,它将正面朝上还是反面朝上? ②购买本期福利彩票是否能中奖?2. 提问:日常生活中,有些问题是很难给予准确无误的回答的,但当我们把某些事件放在一起时,会表现出令人惊奇的规律性.这其中蕴涵什么意思?二、讲授新课:1. 教学基本概念:① 实例:①明天会下雨 ②母鸡会下蛋 ③木材能导电② 必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;③ 不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; ④ 确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; 随机事件:…… ⑤ 频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=nn A 为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率;⑥ 频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值nn A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率.2. 教学例题:① 出示例1:指出下列事件是必然事件、不可能事件还是随机事件?(1)如果,a b 都是实数,a b b a +=+;(2)没有水分,种子发芽;(3)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签.(教法:先依次填入表中的数据,在找出频率稳定在常数,即为击中靶心的概率)③ 练习:某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的频率,假设此人射击1次,试问中靶的频率约为多大?中10环的概率约为多大?3. 小结:随机事件、必然事件、不可能事件的概念;事件A 出现的频率的意义,概率的概念三、巩固练习:1. 练习:1. 教材 P105 1、22. 作业 2、3第二课时 3.1.2 概率的意义教学要求:正确理解概率的意义, 并能利用概率知识正确解释现实生活中的实际问题. 教学重点: 概率意义的理解和应用.教学难点:用概率知识解决现实生活中的具体问题.教学过程:一、复习准备:1. 讨论:有人说,既然抛一枚硬币出现正面的概率是0.5,那么连续两次抛一枚质地均匀的硬币,一定是“一次正面朝上,一次反面朝上”,你认为这种想法正确吗?2. 提问:如果某种彩票的中奖概率是11000,那么买1000张这种彩票一定能中奖吗?二、讲授新课:1. 教学基本概念:①概率的正确理解:概率是描述随机事件发生的可能性大小的度量,事件A的概率P(A)越大,其发生的可能性就越大;概率P(A)越小,事件A发生的可能性就越小.②概率的实际应用(知道随机事件的概率的大小,有利我们做出正确的决策,还可以判断某些决策或规则的正确性与公平性.)③游戏的公平性:应使参与游戏的各方的机会为等可能的,即各方的概率相等,根据这一教学要求确定游戏规则才是公平的④决策中的概率思想:以使得样本出现的可能性最大为决策的准则⑤天气预报的概率解释:降水的概率是指降水的这个随机事件出现的可能,而不是指某些区域有降水或能不能降水.⑥遗传机理中的统计规律:2. 教学例题:①出示例1:有人说,既然抛一枚硬币出现正面向上的概率为0.5,那么连续抛一枚硬币两次,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?②练习:如果某种彩票的中奖概率是11000,那么买1000张这种彩票一定能中奖吗?请用概率的意义解释.(分析:买1000张彩票,相当于1000次试验,因为每次试验的结果都是随机的,所以做1000次试验的结果也是随机的,也就是说,买1000张彩票有可能没有一张中奖。
人教版高中数学必修三第三章统计3.1.1《随机事件的概率》要点梳理【学习目标】在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.【要点梳理·夯实知识基础】12.频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中______________为事件A出现的频数,称______________________为事件A 出现的频率.[答案]事件A出现的次数nA 事件A出现的比例fn(A)=nAn3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).[答案](1)可能性(2)概率P(A) 频率fn(A)【考点探究·突破重点难点】考点一:事件类型的判断1.下列事件:①明天下雨;②3>2;③航天飞机发射成功;④x∈R,x2+2<0;⑤某艘商船遭遇索马里海盗;⑥任给x0∈R,x0+2=0.其中随机事件的个数为()A.1B.2C.3D.4答案:D2.下列说法正确的是()A.某人购买福利彩票一注,中奖500万元,是不可能事件B.三角形的两边之和大于第三边,是随机事件C.没有空气和水,人类可以生存下去,是不可能事件D.科学技术达到一定水平后,不需任何能量的“永动机”将会出现,是必然事件答案:C3.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生答案:D解析:∵若这10张牌中抽出了全部的红桃与梅花共9张,一定还有1张黑桃;若抽出了全部的梅花与黑桃共7张,则还会有3张红桃;若抽出了全部的红桃与黑桃共8张,则还会有2张梅花;∴这个事件一定发生,是必然事件.考点而:试验的结果分析4.下列命题中正确的个数是()①先后抛掷两枚质地均匀的硬币的结果为正面,正面;正面,反面;反面,反面,共计3种.②从12个同类产品(其中10个是正品,2个次品)中,任意抽取3个产品的每一个结果中一定含有正品.③某地举行运动会,从来自A学校的a,b志愿者中选一人,从来自B学校的c,d,e志愿者中选一人共2人为体操馆服务,则有ac,ad,ae,bc,bd,be,共6种选法. A.0 B.1 C.2 D.3答案:C解析:①中应该有4个结果,即正面,正面;正面,反面;反面,正面;反面,反面.故①不正确.②③正确.5.先后投掷2枚均匀的一分、二分的硬币,观察落地后硬币的正反面情况,则包含3个试验结果的是()A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上答案:A解析:“至少一枚硬币正面向上”包括“一分正面向上,二分正面向上”,“一分正面向上,二分正面向下”,“一分正面向下,二分正面向上”3种试验结果.6.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的所有结果.(2)“x+y=5”包含的结果有哪些?“x<3且y>1”呢? (3)“xy=4”包含的结果有哪些?“x=y ”呢?解:(1)结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)“x+y=5”包含的结果为(1,4),(2,3),(3,2),(4,1).“x<3且y>1” 包含的结果为(1,2),(1,3),(1,4),(2,2),(2,3),(2,4). (3)“xy=4”包含的结果为(1,4),(2,2),(4,1). “x=y ”包含的结果为(1,1),(2,2),(3,3),(4,4). 考点三:随机事件的频率与概率7.下列说法:①频率反映的是事件发生的频繁程度.概率反映的是事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率nm就是事件A 的概率;③频率是不能脱离具体的n 次的试验值,而概率是确定性的,不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确说法的序号是 . 答案:①③④解析:由频率及概率的定义可知①是正确的.在②中,nm是事件A 发生的频率,虽然概率是与频率接近的一个常数,但是概率不一定等于频率,故②是错误的.由概率的定义知③④是正确的.8.在抛掷骰子的游戏中,将一枚质地均匀的骰子抛掷6次,对于点数4的出现有下列说法:①一定会出现;②出现的频率为61;③出现的概率是61;④出现的频率是32.其中正确的是 . 答案:③9.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60~69分;(3)60分以下.解:由题意知总人数为40+200+400+100+40+20=800.则选修李老师高等数学的学生考试成绩在90分以上,60~69分,60分以下的频率分别为80040=201;800100=81;80060=403.用以上信息估计王小慧得分的概率情况如下:(1)“得90分以上”的概率为201,(2)“得60~69分”的概率为81,(3)“得60分以下”的概率为403.[3.1.1《随机事件的概率》跟踪检测一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.32.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .45.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.517.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2%12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确B.错误C.不一定D.无法解释二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .15.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 .18.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 .三、解答题19.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.20.对一批U盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U盘,至少需进货多少个U盘?21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.3.1.1《随机事件的概率》跟踪检测解答一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.3答案:A2.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 答案:D解析:三角形的三条边必须满足两边之和大于第三边.3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定答案:B4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .4 答案:B解析:①为必然事件;④为不可能事件. 5.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边 答案: C6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.51答案:B7.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 答案:B解析:从A ,B ,C ,D ,E 五人中选2人,不同的选法有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10种.8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个答案: C9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 答案:A解析:①错误;②出现正面的概率为21,故错误;③频率与概率不是一回事,故错误. 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}答案: C11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2% 答案: D解析:抽取出次品的频率是1002=2%,用频率估计概率,抽出次品的概率大约是2%. 12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确 B.错误 C.不一定D.无法解释答案: B 二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).答案:52解析:数据在155.5~170.5之间有8名学生,则身高在此范围内的频率为208=52,所以概率约为52.14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .答案: 52 0.5215.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 答案:(-1,2),(1,-2) 解析:由直线与圆相切知,543b a +=1,所以3a+4b=±5,依次取a=-2,-1,0,1,2,验证知,只有⎩⎨⎧=-=21b a ,⎩⎨⎧==2-1b a 满足等式.16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为 . 答案: 0.51 241 800 0.5解析:a=200102=0.51,b=500×0.482=241;c=505.0404=800. 易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 . 答案: 0.3518.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 . 答案: 0.03 三、解答题19.从含有两个正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A 为“取出两件产品中恰有一件次品”,写出事件A 对应的结果. [解析](1)试验所有结果:a 1,a 2;a 1,b 1;a 2,b 1;a 2,a 1;b 1,a 1;b 1,a 2.共6种. (2)事件A 对应的结果为:a 1,b 1;a 2,b 1;b 1,a 1;b 1,a 2. 20.对一批U 盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U 盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U 盘,至少需进货多少个U 盘?[解析](1)表中各个次品频率分别为0.06,0.04,0.025,0.017,0.02,0.018. (2)当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任抽一个是次品的概率是0.02.(3)设需要进货x 个U 盘,为保证其中有2 000个正品U 盘,则x(1-0.02)≥2 000,因为x 是正整数,所以x ≥2 041,即至少需进货2 041个U 盘.21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1513.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为87.以频率估计概率,运动会期间不下雨的概率为87.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.[解析] 设水库中鱼的尾数为n,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为n2000,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕 的频率(代替概率)为50040,由n 2000=50040,得n=25 000.所以水库中约有25 000尾.。
随机事件的概率学案
【学习目标】
⒈了解随机事件、必然事件、不可能事件的概念。
⒉正确理解事件A 出现的频率的意义;正确理解概率的概念,明确事件A 发生的频率f n (A)与事件A 发生的概率P (A )的区别与联系 ⒊利用概率知识正确理解现实生活中的实际问题。
【重点难点】
⒈事件的分类;概率的定义以及概率和频率的区别与联系。
⒉随机事件及其概率,概率与频率的区别和联系。
【使用说明及学法指导】
1.先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2. 正确理解概率的概念,明确事件A 发生的频率f n (A)与事件A 发生的概率P (A )的区别与联系。
预习案
一、知识梳理 ① 必然事件: ,一定会发生的事件,叫相 的必然事件; ② 不可能事件: 。
③ 确定事件: 统称为相对于条件S 的确定事件; ④ 随机事件: 。
⑤ 频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的 ;称事件A 出现的
比例f n (A)=
n
n A
为事件A 出现的 :对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定 上,把这个常数记作P (A ),
称为事件A 。
⑥ 频率与概率的区别与联系: 。
二.问题导学
1.随机事件、必然事件、不可能事件是不变的吗?
2. f n (A)与 P (A )是不是不变的?频率与概率相同吗?有何区别?可以用频率来估计概率的值吗?概率的范围是? 三,预习自测
1.1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( )
A .必然事件
B .随机事件
C .不可能事件
D .无法确定 2.下列说法正确的是( )
A.任一事件的概率总在(0.1)内B.不可能事件的概率不一定为0 C.必然事件的概率一定为1 D.以上均不对
3.试判断下列事件是随机事件、必然事件、还是不可能事件
(1)我国东南沿海某地明年将3次受到热带气旋的侵袭;
(2)若a为实数,则0
a ;
(3)某人开车通过10个路口都将遇到绿灯;
(4)抛一石块,石块下落;
(5)一个正六面体的六个面分别写有数字1,2,3,4,5,6,将它抛掷两次,
向上的面的数字之和大于12。
探究案
例1:例1 指出下列事件是必然事件、不可能事件还是随机事件?
(1)如果a,b都是实数,那么a+b=b+a;
(2)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;
(3)没有水分,种子发芽;
(4)某电话总机在60秒内接到至少15次传呼;
(5)在标准大气压下,水的温度达到50℃时沸腾;
(6)同性电荷,相互排斥。
(2)这个射手射击一次,击中靶心的概率约是什么?
例3:某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?
二、课堂训练与检测
1、在数轴上(0,2)的区间内投点,若点落入区间(0,1)内属于事件。
2、在10件同类产品中,有8件正品,2件次品,从中任意抽取3件,至少有1件正品
是事件。
3
(1。