高中数学 第二章 推理与证明 2.2.2 反证法课件1 新人教B版选修2-2
- 格式:ppt
- 大小:1.60 MB
- 文档页数:8
2.2.2 反证法明目标、知重点 1.了解反证法是间接证明的一种基本方法.2.理解反证法的思考过程,会用反证法证明数学问题.1.反证法的定义一般地,由证明p⇒q转向证明:綈q⇒r⇒…⇒t,t与假设矛盾,或与某个真命题矛盾.从而判定綈q为假,推出q为真的方法,叫做反证法.2.反证法常见的矛盾类型反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与假设矛盾或与数学公理、定理、公式、定义或已被证明了的结论矛盾,或与公认的简单事实矛盾等.3.反证法中常用的“结论词”与“反设词”如下结论词至少有一个至多有一个至少有n个至多有n个反设词一个也没有(不存在)至少有两个至多有(n-1)个至少有(n+1)个结论词只有一个对所有x成立对任意x不成立反设词没有或至少有两个存在某个x不成立存在某个x成立结论词都是一定是p或q p且q反设词不都是不一定是綈p且綈q 綈p或綈q王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动,等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.”这就是著名的“道旁苦李”的故事.王戎的论述,运用的方法即是本节课所要学的方法——反证法.探究点一反证法的概念思考1 结合情境导学描述反证法的一般模式是什么?答(1)假设原命题不成立(提出原命题的否定,即“李子苦”),(2)以此为条件,经过正确的推理,最后得出一个结论(“早被路人摘光了”),(3)判定该结论与事实(“树上结满李子”)矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法称为反证法.思考2 反证法证明的关键是经过推理论证,得出矛盾.反证法引出的矛盾有几种情况?答(1)与假设矛盾;(2)与数学公理、定理、公式、定义或已被证明了的结论矛盾;(3)与公认的简单事实矛盾.思考3 反证法主要适用于什么情形?答①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.探究点二用反证法证明定理、性质等一些事实结论例1 已知直线a,b和平面α,如果a⊄α,b⊂α,且a∥b,求证:a∥α.证明因为a∥b,所以经过直线a,b确定一个平面β.因为a⊄α,而a⊂β,所以α与β是两个不同的平面.因为b⊂α,且b⊂β,所以α∩β=b.下面用反证法证明直线a与平面α没有公共点.假设直线a与平面α有公共点P,如图所示,则P∈α∩β=b,即点P是直线a与b的公共点,这与a∥b矛盾.所以a∥α.反思与感悟数学中的一些基础命题都是数学中我们经常用到的明显事实,它们的判定方法极少,宜用反证法证明.正难则反是运用反证法的常见思路,即一个命题的结论如果难以直接证明时,可考虑用反证法.跟踪训练1 如图,已知a∥b,a∩平面α=A.求证:直线b与平面α必相交.证明假设b与平面α不相交,即b⊂α或b∥α.①若b⊂α,因为b∥a,a⊄α,所以a∥α,这与a∩α=A相矛盾;②如图所示,如果b∥α,则a,b确定平面β.显然α与β相交,设α∩β=c,因为b∥α,所以b∥c.又a∥b,从而a∥c,且a⊄α,c⊂α,则a∥α,这与a∩α=A相矛盾.由①②知,假设不成立,故直线b与平面α必相交.探究点三用反证法证明否定性命题例2 求证:2不是有理数.证明 假设2是有理数.于是,存在互质的正整数m ,n , 使得2=m n,从而有m =2n ,因此m 2=2n 2, 所以m 为偶数.于是可设m =2k (k 是正整数),从而有 4k 2=2n 2,即n 2=2k 2,所以n 也为偶数.这与m ,n 互质矛盾.由上述矛盾可知假设错误,从而2不是有理数.反思与感悟 当结论中含有“不”、“不是、“不可能”、“不存在”等否定形式的命题时,由于此类问题的反面比较具体,适于应用反证法.跟踪训练2 已知三个正数a ,b ,c 成等比数列,但不成等差数列,求证:a ,b ,c 不成等差数列.证明 假设a ,b ,c 成等差数列,则a +c =2b ,即a +c +2ac =4b ,而b 2=ac ,即b =ac ,∴a +c +2ac =4ac , ∴(a -c )2=0.即a =c ,从而a =b =c ,与a ,b ,c 不成等差数列矛盾, 故a ,b ,c 不成等差数列.探究点四 含至多、至少、唯一型命题的证明例3 若函数f (x )在区间[a ,b ]上是增函数,那么方程f (x )=0在区间[a ,b ]上至多有一个实根.证明 假设方程f (x )=0在区间[a ,b ]上至少有两个实根,设α、β为其中的两个实根.因为α≠β ,不妨设α<β,又因为函数f (x )在[a ,b ]上是增函数,所以f (α)<f (β).这与假设f (α)=0=f (β)矛盾,所以方程f (x )=0在区间[a ,b ]上至多有一个实根.反思与感悟 当一个命题的结论有“最多”、“最少”、“至多”、“至少”、“唯一”等字样时,常用反证法来证明,用反证法证明时,注意准确写出命题的假设.跟踪训练3 若a ,b ,c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6.求证:a 、b 、c 中至少有一个大于0.证明 假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0, 所以a +b +c ≤0, 而a +b +c =(x 2-2y +π2)+(y 2-2z +π3)+(z 2-2x +π6)=(x 2-2x )+(y 2-2y )+(z 2-2z )+π=(x -1)2+(y -1)2+(z -1)2+π-3,所以a +b +c >0,这与a +b +c ≤0矛盾, 故a 、b 、c 中至少有一个大于0.1.用反证法证明“在△ABC 中至多有一个直角或钝角”,第一步应假设( ) A.三角形中至少有一个直角或钝角 B.三角形中至少有两个直角或钝角 C.三角形中没有直角或钝角 D.三角形中三个角都是直角或钝角 答案 B2.用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角形中( ) A.有一个内角小于60° B.每一个内角都小于60° C.有一个内角大于60° D.每一个内角都大于60°答案 B3.“a <b ”的反面应是( ) A.a ≠b B.a >b C.a =b D.a =b 或a >b答案 D4.用反证法证明“在同一平面内,若a ⊥c ,b ⊥c ,则a ∥b ”时,应假设( ) A.a 不垂直于c B.a ,b 都不垂直于c C.a ⊥b D.a 与b 相交 答案 D5.已知a ≠0,证明:关于x 的方程ax =b 有且只有一个根. 证明 由于a ≠0,因此方程至少有一个根x =ba.如果方程不止一个根,不妨设x 1,x 2是它的两个不同的根,即ax 1=b , ①ax 2=b .②①-②,得a (x 1-x 2)=0.因为x 1≠x 2,所以x 1-x 2≠0,所以应有a =0,这与已知矛盾,故假设错误. 所以,当a ≠0时,方程ax =b 有且只有一个根. [呈重点、现规律] 1.反证法证明的基本步骤:(1)假设命题结论的反面是正确的;(反设)(2)从这个假设出发,经过逻辑推理,推出与已知条件、公理、定义、定理、反设及明显的事实矛盾;(推谬)(3)由矛盾判定假设不正确,从而肯定原命题的结论是正确的.(结论)2.反证法证题与“逆否命题法”的异同:反证法的理论基础是逆否命题的等价性,但其证明思路不完全是证明一个命题的逆否命题.反证法在否定结论后,只要找到矛盾即可,可以与题设矛盾,也可以与假设矛盾,与定义、定理、公式、事实矛盾.因此,反证法与证明逆否命题是不同的.。
编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章推理与证明2.2.2 反证法预习导航新人教B版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章推理与证明2.2.2 反证法预习导航新人教B版选修2-2的全部内容。
—2反证法(1)定义:一般地,由证明p⇒q转向证明:⌝ q⇒r⇒…⇒t,t与假设矛盾,或与某个真命题矛盾.从而判定⌝q为假,推出q为真的方法,叫做反证法.(2)应用反证法证明数学命题的一般步骤:①分清命题的条件和结论;②做出与命题结论相矛盾的假设;③由假设出发,应用演绎推理方法,推出矛盾的结果;④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明命题为真.思考在证明命题“若p则q”的过程中,虽然否定了结论q,但在证明过程中,没有把“⌝q”当作条件利用,也推出了矛盾或证得了结论,这种证明是反证法吗?提示:不是,反证法是在假设原结论不成立的条件下推出矛盾的,也就是说,之所以推出了矛盾,就是因为我们假设了原结论不成立,故在用反证法时,必须把结论的否定作为条件使用,否则,就不是反证法.点拨理解反证法需要注意以下几点:(1)所谓矛盾主要是指:①与假设矛盾;②与数学公理、定理、公式、定义或已被证明了的结论矛盾;③与公认的简单事实矛盾.(2)反证法的原理是“否定之否定等于肯定”,其中,第一个否定是指“否定结论”;第二个否定是指“逻辑推理的结果否定了假设”,所以反证法不是直接证明结论成立,而是先否定结论,在否定结论的基础上运用演绎推理,导出矛盾,从而肯定结论的正确性.(3)适合于用反证法证明的数学问题大多为一些否定性命题、唯一性命题、至少至多命题以及一些必然性命题和一些基本定理等.(4)在用反证法证明问题时,注意书写的格式,开始时对结论的否定应该用“假设”,而不是用“设".。