1_4无穷小无穷大 极限运算法则
- 格式:pdf
- 大小:168.33 KB
- 文档页数:39
极限的运算法则及计算方法极限是微积分中的一个重要概念,用于研究函数在接近其中一点时的趋势。
在许多情况下,计算极限可以通过应用一些运算法则来简化。
本文将介绍极限的运算法则以及一些常用的计算方法。
一、极限的四则运算法则1. 乘法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) * g(x))的极限等于f(x)的极限乘以g(x)的极限,即lim(x→a) [f(x) * g(x)] = lim(x→a) f(x) * lim(x→a) g(x)。
2. 除法法则:如果函数f(x)的极限存在,g(x)的极限存在且g(x)不等于0,则(f(x) / g(x))的极限等于f(x)的极限除以g(x)的极限,即lim(x→a) [f(x) / g(x)] = lim(x→a) f(x) / lim(x→a) g(x)。
3. 加法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) + g(x))的极限等于f(x)的极限加上g(x)的极限,即lim(x→a) [f(x) + g(x)] = lim(x→a) f(x) + lim(x→a) g(x)。
4. 减法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) - g(x))的极限等于f(x)的极限减去g(x)的极限,即lim(x→a) [f(x) - g(x)] = lim(x→a) f(x) - lim(x→a) g(x)。
二、极限的乘方法则1. 幂函数法则:对于任意正整数n,如果函数f(x)的极限存在,则(f(x)^n)的极限等于f(x)的极限的n次方,即lim(x→a) [f(x)^n] = [lim(x→a) f(x)]^n。
2. 平方根法则:如果函数f(x)的极限存在且大于等于0,则√[f(x)]的极限等于f(x)的极限的平方根,即lim(x→a) √[f(x)] =√[lim(x→a) f(x)]。
三、特殊函数的极限计算法则1. 三角函数:常见的三角函数包括正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)等。
·复习 极限的定义的几种形式·引入 如何求一个函数的极限,是高等数学的基本运算之一,为此,要切实掌握求极限的基本方法·讲授新课第四节 函数极限的运算一 函数极限的四则运算法则 (一)极限的运算法则设lim ()f x A =,lim ()g x B =,则法则 1 两个具有极限的函数的代数和的极限等于这两个函数的极限的代数和,即 lim[()()]lim ()lim()f x g x f x x A B ±=±=±。
法则2 两个具有极限的函数的积的极限等于这两个函数极限的积,即 lim[()()]lim ()lim ()f x g x f x g x A B ⋅=⋅=⋅。
特别地,(1)若()g x C =,则lim ()lim ()Cf x C f x C A =⋅=⋅ (C 是常数), (2)若()()g x f x =,则 222lim[()][lim ()]f x f x A ==, 法则3 两个具有极限的函数的商的极限,当分母的极限不为0时,等于这两个函数的极限的商,即()()limlim ()()f x f x Ag x g x B== (0B ≠)证法则2 因为lim ()f x A =,lim ()g x B =,所以()()f x A x α=+,()()g x B x β=+(,αβ都是无穷小), 于是()()()(()f x g x A B AB A B αββααβ=++=+++,由无穷小的性质知A B βααβ++仍为无穷小, 再由极限与无穷小的关系,得lim[()()]lim ()lim ()f x g x A B f x g x ⋅=⋅=⋅.法则1和法则2可以推广到具有极限的有限个函数的情形。
如当n 为正整数时,有 lim[()][lim ()]n n n f x f x A ==例1(1)求22lim(22)xx x →-+ ,(2)求22124lim 32x x x x →-+-+.解:(1)由极限的四则运算法则得22222222lim(22)lim 2lim lim 22222x x x x x x x x →→→→-+=-+=-+=(2)因为2-1lim 3250x x →+=≠,所以由极限的四则运算法则得 221243lim 325x x x x →-+-=-+由例1可以看出,当0x x →时,求有理多项式或有理分式(分母在0x x →时的极限不为0)的极限,只要把0x 直接代人表达式级数函数值即可例2 (1)求224lim 2x x x →--,(2)2147lim 1x x x →+-解:(1)由于2lim(2)x x →-=0,商的运算法则不能用,但是当 2x →时,2x ≠,因此20x -≠,可以先行约掉2x -这个因子,再求极限22224(2)(2)lim lim lim(2)422x x x x x x x x x →→→--+==+=--. (2)由于21lim(1)0x x →-=,1lim(47)11x x →+=,因此,不能使用商的运算法则,分析、分子、分母又没有非零公因式可约。