动生电动势和感生电动势涡旋电场
- 格式:doc
- 大小:1.98 MB
- 文档页数:12
感生电动势与动生电动势的本质区别曹海斌(高新区第一中学 215011)一、问题的提出关于感生电动势和动生电动势的概念,不仅学生往往有错误的理解,有的老师也理解深度不够。
请看下面的问题:下图中所示:图1中通电螺线管A 不动,A 中电流大小也不变,金属圆环B 由远处向A 靠近;图2中金属圆环B 不动,通电螺线管A 也不动,但使A 中的电流变大;图3中金属圆环B 不动,通电螺线管A 中电流大小不变,让A 从远处插入B 。
问这三种情况下产生的电动势分别是什么电动势?这三种情况下通过线框的磁通量都发生了变化,其中图1中磁通量的变化是由于线框运动切割磁感线引起的,B 中产生的是动生电动势,这应该是没有争议的。
图2中磁通量的变化是由磁感应强度变化引起的,这是感生电动势也是没有争议的。
图3中当A 向B 靠近时,B 所在处的磁感应强度发生了变化,乍一看认为B 产生的感应电动势是感生电动势。
但从相对运动的角度看,虽然圆环B 不动,通电螺线管A 在运动,但也可以理解为:磁铁不动,线框在动。
这样图C 中的感应电动势就应该和图1相同产生的是动生电动势。
那么C 图中的感应电动势究竟是什么电动势呢?二、感生电动势和动生电动势的本质区别这就要弄清楚这两种电动势的本质区别。
在高中物理人教版新教材3-2中,P19-20中是这样解释的:“如果是感应电动势由感生电场产生的,这也叫做‘感生电动势’”。
“如果感应电动势是由于导体运动而产生的,它也叫做‘动生电动势’”。
对照动生电动势的定义,对上面的问题的解决还不是很清楚。
但对照感生电动势的定义,再深入思考一下,就能明白了。
也就是说有没有感生电场是关键。
感生电动势的本质是产生涡旋电场,涡旋电场产生非静电力,使导体中的电荷向两端积累产生电势差。
而动生电动势是洛伦兹力充当非静电力,使导体中的电荷向两端积累产生电势差。
C 图中磁通量变化貌似磁场变化引起的,其实这样的磁场是稳定的磁场,只不过是运动的稳定的磁场,由于磁场运动导致线框切割磁感线,使得线框中的自由电荷受到洛伦兹力而发生定向移动形成电流。
从本质上区分动生电动势与感生电动势作者:李凤灵来源:《物理教学探讨》2008年第08期穿过导体回路所围面积的磁通量发生变化时,在导体回路中产生感生电动势。
根据引起磁通量变化的方式不同,可以将感应电动势分为动生电动势和感生电动势。
在我们教材中是这样定义两者的:动生电动势:磁场不随时间变化而导体回路的整体或局部在运动所产生的感应电动势。
感生电动势:导体所围回路面积不变而磁场随时间变化所产生的感应电动势。
从动生电动势和感生电动势的定义出发,我们可以判定由于穿过导体回路所围面积的磁通量发生变化,在回路中产生的感应电动势是动生电动势还是感生电动势。
但笔者认为单纯从定义出发来判定两者不太科学,并且有时候可能会出现模棱两可的结论。
下面通过一个比较熟悉的例子来说明:例1 如下图所示,在一无限长载流直导线附近有一与之平行的金属导体棒AB。
棒以速度沿垂直于载流直导线的方向运动。
在运动过程中,金属导体棒中产生了感应电动势。
此感应电动势是动生电动势还是感生电动势?我们不妨根据两者定义这一角度来分析一下。
首先,让无限长载流直导线相对于地面静止不动,这样它激发产生的磁场是不随时间变化的稳恒磁场。
导体棒AB在磁场中运动产生的感应电动势为动生电动势。
然后,让导体棒AB 相对于地面静止不动,这样无限长载流直导线以速度(-)向左运动。
在金属导体棒AB所处位置,由载流直导线所产生的磁场在发生变化,而导体棒没有运动。
依据定义,可以判定在导体棒上又产生了感生电动势。
例2 如下图所示,条形磁铁以相对于导体环的速度插入之,由于穿过导体环的磁通量发生了变化,导体环中必产生感应电动势,闭合回路中产生感应电流。
导体环中的感应电动势是动生电动势还是感生电动势?我们不妨分析一下:如果让导体环相对于地面静止。
这样,由于条形磁铁的插入,通过导体环所在位置的磁感应强度发生变化,那么依定义可得出导体环中产生的感应电动势应该是感生电动势;如果让条形磁铁相对于地面静止,此时,我们可视条形磁铁产生的磁场为稳恒磁场,不随时间发生变化,而导体环以速度(-)套入条形磁铁中。
第五节:感生电动势和动生电动势[高效习图解][重难点1 感生电动势高效归纳:感生电场产生的感应电动势称为感生电动势。
思维突破:(1感生电场又称涡旋电场。
它与静电场均能对电荷有作用力,但它是由变的磁场激发,而不是由电荷激发,另外描述涡旋电场的电线是闭合曲线。
(2)如图5-1A 所示,若磁场增强时,电流表会发生偏转,由此可判断电路中产生了感生电场,闭合导体中的自由电荷在感生电场的作用下定向移动,产生感应电流。
(3)变的磁场周围产生电场,是一种普遍存在的现象,跟闭合电路是否存在无关,如图5-1B 所示,是磁场增强时,变的磁场产生电场的示意图。
(4)感生电场方向的判断:感应电流方向(由楞次定律与右手螺旋定则)。
题型一、感生电场的特点例1.如图5-2所示的是一个水平放置的玻璃圆环形小槽,槽内光滑,槽宽度和深度处处相同,现将一直径略小于槽宽的带正电的绝缘小球放在槽中,它的初速为V 0,磁感应强度的大小随时间均匀增大,(已知均匀变的磁场将产生恒定的感应电场)则:( )A 小球受到的向心力大小不变B 小球受到的向心力大小不断增大图5-1 A 图5-1 B 图5-2 感应电流感应电场 感应电流 洛伦兹力磁场力对小球做了功 D 小球受到的磁场力大小与时间成正比 思路分析:由楞次定律,此电场与小球初速度方向相同,由于小球带正电,电场力对小球做正功,小球的速度应该逐渐增大,向心力也会随着增大。
另外洛仑兹力永远对运动电荷不做功,故错。
带电小球所受洛仑兹力F=qvB,随着速率的增大而增大,同时,B 也正比于时间,则F 于不成正比,故D 错误。
答案:B规律技巧总结:本题的关键是要判断出磁感应强度的方向,感应电场对小球做正功,使带电小球的动能不断增大,带电小球既受到电场力又受到磁场力的作用。
题型一、求感生电荷量例2.有一面积为S=100c 2的金属环,电阻R=01Ω,环中磁场变规律如图5-3所示,磁场方向垂直环面向里,从1至2过程中,通过金属环的电荷量为多少?思路分析:因为B-图象为一直线,故△ф也是均匀变,△ф=△BS=(B 2-B 1)·S[。
317-动生电动势和感生电动势、涡旋电场1 选择题1. 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是[ ] (A )线圈绕自身直径轴转动,轴与磁场方向平行; (B )线圈绕自身直径轴转动,轴与磁场方向垂直; (C )线圈平面垂直于磁场并沿垂直磁场方向平移;(D )线圈平面平行于磁场并沿垂直磁场方向平移。
答:(B )。
2. 如图,挂在弹簧下端的条形磁铁在闭合线圈上端振动时,若空气阻力不计,则:[ ] (A)条形磁铁的振幅将逐渐减小; (B)条形磁铁的振幅不变;(C)线圈中将产生大小改变而方向不变的直流电; (D)线圈中无电流产生。
答:(A )。
3. 如图,挂在弹簧下端的条形磁铁在闭合线圈上端振动时,若空气阻力不计,则:[ ](A )线圈中将产生大小和方向都发生改变的交流电; (B )条形磁铁的振幅不变;(C )线圈中将产生大小改变而方向不变的直流电; (D )线圈中无电流产生。
答:(A )。
4. 如图:一闭合导体环,一半在匀强磁场中,另一半在磁场外,为了环中感生出顺时针方向的电流,则应:[ ](A )使环沿y 轴正向平动;(B )使环沿x 轴正向平动;(C )环不动,增强磁场的磁感应强度; (D )使环沿x 轴反向平动。
答:(B )。
5. 如图:一闭合导体环,一半在匀强磁场中,另一半在磁场外,为了环中感生出顺时针方向的电流,则应:[ ](A )使环沿y 轴正向平动;(B )环不动,减弱磁场的磁感应强度; (C )环不动,增强磁场的磁感应强度; (D )使环沿x 轴反向平动。
答:(B )。
.6. 在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B的夹角为α,则通过半球面S 的磁通量(取弯面向外为正)为[ ](A )πB r 2; (B )B r 22; (C )παsin 2B r ; (D )παcos 2B r 。
答:(D )。
7. n 匝圆形线圈半径为r ,处在匀强磁场中,线圈所在平面与磁场方向夹角︒=30α,磁场的磁感应强度随时间均匀增强,线圈中产生的感应电流强度为I ,为使线圈产生的感应电流强度为I 2,可采取的办法是[ ](A )使线圈匝数变为原来的2倍; (B )使线圈匝数变为原来的8倍;nBα SB(C )使线圈半径变为原来的2倍; (D )使线圈半径变为原来的8倍。
答:(A )。
8. n 匝圆形线圈半径为r ,处在匀强磁场中,线圈所在平面与磁场方向夹角︒=30α,磁场的磁感应强度随时间均匀增强,线圈中产生的感应电流强度为I ,为使线圈产生的感应电流强度为I 2,可采取的办法是[ ] (A)使α角变为︒0; (B)使α角变为︒45; (C)使α角变为︒60; (D)使α角变为︒90。
答:(D )9. 如图所示,导线框abcd 与导线AB 在同一平面内无限长直导线通有恒定电流I,将线框由左向右匀速通过导线时,线框中感应电流的方向是[ ](A )先abcd 后dcba ;(B )先dcba 后abcd ;(C )先abcd 后dcba ,再abcd ; (D )先dcba 后abcd ,再dcba 。
答:(D )。
10. 均匀磁场区域为无限大。
矩形线圈PRSQ 以常速V 沿垂直于均匀磁场方向平动(如图),则下面哪一叙述是正确的:[ ](A )线圈中感生电流沿顺时针方向; (B )线圈中感生电流沿逆时针方向; (C )线圈中无感生电流;(D )作用在PQ 上的磁力与其运动方向相反。
答:C11. 感应电动势的方向服从楞次定律是由于[ ](A )动量守恒的要求; (B )电荷守恒的要求; (C )能量守恒的要求; (D )与这些守恒律无关。
答:(C )。
12. 在无限长载流导线附近放置一矩形线圈,开始线圈与导线在同一平面内,且线圈中两条边与导线平行。
线圈作如图三种平动则:[ ](A )(1) (3)无感生电流,(2)产生感生电流,且方向为顺时针(B )(1) 无感生电流,(2)产生顺时针方向感生电流,(3)产生逆时针方向感生电流; (C )(1) (2) (3)皆产生顺时针方向感生电流;(D)(1)无感生电流,(2) (3)产生顺时针方向感生电流。
答:(D )。
13. 在匀强磁场中有一圆形线圈,在下列哪种情况中,线圈中一定会产生感应电流:[ ](A )线圈平动;(B )线圈转动,转轴过线圈的中心且与线圈平等垂直,转轴与磁感应线平行;B(C )线圈面积缩小;(D )线圈转动,轴过线圈的中心且与线圈平等垂直,转轴与磁感应线垂直。
答:(D )。
14. 如图示,一矩形线圈长宽各为b a ,,置于均匀磁场B 中,且B 随时间的变化规律为kt B B -=0,线圈平面与磁场方向垂直,则线圈内感应电动势大小为:[ ](A )()kt B ab -0 (B )0abB (C )kab (D )0答:(C )。
15. 一根长度为L 的铜棒,在均匀磁场B 中以匀角速度ω绕通过其一端的定轴旋转着,B的方向垂直铜棒转动的平面,如图所示.设0=t 时,铜棒与Ob 成θ角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是[ ](A ))cos(2θωω+t B L ; (B )t B L ωωcos 212; (C )B L 2ω; (D )B L 221ω。
答:(D )。
16. 在感应电场中电磁感应定律可写成t l E LK d d d Φ-=⎰⋅ ,式中K E 为感应电场的电场强度。
此式表明[ ](A )闭合曲线L 上K E处处相等; (B )感应电场是保守力场;(C )感应电场的电场强度线不是闭合曲线;(D )在感应电场中不能像对静电场那样引入电势的概念。
答:(D )。
17. 半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ,当把线圈转动使其法向与B的夹角为︒=60α时,线圈中已通过的电量与线圈面积及转动时间的关系是:[ ](A )与线圈面积成正比,与时间无关; (B )与线圈面积成正比,与时间成正比; (C )与线圈面积成反比,与时间无关; (D )与线圈面积成反比,与时间成正比。
答:(A )。
18. 两根平行的长金属棒,相距为L ,其上放置一与其摩擦可忽略的光滑金属棒ab ,二长金属棒一端接上电动势为ε,内阻为r 的电源,整个装置放于区域足够大的匀强磁场B 中,B 的方向如图示。
忽略各金属棒的电阻,则ab 运动速度将:[ ](A )无限大; (B )最后为零; (C)最后保持r L v ε=; (D )最后保持BLv ε=。
答:(D )。
19. 两个闭合的金属环,穿在一极光滑的绝缘杆上(如图),当条形磁铁N极自右向左插向圆环时,两圆环的运动是:[ ](A ) 边向左移边分开; (B ) 边向左移边合拢; (C )边向右移边合拢;(D ) 同时同向移动。
答: (B )。
2 填空题1. 如图,导体棒ab 与金属框接触,并置于均匀磁场中,磁场方向垂直纸面向里⊗,导体棒向右运动,棒内感生电动势方向为 。
O Rω λBav答:逆时针方向。
2. 动生电动势计算公式为ε=_____________________。
答:⎰⋅⨯=Ll B vd ε3. 在磁感强度为B的均匀磁场中,以速率v 垂直切割磁力线运动的一长度为L 的金属杆,相当于一个电源,它的电动势ε= 。
答:vBL 。
4. 两根无限长平行直导线载有大小相等方向相反的电流I,并各以tId d 0>的变化率增长,一矩形线圈位于导线平面,如图,则感应电流的方向是_______________________。
答:顺时针方向。
5. 用导线制成一半径为r 的闭合圆形线圈,其电阻为R ,均匀磁场垂直于线圈平面。
欲使电路中有一稳定的感应电流I ,磁感应强度的变化率tBd d =_______________________ 答:2πrIR 。
6. 图中,左边导线为无限长,载有电流I ,I 与时间与关。
右边半圆形闭合线圈与长直导线在一个平面内,直径部分与长直导线平行。
右边半圆形闭合线圈的感应电动势方向为 。
答:顺时针方向。
7. 在电磁感应现象中,感应电流的后果总与引起感应电流的原因 。
答:相对抗。
8. 如图,导体棒ab 长m 3=l,置于T 5.0=B 的均匀磁场中,磁场方向垂直纸面向里⊗,导体棒以1s m 4-⋅的速度向右运动。
导体棒长度方向、磁场方向和运动方向两两垂直,棒内感生电动势大小为 。
avb答:6V 。
9. 如图,把一无限长的直导线穿过一导线圆环,二者相互绝缘。
圆环平面与导线垂直。
直导线通有稳恒电流0I 。
圆环绕直导线转动时,环中 产生感生电流。
I I0I 答:不。
10. 磁场沿x 方向,磁感强度大小为()T 6y -,在yOz 平面内有一矩形线框,在0=t时刻的位置如图所示,求线框从静止开始,以2s m 2-⋅=a 的加速度时,在yOz 平面内平行于z 轴作匀速运动下,线框中的感应电动势与t 的函数关系 。
答:0。
11. 磁场沿x 方向,磁感强度大小为()T 6y -,在yOz 平面内有一矩形线框,在0=t时刻的位置如图所示,线框以速度1s m 2-⋅=v 的速度匀速运动,线框中的感应电动势与t的函数关系______________________。
答:0。
12. 飞机以1s m 200-⋅=v的速度水平飞行,机翼两端相距离m 30=l ,两端这间可当作连续导体。
已知飞机所在处地磁场的磁感应强度B在竖直方向上的分量T 1025-⨯。
机翼两端电势差U 为 。
答:V 12.0。
13. 如果使图左边电路中的电阻R 增加,则在右边电路中的感应电流的方向___________。
答:顺时针。
注:当左边电路中的电阻R 增加时,左边回路逆时针方向的电流减小,穿过右边回路的向下的磁通量减少,由楞次定律可知,右边电路中的感应电流方向为顺时针方向。
14. 如图所示,MN 为金属杆,在竖直平面内贴着光滑金属导轨下滑,导轨的间距m 10.0=L ,导轨上端接有电阻Ω5.0=r ,导轨与金属杆电阻不计,整个装置处于T 5.0=B 的水平匀强磁场中。
若杆稳定下落时,每秒钟有J 02.0的重力势能转化为电能,则MN 杆的下落速度=v 。
答:21s m -⋅。
15. 电阻为R 的矩形导线框abcd ,边长,L ab =h ad =,质量为m ,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为h ,如图.若线框恰好以恒定速度通过磁场,线框内产生的焦耳热是_________________(不考虑空气阻力)。
答:mgh 2。
16. 半径为m 10.0的圆形回路,放在的均匀磁场中,回路平面B 垂直,当回路半径以恒定的速率180.0d d -⋅=s m tr收缩,刚开始时回路中的感应电动势大小为 。