圆锥曲线1(选修2-1)
- 格式:doc
- 大小:556.50 KB
- 文档页数:5
圆锥曲线的统一定义教案(苏教版选修2-1)2.5 圆锥曲线的统一定义●三维目标 1.知识与技能(1)圆锥曲线统一定义及其应用. (2)圆锥曲线的准线及其应用. 2.过程与方法(1)通过对圆锥曲线的统一定义的研究,体会三种曲线的内在统一性,培养学生归纳、总结能力.(2)通过对圆锥曲线统一定义的应用,培养学生对圆锥曲线的准线的理解,培养学生转换角度,认识问题的能力.(3)通过例题变式训练的求解,培养学生数学建模、解决问题的能力.体会特殊到一般,具体到抽象的认识规律.3.情感、态度与价值观在寻求圆锥曲线定义与解题方法之间共同点的过程中,培养学生用“普遍联系”的观念分析事物之间的联系,培养学生严谨的科学态度,勇于探索和敢于创新的科学精神.●重点难点重点:圆锥曲线统一定义的推导.难点:对圆锥曲线统一定义的理解与运用.(教师用书独具)●教学建议以前已学过求圆锥曲线的标准方程和利用圆锥曲线方程研究曲线几何性质的初步知识.本节是在这个基础上学习圆锥曲线的统一定义,研究它们的共同性质,使学生掌握这三种曲线的特点,以及它们之间的区别与联系,进一步熟悉和掌握坐标法.通过设计导学提纲引导学生做好课前预习,明确本节的重难点,主动思考,发现问题,在课堂上分组讨论交流,合作探究,展示交流成果,学生主讲,学生板书,学生点评,当堂进行达标测试,及时反馈学生知识掌握水平,从而完成预定教学目标.引导学生在探究中发现问题、研究问题并解决问题.在感性活动的基础上,上升到理性的数学知识的形成,养成良好学习习惯和思维习惯.●教学流程设置情景,导入新课.上课开始,先回顾椭圆、双曲线、抛物线的定义,提出问题,平面内到一个定点F的距离和到一条定直线l的(F不在l上)距离的比等于1的动点P的轨迹是抛物线,那么,当比值是一个不等于1的常数时,动点P的轨迹又是什么呢?师生x-c2+y2c互动,探求新知.思考:在推导椭圆标准方程时,我们得到一个变形式:=a.a2-xc同学们能解释它的几何意义吗?设计说明:使学生学会从多个角度(如代数的、几何的角度)认识同一个对象.学生归纳圆锥曲线的统一定义:平面内到一个定点F的距离和到一条定直线l(F不在l上)的距离的比等于常数e的点的轨迹.当01时,它表示双曲线;当e=1时,它表示抛物线.设计说明:使学生对圆锥曲线的共同性质有理性的认识.通过例1及变式训练,使学生掌握已知准线求圆锥曲线方程的方法,领会准线、离心率与基本量之间的关系,掌握圆锥曲线统一定义的实质,认识到准线在统一定义中的重要性.通过例2及变式训练,使学生掌握圆锥曲线统一定义的应用,利用圆锥曲线的统一定义,可将曲线上一点到焦点与到准线的距离灵活转换,从而达到解题的目的.利用圆锥曲线的统一定义,在已知焦点坐标和准线方程情形下求解圆锥曲线的方程.通过例3及变式训练,使学生掌握焦点弦问题的求解方法,体会利用统一定义求解焦点弦长的简捷性,从而简化计算过程.通过易错易误辨析,体会圆锥曲线统一定义的严谨性,尤其对于椭圆、双曲线,利用统一定义时,要注意焦点与准线相对应.归纳整理,进行课堂小结,整体认识本节课所学知识.完成当堂双基达标,巩固基本知识,形成力基本能.课标解读 1.了解圆锥曲线的统一定义,掌握圆锥曲线的离心率、焦点、准线等概念.(重点) 2.理解并会运用圆锥曲线的共同性质,解决一些与圆锥曲线有关的简单几何问题和实际问题.(难点) 【问题导思】圆锥曲线的统一定义如何求圆锥曲线的统一方程呢?【提示】如图,过点M作MH⊥l,H为垂足,圆锥曲线的统一定义可知M∈{M||FM|=e|MH|}.取过焦点F,且与准线l垂直的直线为x轴,F(O)为坐标原点,建立直角坐标系.设点M的坐标为(x,y),则|OM|=x2+y2. |MH|=|x+p|. x2+y2=e|x+p|. 两边平方,化简得(1-e2)x2+y2-2pe2x-p2e2=0.这就是圆锥曲线(椭圆、双曲线、抛物线)在直角坐标系中的统一方程.1.平面内到一个定点F和到一条定直线l(F不在l上)的距离的比等于常数e的点的轨迹.当01时,它表示双曲线;当e=1时,它表示抛物线.其中e是圆锥曲线的离心率,定点F是圆锥曲线的焦点,定直线l是圆锥曲线的准线. x2y2a2y2x22.椭圆2+2=1(a>b>0)的准线方程为x=±,2+2=1(a>b>0)的准线方程为yabcaba2=±. cx2y2a2双曲线2-2=1(a>0,b>0)的准线方程为x=±。
知识点拨:解圆锥曲线问题常用方法(二)【学习要点】解圆锥曲线问题常用以下方法:4、数形结合法解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质。
如“2x+y”,令2x+y=b ,则b 表示斜率为-2的直线在y 轴上的截距;如“x 2+y 2”,令d y x =+22,则d 表示点P (x ,y )到原点的距离;又如“23+-x y ”,令23+-x y =k ,则k 表示点P (x 、y )与点A (-2,3)这两点连线的斜率……5、参数法(1)点参数利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解。
如x 轴上一动点P ,常设P (t ,0);直线x-2y+1=0上一动点P 。
除设P (x 1,y 1)外,也可直接设P (2y,-1,y 1) (2)斜率为参数当直线过某一定点P(x 0,y 0)时,常设此直线为y-y 0=k(x-x 0),即以k 为参数,再按命题要求依次列式求解等。
(3)角参数当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题。
6、代入法这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P 1,P 2求(或求证)目标Q”,方法1是将条件P 1代入条件P 2,方法2可将条件P 2代入条件P 1,方法3可将目标Q 以待定的形式进行假设,代入P 1,P 2,这就是待定法。
不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法。
【典型例题】例1:已知P(a,b)是直线x+2y-1=0上任一点,求S=136422+-++b a b a 的最小值。
分析:由此根式结构联想到距离公式,解:S=22)3()2(-++b a 设Q(-2,3),则S=|PQ|,它的最小值即Q 到此直线的距离 ∴S min5535|1322|=-⨯+-点评:此题也可用代入消元的方法转化为二次函数的最小值问题(注:可令根式内为t 消元后,它是一个一元二次函数)例2:已知点P(x,y)是圆x 2+y 2-6x-4y+12=0上一动点,求xy的最值。
4. 待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求. 例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0•••抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b 2x+a2b2=0 应有等根.•••△ =1664-4Q4b2=0,即卩a2=2b.(以下由学生完成)由弦长公式得:即a2b2=4b2-a 2.(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果•练习题用一小黑板给出.1 .△ ABC-边的两个端点是B(0 , 6)和C(0 , -6),另两边斜率的2. 点P与一定点F(2 , 0)的距离和它到一定直线x=8的距离的比是1 : 2,求点P的轨迹方程,并说明轨迹是什么图形?3. 求抛物线y2=2px(p >0)上各点与焦点连线的中点的轨迹方程. 答案:义法)由中点坐标公式得:(四)小结求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.五、布置作业1. 两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.2. 动点P到点F1(1 , 0)的距离比它到F2(3 , 0)的距离少2,求P点的轨迹.3. 已知圆x2+y2=4上有定点A(2 , 0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程.作业答案:1. 以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4 2. v |PF2|-|PF|=2 ,且|F1F2| • P点只能在x轴上且x V 1,轨迹是一条射线六、板书设计教学反思:4斜率之积为4,9程.分析:由椭圆的标准方程的定义及给出的条件,容易求出a,b,c .引导学生用其他方法来解.另解:设椭圆的标准方程为2 25 31 a b 0,因点一,一在椭圆上,a b2 225 9 则 4a 2 4b 22 2a b 4;10<6例2如图,在圆x 24上任取一点P ,过点P 作x 轴的垂线段 PD , D 为垂足•当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析: 点P 在圆x 2 y 2 4上运动,由点 P 移动引起点 M 的运动,则称点 M 是点P 的伴随点,因点M 为线段 PD 的中点,则点 M 的坐标可由点P 来表示,从而能求点 M 的轨迹方程.引申: 设定点2xA 6,2 , P 是椭圆x252y1上动点,求线段 AP 中点M 的轨迹方程.9解法剖析:①(代入法求伴随轨迹)设M x, y , P x 1,y 1 :②(点与伴随点的关系): M为线段AP 的中点,X i y i2x 6;③(代入已知轨迹求出伴随轨迹)2y 22..X 1 '252y11 , •••点M9x的轨迹方程为一25④伴随轨迹表示的范围.例3如图,设A , B 的坐标分别为 5,0 , 5,0 .直线 AM , BM 相交于点M ,且它们的分析:若设点x, y ,则直线AM,BM 的斜率就可以用含 x, y 的式子表示,由于直线AM ,BM 的斜率之积是4 ,因此,可以求出9x, y 之间的关系式,即得到点M 的轨迹方程.解法剖析:设点M x, y ,则 k AM-^― x 5 , k BMx 5 ;x 5x 5代入点M 的集合有4-,化简即可得点 M 的轨迹方程. 9引申:如图,设△ ABC 的两个顶点 A a,0 , B a,0,顶点C 在移动,且k AC k BC k , 且k 0,试求动点C 的轨迹方程.引申目的有两点:①让学生明白题目涉及问题的一般情形;②当 色也是从椭圆的长轴T 圆的直径T 椭圆的短轴.练习:第45页1、2、3、4、 作业:第53页2、3、k 值在变化时,线段 AB 的角求点M 的轨迹方程.分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决 问题的能力.思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能 力.实践能力:培养学生实际动手能力,综合利用已有的知识能力.创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.♦过程与方法目标(1 )复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对 椭圆的标准方程的讨论, 研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先 定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过 题,探究椭圆的扁平程度量椭圆的离心率. 〖板书〗§ 2. 1. 2椭圆的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、 从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(ii )椭圆的简单几何性质2x一2 0,进一步得:a xax 代x ,且以 y 代y 这三个方面来研究椭圆的标准 y 轴为对称轴,原点为对称中心;即圆锥曲线的对称轴与圆锥曲线的交点叫做圆 锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较 短的叫做短轴;c④离心率: 椭圆的焦距与长轴长的比e 叫做椭圆的离心率(0 e 1 ),a当 e1 时,c a ,,b0.; 椭圆图形越扁(iii )例题讲解与引申、扩展400的长轴和短轴的长、离心率、焦点和顶点的坐标.分析:由椭圆的方程化为标准方程,容易求出a,b,c •弓I 导学生用椭圆的长轴、短轴、离心率、 焦点和顶点的定义即可求相关量.确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探 究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1)(3) (4)大小和位置.要巳8的思考冋①范围:由椭圆的标准方程可得,y 2 b 2b y b ,即椭圆位于直线x② 对称性:由以 x 代x ,以 方程发生变化没有,从而得到椭圆是以③ 顶点:先给出圆锥曲线的顶点的统一定义,y 代y 和 x 轴和 a ,同理可得:b 所围成的矩当 e 0 时,c 0,b a 椭圆越接近于圆例4求椭圆I6x 225y 2/Tn扩展:已知椭圆血5y2 5m m 0的离心率为e—,求m的值.解法剖析:依题意,m0,m 5,但椭圆的焦点位置没有确定, 应分类讨论: ①当焦点在x轴上,即0 m 5时,有a品 b 丽,c 75 ~m,二_—:得m 3;②当焦点在y轴上,即m例5如图,応b 岳c J m 5 , ••• J:5V m一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口5时,有a105253BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上, 由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2.已知BC F1F2,RB 2.8cm,F1F24.5cm .建立适当的坐标系,求截口BAC所在椭圆的方程.解法剖析:建立适当的直角坐标系,设椭圆的标准方程为1,算出a,b,c的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于a,b,c的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,“神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心F2为一个焦点的椭圆,近地点A距地面200km,远地点B距地面350km,已知地球的半径R 6371km •建立适当的直角坐标系,求出椭圆的轨迹方程.例6如图,设M x, y与定点F 4,0的距离和它到直线I : 兰的距离的比是常数4点M的轨迹方程./ 2 2 「亠「■25匚亠2MF(x 4 y ,到直线I:x 的距离d x44分析:若设点M x, y,则则容易得点M的轨迹方程.引申:(用《几何画板》探究)若点M x, y与定点F c,0的距离和它到定直线l :c距离比是常数e aac 0 ,则点M 的轨迹方程是椭圆.其中定点F c,0是焦点,2x —相应于F的准线;c由椭圆的对称性, 另一焦点F c,0 ,相应于F的准线l :练习:第52页1、作业:第53页4、教学反思:2、3、4、5、6、75ac4,求52a的c定直线l :类比椭圆:设参量b的意义:第一、便于写出双曲线的标准方程;第二、的几何意义.2 类比:写出焦点在y轴上,中心在原点的双曲线的标准方程召b (iii )例题讲解、引申与补充例1已知双曲线两个焦点分别为F15,0 , F25,0,双曲线上一点绝对值等于6,求双曲线的标准方程.分析:由双曲线的标准方程的定义及给出的条件,容易求出a,b,c的关系有明显P到R , F2距离差的2x2a1 a 0,b 0 . a,b, c.补充:求下列动圆的圆心M 的轨迹方程:① 与O C :2 22 y 2内切,且过点 A 2,0 :②与O C 1 : x 2 y 12 21 和O C2 : x y 4都外切;③与O C i :2 y 9外切,且与O C 2: x 223 y 1内切.解题剖析 半径为r :这表面上看是圆与圆相切的问题, 实际上是双曲线的定义问题•具体解: 设动圆•/ O C 与O M 内切,点A 在O C 外,• MC| r /2 MA,因此有MA 2x 2 •••点 MC 2,•点M 的轨迹是以C 、 A 为焦点的双曲线的左支,即M 的轨迹方程是MC i •••O M 与O c 1、O C 2 均外切,•••|MC 1| r 1, MC 2 r 2,因此有的轨迹是以C 2、C i 为焦点的双曲线的上支,• M 的轨迹方程是4y••• e M MC 2MC 24x 2 3MC i 1 ,与eG 外切,且e M 与e C 2内切,•- MC j4,•点M 的轨迹是以C i 、C 2为焦点的双曲线的右支,• MC 2r 1,因此M 的轨迹方程是例2已知A , B 两地相距800m ,在A 地听到炮弹爆炸声比在 B 地晚2s ,且声速为340m / s ,求炮弹爆炸点的轨迹方程. 分析:首先要判断轨迹的形状,由声学原理:由声速及 A , B 两地听到爆炸声的时间差,即可知A , B 两地与爆炸点的距离差为定值•由双曲线的定义可求出炮弹爆炸点的轨迹方程. 扩展:某中心接到其正东、正西、正北方向三个观察点的报告:正西、正北两个观察点同时听 到了一声巨响,正东观察点听到该巨响的时间比其他两个观察点晚 4s .已知各观察点到该中心的 距离都是1020m •试确定该巨响发生的位置(假定当时声音传播的速度为 340m/s ;相关点均在 同一平面内)• 解法剖析:因正西、正北同时听到巨响,则巨响应发生在西北方向或东南方向,以因正东比正西晚 4s ,则巨响应在以这两个观察点为焦点的双曲线上. 如图,以接报中心为原点 0,正东、正北方向分别为 x 轴、y 轴方向,建立直角坐标系,设 B 、C 分别是西、东、北观察点,则 A 1020,0 , B 1020,0 , C 0,1020 • 设P x,y 为巨响发生点,•/ A 、C 同时听到巨响,•OP 所在直线为y x ……①,又因B 点比A 点晚4s 听到巨响声,• PB PA 4 340 1360 m •由双曲线定义知,a 680 ,2 2c 1020 ,••• b 340^5 ,••• P点在双曲线方程为X 2y2 1 x 680……②.联立680 5 340①、②求出P点坐标为P 680 ;5,680 ,'5 •即巨响在正西北方向680、、10m处.探究:如图,设A,B的坐标分别为5,0,5,0 •直线AM,BM相交于点M,且它们4的斜率之积为,求点M的轨迹方程,并与§ 2. 1.例3比较,有什么发现?9探究方法:若设点M x,y,则直线AM , BM的斜率就可以用含x, y的式子表示,由于直线AM , BM的斜率之积是4,因此,可以求出x, y之间的关系式,即得到点M的轨迹方程.9练习:第60页1、2、3、作业:第66页1、2、2 . 3. 2双曲线的简单几何性质♦知识与技能目标了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2 )通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义♦过程与方法目标(1 )复习与引入过程引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过F56的思考问题,探究双曲线的扁平程度量椭圆的离心率. 〖板书〗§ 2. 2. 2双曲线的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.(ii )双曲线的简单几何性质2 2①范围:由双曲线的标准方程得, 1 0,进一步得:x a ,或xa .这说b a明双曲线在不等式 x a ,或x a 所表示的区域;② 对称性:由以 x 代x ,以y 代y 和 x 代x ,且以 y 代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心;③ 顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线 的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴, 焦点不在的对称轴叫做虚轴;c⑤ 离心率:双曲线的焦距与实轴长的比 e —叫做双曲线的离心率(e 1).a④渐近线:直线ybx 2x 叫做双曲线一 aa 2yb 2 1的渐近线;y 轴上的渐近线是扩展:求与双曲线x 2 162y —1共渐近线,2. 3, 3点的双曲线的标准方及离心率.解法剖析 :双曲线2x16291的渐近4x .①焦点在x 轴上时,设所求的双曲2线为X 216k 2 2 y 9k 2A 2;3, 3点在双曲线上,••• k 21,无解;4②焦点在y 轴上时,设所求的双曲线2x 16k 229:2 1,―A2 3, 3点在双曲线上,• k21,因此,所求双曲线42的标准方程为y9 41,离心率e5.这个要进行分类讨论,但只有一种情形有解,事实上, 3可直接设所求的双曲线的方程为2x162y一 mm R,m 0 .9(iii )例题讲解与引申、扩展例3求双曲线9y2 16x2 144的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.分析:由双曲线的方程化为标准方程,容易求出a,b,c.引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在例4双曲线型冷却塔的外形,半径为12m,上口半径为13m,下口半径为25m,高为55m .试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m).是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小解法剖析:建立适当的直角坐标系,设双曲线的标准方程为2 2七七 1,算出a,b,c的值;a b此题应注意两点:①注意建立直角坐标系的两个原则;②关于 精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,在 P 处堆放着刚购买的草皮,现要把这些草皮沿着道路 PA 或PB 送到呈矩形的足球场 ABCD 中去铺垫,已知|Ap 150m ,|Bp 100m,| BC| 60m , APB 60o •能否在足球场上画一条 “等距离”线,在“等距离”线的两侧的区域应该选择怎样的线路?说明理由.解题剖析:设M 为“等距离”线上任意一点,则|PA |AM点M 的轨迹方程.♦情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教 学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生 创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线 的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系 的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取 近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要 求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并 掌握利用信息技术探究点的轨迹问题, 培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1) 分析与解决问题的能力:通过学生的积极参与和积极探究 ,培养学生的分析问题和解决 问题的能力.(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能MF I 1 ^2 2 .16 ,16 J X 5y ,到直线l:x 一的距离dx — 15 5分析:若设点M x, y ,则a,b,c 的近似值,原则上在没有注意PB BM ,即BM | |AM | |Ap |Bp 50 (定值),“等距离”线是以A 、B 为焦点的双曲线的左支上的2部分,容易“等距离”线方程为x y1 35 x 625 375025,0 y 60 .理由略.例5如图,设M x, y 与定点F 5,0的距离和它到直线 15的距离的比是常数5,求4则容易得点M 的轨迹方程. 引申:《几何画板》探究点的轨迹:双曲线x, y 与定点 F c,0 的距离和它到定直线2a——的距离 c比是常数0,则点M 的轨迹方程是双曲线. 其中定点F c,02是焦点,定直线l : x —相c应于F 的准线; 另一焦点 F c,0,相应于F 的准线I : xx2力.(3) 实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.练习:第66页1、2、3、4、5 作业:第3、4、6补充:3.课题:双曲线第二定义教学目标:1•知识目标:掌握双曲线第二定义与准线的概念,并会简单的应用。
1.1椭圆及其标准方程(一)明目标、知重点 1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程.2.掌握椭圆的定义、标准方程及几何图形.1.椭圆的定义我们把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两个定点F1,F2叫作椭圆的焦点,两个焦点F1,F2间的距离叫作椭圆的焦距.2.椭圆的标准方程探究点一椭圆的定义思考1给你两个图钉、一根无弹性的细绳、一张纸板,能画出椭圆吗?答固定两个图钉,绳长大于图钉间的距离是画出椭圆的关键.思考2在这一过程中,移动的笔尖(动点)满足的几何条件是什么?答到两个定点的距离和等于常数.小结平面内与两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.两个定点F1、F2称为焦点,两焦点之间的距离称为焦距,记为2c.若设M为椭圆上的任意一点,则|MF1|+|MF2|=2a.思考3在椭圆定义中,将“大于|F1F2|”改为“等于|F1F2|”或“小于|F1F2|”的常数,其他条件不变,点的轨迹是什么?答当距离之和等于|F1F2|时,动点的轨迹就是线段F1F2;当距离之和小于|F1F2|时,动点的轨迹不存在.探究点二椭圆的标准方程思考1观察椭圆的形状,你认为怎样选择坐标系才能使椭圆的方程较简单?并写出求解过程.答(1)如图所示,以经过椭圆两焦点F1,F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy.(2)设点:设点M(x,y)是椭圆上任意一点,且椭圆的焦点坐标为F1(-c,0),F2(c,0).(3)列式:依据椭圆的定义式|MF1|+|MF2|=2a列方程,并将其坐标化为(x+c)2+y2+(x-c)2+y2=2a.①(4)化简:通过移项、两次平方后得到:(a2-c2)x2+a2y2=a2(a2-c2),为使方程简单、对称、和谐,引入字母b,令b2=a2-c2,可得椭圆标准方程为x2a2+y2b2=1 (a>b>0).②(5)从上述过程可以看到,椭圆上任意一点的坐标都满足方程②,以方程②的解(x,y)为坐标的点到椭圆的两个焦点F1(-c,0),F2(c,0)的距离之和为2a,即以方程②的解为坐标的点都在椭圆上.由曲线与方程的关系可知,方程②是椭圆的方程,我们把它叫作椭圆的标准方程.思考2建系时如果焦点在y轴上会得到何种形式的椭圆方程?答焦点在y轴上,椭圆方程为y2a2+x2b2=1 (a>b>0).思考3怎样判定给定的椭圆焦点在哪个坐标轴上?答看x2,y2的分母的大小,哪个分母大,焦点就在哪个坐标轴上.较大的分母是a2,较小的分母是b2.如果x2项的分母大,焦点就在x轴上,如果y2项的分母大,则焦点就在y轴上.思考4椭圆方程中的a、b以及参数c有什么意义,它们满足什么关系?答椭圆方程中,a表示椭圆上的点M到两焦点间距离的和的一半,可借助图形帮助记忆,a、b、c(都是正数)恰构成一个直角三角形的三条边,a是斜边,c是焦距的一半,叫半焦距.a、b、c始终满足关系式a2=b2+c2.例1 (1)已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点⎝⎛⎭⎫52,-32,求它的标准方程;(2)若椭圆经过两点(2,0)和(0,1),求椭圆的标准方程. 解 (1)方法一 因为椭圆的焦点在x 轴上, 所以设它的标准方程为x 2a 2+y 2b 2=1 (a >b >0).由椭圆的定义知 2a =⎝⎛⎭⎫52+22+⎝⎛⎭⎫-322+ ⎝⎛⎭⎫52-22+⎝⎛⎭⎫-322=210, 所以a =10.又因为c =2, 所以b 2=a 2-c 2=10-4=6.因此,所求椭圆的标准方程为x 210+y 26=1.方法二 设标准方程为x 2a 2+y 2b 2=1 (a >b >0).依题意得⎩⎪⎨⎪⎧254a 2+94b 2=1a 2-b 2=4,解得⎩⎪⎨⎪⎧a 2=10b 2=6.∴所求椭圆的标准方程为x 210+y 26=1.(2)方法一 当椭圆的焦点在x 轴上时,设所求椭圆的方程为x 2a 2+y 2b 2=1 (a >b >0).∵椭圆经过两点(2,0),(0,1),∴⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1,则⎩⎪⎨⎪⎧a =2,b =1.∴所求椭圆的标准方程为x 24+y 2=1;当椭圆的焦点在y 轴上时,设所求椭圆的方程为y 2a 2+x 2b 2=1 (a >b >0).∵椭圆经过两点(2,0)、(0,1),∴⎩⎨⎧0a 2+4b 2=1,1a 2+0b 2=1,则⎩⎪⎨⎪⎧a =1,b =2,与a >b 矛盾,故舍去.综上可知,所求椭圆的标准方程为x 24+y 2=1.方法二 设椭圆方程为mx 2+ny 2=1 (m >0,n >0, m ≠n ).∵椭圆过(2,0)和(0,1)两点,∴⎩⎪⎨⎪⎧4m =1,n =1, ∴⎩⎪⎨⎪⎧m =14,n =1.综上可知,所求椭圆的标准方程为x 24+y 2=1.反思与感悟 求椭圆标准方程的方法(1)定义法,即根据椭圆的定义,判断出轨迹是椭圆,然后写出其方程.(2)待定系数法,即设出椭圆的标准方程,再依据条件确定a 2、b 2的值,可归纳为“先定型,再定量”,其一般步骤是:①定类型:根据条件判断焦点在x 轴上还是在y 轴上,还是两种情况都有可能,并设椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0);也可设椭圆方程为mx 2+ny 2=1 (m >0,n >0,m ≠n ). ②确定未知量:根据已知条件列出关于a 、b 、c 的方程组,解方程组,可得a 、b 的值,然后代入所设方程即可.跟踪训练1 求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点距离的和是10; (2)焦点在y 轴上,且经过两个点(0,2)和(1,0); (3)经过点(63,3)和点(223,1). 解 (1)∵椭圆的焦点在x 轴上, ∴设它的标准方程为x 2a 2+y 2b2=1(a >b >0).∵2a =10,∴a =5,又∵c =4,∴b 2=a 2-c 2=52-42=9. ∴所求椭圆的标准方程为x 225+y 29=1.(2)∵椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).∵椭圆经过点(0,2)和(1,0),∴⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1⇒⎩⎪⎨⎪⎧a 2=4,b 2=1,故所求椭圆的标准方程为y 24+x 2=1.(3)方法一 ①当椭圆的焦点在x 轴上时,设椭圆的标准方程为 x 2a 2+y 2b 2=1(a >b >0). ∵点(63,3)和点(223,1)在椭圆上, ∴⎩⎪⎨⎪⎧(63)2a 2+(3)2b2=1,(223)2a 2+12b2=1,∴⎩⎪⎨⎪⎧a 2=1,b 2=9.而a >b >0.∴a 2=1,b 2=9不合题意,即焦点在x 轴上的椭圆的方程不存在.②当椭圆的焦点在y 轴上时,设椭圆的标准方程为 y 2a 2+x 2b 2=1(a >b >0). ∵点(63,3)和点(223,1)在椭圆上,∴⎩⎪⎨⎪⎧(3)2a 2+(63)2b 2=1,12a 2+(223)2b 2=1,∴⎩⎪⎨⎪⎧a 2=9,b 2=1.∴所求椭圆的标准方程为y 29+x 2=1.方法二 设椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). ∵点(63,3)和点(223,1)都在椭圆上, ∴⎩⎨⎧m ·(63)2+n ·(3)2=1,m ·(223)2+n ·12=1,即⎩⎨⎧2m3+3n =1,8m9+n =1.∴⎩⎪⎨⎪⎧m =1,n =19.∴所求椭圆的标准方程为x 2+y 29=1. 例2 已知方程x 2k -4-y 2k -10=1表示焦点在x 轴上的椭圆,则实数k 的取值范围为__________.答案 7<k <10解析 化成椭圆标准形式得x 2k -4+y 210-k=1,根据其表示焦点在x 轴上的椭圆,则⎩⎪⎨⎪⎧k -4>0,10-k >0,k -4>10-k ,解得7<k <10.反思与感悟 (1)利用椭圆方程解题时,一般首先要化成标准形式. (2)x 2m +y2n=1表示椭圆的条件是⎩⎪⎨⎪⎧m >0,n >0,m ≠n ;表示焦点在x 轴上的椭圆的条件是⎩⎪⎨⎪⎧m >0,n >0,m >n ;表示焦点在y 轴上的椭圆的条件是⎩⎨⎧m >0,n >0,n >m .跟踪训练2 若方程x 2m -y 2m 2-2=1表示焦点在y 轴上的椭圆,那么实数m 的取值范围是( )A .m >0B .0<m <1C .-2<m <1D .m >1且m ≠ 2答案 B解析 ∵方程x 2m -y 2m 2-2=1表示焦点在y 轴上的椭圆,将方程改写为y 22-m 2+x 2m=1,∴有⎩⎪⎨⎪⎧2-m 2>m ,m >0,解得0<m <1.探究点三 椭圆的定义及标准方程的应用例3 已知椭圆的方程为x 24+y 23=1,椭圆上有一点P 满足∠PF 1F 2=90°(如图).求△PF 1F 2的面积. 解 由已知得a =2,b =3, 所以c =a 2-b 2=4-3=1.从而|F 1F 2|=2c =2.在△PF 1F 2中,由勾股定理可得 |PF 2|2=|PF 1|2+|F 1F 2|2, 即|PF 2|2=|PF 1|2+4.又由椭圆定义知|PF 1|+|PF 2|=2×2=4, 所以|PF 2|=4-|PF 1|.从而有(4-|PF 1|)2=|PF 1|2+4.解得|PF 1|=32.所以△PF 1F 2的面积S =12·|PF 1|·|F 1F 2|=12×32×2=32,即△PF 1F 2的面积是32.反思与感悟 (1)椭圆上一点P 与椭圆的两焦点F 1、F 2构成的三角形称为焦点三角形,解关于椭圆中的焦点三角形问题时要充分利用椭圆的定义、三角形中的正弦定理、余弦定理等知识.对于求焦点三角形的面积,结合椭圆定义,建立关于|PF 1|(或|PF 2|)的方程求得|PF 1|(或|PF 2|)的长度;有时把|PF 1|·|PF 2|看成一个整体,运用公式|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|及余弦定理求出|PF 1|·|PF 2|,而无需单独求出,这样可以减少运算量. (2)焦点三角形的周长等于2a +2c .跟踪训练3 如图所示,点P 是椭圆x 25+y 24=1上的一点,F 1和F 2是焦点,且∠F 1PF 2=30°,求△F 1PF 2的面积. 解 在椭圆x 25+y 24=1中,a =5,b =2,∴c =a 2-b 2=1.又∵P 在椭圆上,∴|PF 1|+|PF 2|=2a =25,① 由余弦定理知:|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos 30° =|F 1F 2|2=(2c )2=4,② ①式两边平方,得|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=20,③ ③-②,得(2+3)|PF 1|·|PF 2|=16, ∴|PF 1|·|PF 2|=16(2-3),∴S △PF 1F 2=12|PF 1|·|PF 2|·sin 30°=8-4 3.1.椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( )A .5B .6C .7D .8 答案 D解析 由椭圆定义知点P 到另一个焦点的距离是10-2=8.2.若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A .-9<m <25B .8<m <25C .16<m <25D .m >8答案 B解析 依题意有⎩⎪⎨⎪⎧25-m >0m +9>0m +9>25-m,解得8<m <25,即实数m 的取值范围是8<m <25.3.已知F 1,F 2是定点,|F 1F 2|=8,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是( ) A .椭圆 B .直线 C .圆 D .线段答案 D解析 ∵|MF 1|+|MF 2|=8=|F 1F 2|, ∴点M 的轨迹是线段F 1F 2,故选D.4.已知椭圆x 249+y 224=1上一点P 与椭圆两焦点F 1、F 2的连线夹角为直角,则|PF 1|·|PF 2|=________. 答案 48解析 依题意a =7,b =26,c =49-24=5, |F 1F 2|=2c =10,由于PF 1⊥PF 2, 所以由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=100.又由椭圆定义知|PF 1|+|PF 2|=2a =14, ∴(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|=100, 即196-2|PF 1|·|PF 2|=100. 解得|PF 1|·|PF 2|=48. [呈重点、现规律]1.平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a , 当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是一条线段F 1F 2;当2a <|F 1F 2|时,轨迹不存在.2.对于求解椭圆的标准方程一般有两种方法:可以通过待定系数法求解,也可以通过椭圆的定义进行求解.3.用待定系数法求椭圆的标准方程时,若已知焦点的位置,可直接设出标准方程;若焦点位置不确定,可分两种情况求解;也可设Ax 2+By 2=1(A >0,B >0,A ≠B )求解,避免了分类讨论达到了简化运算的目的.一、基础过关1.已知焦点坐标为(0,-4),(0,4),且a =6的椭圆方程是( ) A.x 236+y 220=1 B.x 220+y 236=1 C.x 236+y 216=1 D.x 216+y 236=1 答案 B2.设F 1,F 2是椭圆x 225+y 29=1的焦点,P 为椭圆上一点,则△PF 1F 2的周长为( )A .16B .18C .20D .不确定 答案 B解析 △PF 1F 2的周长为|PF 1|+|PF 2|+|F 1F 2|=2a +2c .因为2a =10,c =25-9=4,所以周长为10+8=18.3.“1<m <3”是“方程x 2m -1+y 23-m =1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 当方程x 2m -1+y 23-m =1表示椭圆时,必有⎩⎪⎨⎪⎧m -1>0,3-m >0,所以1<m <3;但当1<m <3时,该方程不一定表示椭圆,例如当m =2时,方程变为x 2+y 2=1,它表示一个圆.4.设P 是椭圆 x 216+y 212=1上一点,P 到两焦点F 1,F 2的距离之差为2,则△PF 1F 2是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形答案 B 解析 由椭圆定义知|PF 1|+|PF 2|=2a =8.又|PF 1|-|PF 2|=2,∴|PF 1|=5,|PF 2|=3.又|F 1F 2|=2c =216-12=4,∴△PF 1F 2为直角三角形.5.已知椭圆x 210-m +y 2m -2=1的焦距为4,则m 等于______________. 答案 4或8解析 由⎩⎪⎨⎪⎧ 10-m >0m -2>0,得2<m <10, 由题意知(10-m )-(m -2)=4或(m -2)-(10-m )=4,解得m =4或m =8.6.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是________. 答案 a >3或-6<a <-2解析 由于椭圆焦点在x 轴上,∴⎩⎪⎨⎪⎧ a 2>a +6,a +6>0,即⎩⎪⎨⎪⎧(a +2)(a -3)>0,a >-6. ⇔a >3或-6<a <-2.7.已知椭圆两焦点为F 1、F 2,a =32,过F 1作直线交椭圆于A 、B 两点,求△ABF 2的周长.解 如图所示,设椭圆方程为x 2a 2+y 2b 2=1 (a >b >0), 又∵a =32. ∴△ABF 2的周长为|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =6.二、能力提升8.设椭圆x 212+y 23=1的两个焦点为F 1、F 2,点P 在椭圆上,若线段PF 1的中点Q 恰好在y 轴上,那么|PF 1|是|PF 2|的( )A .7倍B .5倍C .4倍D .3倍答案 A9.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +9a(a >0),则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段答案 D解析 ∵a +9a ≥2a ·9a=6, 当且仅当a =9a,a =3时取等号, ∴当a =3时,|PF 1|+|PF 2|=6=|F 1F 2|,点P 的轨迹是线段F 1F 2;当a >0,且a ≠3时,|PF 1|+|PF 2|>6=|F 1F 2|,点P 的轨迹是椭圆. 10.已知椭圆x 225+y 29=1上的点M 到该椭圆一个焦点F 的距离为2,N 是MF 的中点,O 为坐标原点,那么线段ON 的长是________.答案 4解析 设椭圆的另一个焦点为E ,则|MF |+|ME |=10,∴|ME |=8,又ON 为△MEF 的中位线,∴|ON |=12|ME |=4. 11.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.解 设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0). 设焦点F 1(-c,0),F 2(c,0)(c >0).∵F 1A ⊥F 2A ,∴F 1A →·F 2A →=0,而F 1A →=(-4+c,3),F 2A →=(-4-c,3),∴(-4+c )·(-4-c )+32=0,∴c 2=25,即c =5.∴F 1(-5,0),F 2(5,0).∴2a =|AF 1|+|AF 2| =(-4+5)2+32+(-4-5)2+32 =10+90=410.∴a =210,∴b 2=a 2-c 2=(210)2-52=15.∴所求椭圆的标准方程为x 240+y 215=1. 12.椭圆x 29+y 24=1的焦点为F 1、F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,求点P 横坐标的取值范围.解 如图所示,以F 1F 2为直径的圆x 2+y 2=5与椭圆x 29+y 24=1交于A 、B 、C 、D 四点,则∠F 1AF 2=∠F 1BF 2=∠F 1CF 2=∠F 1DF 2=90°,由⎩⎪⎨⎪⎧x 2+y 2=54x 2+9y 2=36. 得x =±355,如果点P 在椭圆弧AB 及CD 上,即在圆的内部,那么∠F 1PF 2是钝角,故-355<x <355. 三、探究与拓展13.在Rt △ABC 中,∠CAB =90°,AB =2,AC =22,曲线E 过C 点,动点P 在E 上运动,且保持|P A |+|PB |的值不变,求曲线E 的方程.解 如图,以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系,在Rt △ABC 中,BC =AC 2+AB 2=322, ∵|P A |+|PB |=|CA |+|CB |=22+322=22, 且|P A |+|PB |>|AB |,∴由椭圆定义知,动点P 的轨迹E 为椭圆,且a =2,c =1,b =1.∴所求曲线E 的方程为x 22+y 2=1.。
2010~2011学年度第一学期北京市各区期末考试数学分类解析圆锥曲线1(选修2-1)
十二、圆锥曲线 1.(2011年东城区期末文7)已知斜率为2的直线l 过抛物线2y ax =的焦点F ,且与
y 轴相交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )
A .24y x =
B .28y x =
C .24y x =或24y x =-
D .28y x =或28y x =-
2.(2011年房山区期末文7)已知双曲线22
221(0,0)x y a b a b
-=>>的一条渐近线方程是
y =,它的一个焦点在抛物线28y x =的准线上,则双曲线的方程为( )
A .22
13y x -= B .22
13x y -= C . 221412x y -= D .221124
x y -= 3.(2011年朝阳期末文7)设椭圆的两个焦点分别为1F ,2F ,过2F 作椭圆长轴的垂线与椭圆相交,其中的一个交点为P ,若△12F PF 为等腰直角三角形,则椭圆的离心率是
( )A 1 B C . 4.(2011年昌平期末理6)已知ABC ∆的顶点B 、C 在椭圆13
22
=+y x 上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( ) A.32 B.6 C. 34 D. 12
5.(2011年海淀期末理7)已知椭圆E :14
2
2=+y m x ,对于任意实数k ,下列直线被椭 圆E 所截弦长与l :1+=kx y 被椭圆E 所截得的弦长不可能...
相等的是( ) A .0kx y k ++= B .01=--y kx C .0kx y k +-= D .20kx y +-= 6.(2011年东城区期末理13)已知双曲线221kx y -=的一条渐近线与直线210x y ++=垂 直,那么双曲线的离心率为 ;渐近线方程为 .
7.(2011年东城区期末文13)设椭圆的两个焦点分别为1F ,2F ,过2F 作椭圆长轴的垂 线交椭圆于点P ,若△12F PF 为等腰直角三角形,则椭圆的离心率为 .
8.(2011年西城期末文13)已知双曲线22
221x y a b
-=的离心率为2,它的一个焦点与抛物
线2
8y x =的焦点相同,那么双曲线的焦点坐标为_ _____;渐近线方程为_______.
9.(2011年西城期末理13)双曲线22:1C x y -=的渐近线方程为_____; 若双曲线C 的
右顶点为A ,过A 的直线l 与双曲线C 的两条渐近线交于,P Q 两点,且2PA AQ =
,则直
线l 的斜率为_____.
10.(2011年朝阳期末理13)已知点1F ,2F 分别是双曲线22
22 1 (0,0)x y a b a b
-=>>的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若2ABF ∆是锐角三角形,则 该双曲线离心率的取值范围是 .
11.(2011年海淀期末文11)椭圆
22
12516
x y +=的右焦点F 的坐标为 .则顶点在原点的抛物线C 的焦点也为F ,则其标准方程为 .
12.(2011年昌平期末理13)已知双曲线的渐近线方程为x y 2±=,且与椭圆
124
492
2=+y x 有相同的焦点,则其焦点坐标为 _________, 双曲线的方程是____________. 13.(2011年石景山期末理11)已知直线220x y -+=经过椭圆22
221(0)x y a b a b
+=>>
的一个顶点和一个焦点,那么这个椭圆的方程为 ,离心率为 _______.
14.(2011年海淀期末理12)如图,已知10AB =,图中的一系列圆是圆心分别为A 、B 的两组同心圆,每组同心圆的半径分别是1,2,3,…,n ,….利用这两组同心圆可以画出以A 、B 为焦点的双曲线. 若其中经过点M 、N 、P 的双曲线的离心率分别是,,M N P e e e .则它们的大小关系是 (用“<”连接).
15.(2011年海淀期末理14)在平面直角坐标系xOy 中,O 为坐标原点.定义()11,P x y 、
()22,Q x y 两点之间的“直角距离”为1212(,)d P Q x x y y =-+-.若点()1,3A -,则
(,)d A O = ;已知点()1,0B ,点M 是直线30(0)kx y k k -++=>上的动
点,(,)d B M 的最小值为 .
16.(2011年东城区期末文19)已知椭圆22221(0)x y a b a b +=>>的长轴长为4,且点(1,2
在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆右焦点的直线l 交椭圆于,A B 两点, 若以AB 为直径的圆过原点,求直线l 方程.
17.(2011年东城区期末理19)设,A B 分别为椭圆22
221(0)x y a b a b
+=>>的左、右顶点,
椭圆的长轴长为4,且点在该椭圆上. (Ⅰ)求椭圆的方程;
(Ⅱ)设P 为直线4x =上不同于点(4,0)的任意一点,若直线AP 与椭圆相交于异于A 的点M ,证明:△MBP 为钝角三角形.
18.(2011年房山区期末文20)已知椭圆22221x y a b +=(a>b>0)的离心率e =任意一点到椭圆的两个焦点的距离之和为4.设直线l 与椭圆相交于不同的两点A 、B ,点A
的坐标为(a -,0). (Ⅰ)求椭圆的标准方程;
(Ⅱ)若||AB =
l 的倾斜角;(Ⅲ)若点Q 0(0,)y 在线段AB 的垂直平分线上,且4=∙,求0y 的值.
19.(2011年东城区示范校考试文19)已知A (1,1)是椭圆22
22b
y a x +=1(0a b >>)
上一点,12,F F 是椭圆的两焦点,且满足124AF AF +=.(1)求椭圆的标准方程;(2) 设点,C D 是椭圆上两点,直线,AC AD 的倾斜角互补,求直线CD 的斜率.
20.(2011年西城期末理18)已知椭圆122
22=+b
y a x (0>>b a )的右焦点为2(3,0)F ,
离心率为e .
(Ⅰ)若e =
(Ⅱ)设直线y kx =与椭圆相交于A ,B 两
点,,M N 分别为线段22,AF BF 的中点. 若坐标原点O 在以MN 为直径的圆上,且
2
3
22≤
<e ,求k 的取值范围. 21.(2011年西城期末文18)已知椭圆22
22:1x y C a b += (0>>b a )的一个焦点坐标为
(1,0)
.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)设O 为坐标原点,椭圆C 与直线1y kx =+相交于两个不同的点,A B ,线段AB 的中点为P ,若直线OP 的斜率为1-,求△OAB 的面积.
22.(2011年朝阳期末理19)设椭圆C :22
221x y a b
+=(0)a b >>的左、右焦点分别为
12, F F ,上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且122
2F F F Q +=0uuu u r uuu r
,若过A ,Q ,2F 三点的圆恰好与直线l :033=--y x 相切. 过定点(0, 2)M 的直线1l 与椭圆C 交于G ,H 两点(点G 在点M ,H 之间).
(Ⅰ)求椭圆C 的方程;
(Ⅱ)设直线1l 的斜率0k >,在x 轴上是否存在点
(, 0)P m ,使得以PG ,PH 为邻边的平行四边形是菱
形. 如果存在,求出m 的取值范围,如果不存在,请说 明理由;
(Ⅲ)若实数λ满足MG MH λ=
,求λ的取值范围.
23.(2011年朝阳期末文18)已知点(4, 0)M ,(1, 0)N ,
若动点P 满足6||MN MP PN ⋅=
. (Ⅰ)求动点P 的轨迹C 的方程;
(Ⅱ)设过点N 的直线l 交轨迹C 于A ,B 两点,若181275
NA NB -⋅- ≤≤,求直线l
的斜率的取值范围.
24.(2011年海淀期末理19)已知点(1,)M y 在抛物线2:2C y px =(0)p >上,M 点到 抛物线C 的焦点F 的距离为2,直线:l 1
2
y x b =-+与抛物线交于,A B 两点. (Ⅰ)求抛物线C 的方程;
(Ⅱ)若以AB 为直径的圆与x 轴相切,求该圆的方程;(Ⅲ)若直线l 与y 轴负半轴相交,求AOB ∆面积的最大值.
依题意应有2216(4)160b b ∆=+->,解得2b >-. ..................4分 25.(2011年石景山期末理18)已知椭圆C 中心在原点,焦点在x 轴上,焦距为2,短轴
长为
(Ⅰ)求椭圆C 的标准方程;
(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是椭圆的左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标.
26.(2011年昌平期末理19)已知中心在原点的椭圆C 的右焦点为(3,0),右顶点为(2,0).(1)求椭圆C 的方程;(2)若直线2:+=kx y l 与椭圆C 恒有两个不同的交点A 和B ,且2>∙OB OA (其中O 为原点),求k 的取值范围.。