2.1、花边有多宽
- 格式:docx
- 大小:11.94 KB
- 文档页数:2
2.1花边有多宽(一)教学目标:知识与技能目标:1.一元二次方程的概念2.一元二次方程的有关概念.过程与方法目标:1.经历由具体问题抽象出一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型.2.理解一元二次方程的概念情感态度与价值观目标:从生活实际中抽象出数学问题,让学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.重点、难点、关键:1.重点:(1)掌握一元二次方程的解法,特别是公式法。
(2)培养学生的数学意识及解决简单的实际问题的能力。
2.难点:(1)用配方法解一元二次方程。
(2)一元二次方程教学过程:生活实例1观察:挂图显示出生活中丰富多彩的花边图案:有长方形,有圆形,有正方形,有椭圆形等(课前收集);在课本图2一二的长方形花边上.问:这块四周建有宽度相等的底边的地毯,它的长为8m,宽为5m,如果地毯中央长方形图案的面积为18m2,那么花边有多宽?通过上述丰富的实例,为学生归纳出一元二次方程的概念提供帮助。
问:连续整数,使前三个数的平方和等于后两个数的平方和?问:上述三个生活实例、数学问题得出下列三个方程:1.(8一2x)(5一2x)=182.x2+(x+1)2+(x+2)2=(x+3)2+(x+4)23.(x+6)2+72=102议一议:上述三个方程有什么共同特点?问:有大小两个圆形花坛,小四花坛面积比大花坛面积少10m,小圆花坛的周长比大花坛的周长短10m,设大花坛周长为x,借你列出关于x的方程。
随堂练习:随堂练习1、2课堂小结:本节课首先通过丰富的实例。
观察、归纳出一元二次方程的有关概念,体会方程的模型思想。
要掌握的概念(二)一元二次方程定义(2)一元二次方程一般式:(3)二次项、一次项、常数项的有关概念。
注意:任何一个关于x的一元二次方程都可以化为一般式。
作业:课本习题2.11、22.1花边有多宽(二)教学目标:知识与技能目标:1.经历方程解的探索过程,增进对方程解的认识,发展估算意识和能力。
第二章 一元二次方程1、花边有多宽学习目标:1、经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型。
2、经历方程解的探索过程,增进对方程解的认识,发展估算意识和能力。
重点:认识产生一元二次方程知识的必要性难点:列方程的探索过程教学过程:一、简要回顾,方程思想简要回顾方程知识,方程在生活中的应用,以及用方程思想解决实际问题时的大致思路:1、 把待求的量用字母表示出来;2、 把已知量与未知量放在同等地位进行运算;3、 寻求建立等量关系4、 解方程(组)体会感悟:往往解决一个未知数的问题,就需要建立一个等量关系;解决两个未知数的问题,则需要建立两个等量关系。
……二、展示素材,创设情境在处理下面的每一个素材时,都带领学生经历探求思路、建立方程、分析特点三个过程,并从中激发学生的学习兴趣。
1、艺术设计一块四周镶有宽度相等的花边的地毯如图所示,它的长为8m ,宽为5m 。
如果地毯中央长方形图案的面积为18m 2,那么花边有多宽?2、趣味数学 口算:365141312111022222++++这是俄罗斯画家别尔斯基的一幅题为《难题》的名画中写在教室黑板上的一道题,此画上面还画了拉钦斯基和他的作口算的学生们。
拉钦斯基(1836~1902)一度曾在大学中任自然科学教授,后来辞去大学的职务,成为一名普通的乡村教师,在这期间,对非标准习题的解法以及口算给予很大注意。
从惊奇与趣味中激发学生思考:这样的数组还有吗?如何求解?设未知数的技巧。
联想勾股定理中:222543=+,……3、梯子移动如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m 。
如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米?及时教育学生,要学会用数学的眼光观察生活中的现象,培养自己发现问题与解决问题的能力。
4、莲花问题平平湖水清可鉴,面上半尺生红莲。
出泥不染婷婷立,忽被强风吹一边。
渔人观看忙向前,花离原位两尺远。
九年级数学2.1花边有多宽(1)教学目标:1.通过具体问题,如“花边有多宽”,“梯子的底端滑动多少米”等问题,引导学生列出方程,体会方程的模型思想,培养学生把文字叙述的问题转换成数学语言的能力.2.让学生观察、归纳出一元二次方程及其相关概念,并会识别一元二次方程及各部分名称,培养学生归纳分析的能力.教学方法及学法指导:学生已经学习了一元一次方程及相关概念,因此,本节课我主要采用启发式、类比法教学.教学中力求体现“问题情景---数学模型-----概念归纳”的模式.但是由于学生将实际问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点.同时学生在现实的生活情景中,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力.课前准备:多媒体、学案教学过程:一、温故知新引入新课师:同学们,数学与我们的生活息息相关,你是否还记得“你今年几岁了”、“我变胖了”、“打折销售”、“能追上小明吗”、“教育储蓄”、“谁的包裹多”、“鸡兔同笼”、“增收节支”这些问题吗?生:回忆师:这些问题你是借助什么知识解决的呢?生:(想起)方程.师:对,我们是根据题意设未知数,列方程、解方程来解决这些问题的.其实,还有好多问题需要列方程来解决,(出示课件)如,黄金比为什么是0.618?你能为一个矩形花园提供多种设计方案吗?花边有多宽?等.所以,今天,我们走进第二章,学习关于方程的更多知识,一起解决更多的问题.今天先和大家一起学习第一节花边有多宽(板书课题)【设计意图】在七、八年级学生已经积累了一些利用方程解决实际问题的经验,初步感受了方程的模型作用,为新的内容的学习做好准备,从而确定本章所学,引入新课.二、问题情景探究交流出示问题一:(课件)一块四周镶有宽度相等的花边的地毯如图所示,它的长为8m,宽为5m.如果地毯中央长方形图案的面积为18m2,那么花边有多宽?(学生读题)师:你能找到图中的地毯、花边和中央长方形吗?生:指出对应的三部分.师:你能从实物图中抽象出几何图形,画出所对应的图形吗?生:画图,标出相应长度。
13《2.1花边有多宽(1)》课前预习1.如果代数式7x -3与 互为倒数,则x= .2.用两根长为12cm 的铁丝分别围成一个正方形和一个长和宽之比为2:1的长方形,则正方形面积为 , 长方形面积为 .3.当m= 时,方程3(x+1)=5m -2的解为x=-5.4.如果12y+(n -1) y 2=3是关于y 的一元一次方程,则n= .5.一个矩形的花园,面积为50 m 2,宽比长少5 m,若设矩形花园的宽为x m,则长为 m,根据题意,可得方程 .典例分析例1:下列方程哪个是关于x 的一元二次方程 ( ) A. ax 2+bx+c =0 B.k 2+5k+6=0C. 3x 3+2x -1=0D. (m 2 +3)x 2+4x -2=0例2:指出下列方程中,是一元二次方程的是 .(填入序号即可) ①5x 2+1=0 ②3x 2+x1+1=0 ③4x 2=ax (其中a 为常数) ④2x 3+3x =0 ⑤2315x + =2x ⑥22()x x +=2x ⑦|x 2+2x |=4. ⑧ x 2+3x+1= x 2[点拨]一元二次方程是只含有一个未知数,并且含有未知数的项的最高次数是2的整式方程例3:按要求填写下表:已知方程 一般形式二次项 二次项系数 一次项一次项系数常数项(1) x 2+5x=50 (2) 3y 2=18 (3) (2y -1) (3y +2)=2-y 2 (4) (x -1) (x -5)=9 (5) (2x +3)2=4(3x -1)2(6)-ax 2+ax+bx 2-mx =7 (其中a 、m 、b 为常数,且a ≠b )[点拨]将一元二次方程化成一般形式是做好本题的关键,寻求各项及其系数时, ①是注意项与系数的区别;②是系数前面的符号.基础训练一、选择题1.(兰州)下列方程中是一元二次方程的是( )A.210x +=B.21y x +=C.210x +=D.211x x+= 2. 一元二次方程7x 2-2x =0的二次项、一次项、常数项依次是 ( )A. 7x 2,2x ,0B. 7x 2,-2x ,无常数项C. 7x 2,0,2xD. 7x 2,-2x ,0. 3. 若关于x 的方程a (x -1)2=2x 2-2是一元二次方程,则a 的值是( ) A. 2 B. -2 C. 0 D. 不等于2 二、填空题4. 将方程(x +1)2=2x 化成一般形式为 .5. 方程5x 2=2(x +2)的二次项是__________,一次项是__________,常数项是 .6.(三明)若关于x 的方程x 2+mx -6=0有一个根是2,则m 的值为 . 三、解答题(本大题共2小题,解答应写出必要的文字说明或演算步骤)7. 判定下列方程是否一元二次方程,并说明理由.①x 2+2xy -y 2=0 ②3x +x1=0 ③x 2=1 ④ (3+ x )2=4 ⑤5132+x =-9x ⑥(x 2-3)x +1= x 3+3x ⑦ x 2-x +1= x 28. 把方程(4-x )2=6x -5化为一般形式,并写出它的二次项系数,一次项系数及常数项.拓展延伸一、选择题1. 已知x 2+3x+5的值为9,则代数式3x 2+9x-2 的值为( )A.4B.6C.8D.102. (连云港)为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A.225003600x =B.22500(1)3600x +=C.22500(1%)3600x +=D.22500(1)2500(1)3600x x +++=3.若a x 2-5x+3=0是一元二次方程,则不等式3a+6>0的解是( ) A .a >-2 B .a ≤-2 C .a >-2 且a ≠0 D .a >2 二、填空题(本大题共3小题,请把正确答案填在题中的横线上)4. 方程x m -1-3mx +m -2=0是关于x 的一元二次方程,则此一元二次方程是 .5. (大连课改)大连某小区准备在每两幢楼房之间,开辟面积为300平方米的一块长方形绿地,并且长比宽多10米,设长方形绿地的宽为x 米,则可列方程为 .6. 一元二次方程2 x 2+(a +8)x-(2a -3)=0的二次项系数,一次项系数及常数项之和为5,则a= . 三、解答题(本大题共2小题,解答应写出必要的文字说明或演算步骤)7.一个面积为60m 2的矩形花园,它的长比宽多11m ,花园的长和宽各是多少?设宽为x 米,请列出方程并化为一般式。
2.1 花边有多宽(一)教学目标:1、经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。
2、经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型;在探索过程中培养和发展学生学习数学的主动性,提升数学的应用水平。
一、课前导读1、只含有______未知数的整式方程,并且都能够化为____________________ (a,b,c为常数,a≠0)的形式,这样的方程叫做一元二次方程。
2、方程(2x-1)x=3x-5化为一般形式为_________________,它的二次项系数是______,一次项系数是______,常数项是_______。
3、在一次聚会上,n个同学彼此都握手一次,若这次共握手45次,则可列方程为_____________________。
二、创设情景,引入新课1、艺术设计一块四周镶有宽度相等的花边的地毯如图所示,它的长为8m,宽为5m。
如果地毯中央长方形图案的面积为18m2,那么花边有多宽?如果设花边的宽为x米,那么地毯中央长方形图案的长为米,宽为米。
根据题意,可得方程。
2、趣味数学:先观察下面等式:102+112+122=132+142你还能找到其它的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?如果设五个连续整数中的第一个数为x ,那么后面四个数依次可表示为 , , , 。
根据题意,可得方程 。
你还有其他设法和列法吗?3、梯子移动如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m 。
如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米?由勾股定理可知,滑动前梯子底端距墙 m ,如果设梯子底端滑动x m ,那么滑动后梯子底端距墙_________m 。
根据题意,可得方程 。
三、建立模型,探索新知概括一元二次方程的概念由上面三个问题,我们能够得到三个方程:(8-2x )(5-2x)=18 即2x 2 - 13x + 11 = 0 x 2+(x +1) 2+(x +2) 2=(x +3) 2+(x +4) 2 即x 2 - 8x - 20=0 (x +6) 2+72=10 2 即x 2 +12 x -15 =0引导学生化简整理上述三个方程并观察这三个方程有什么共同特点?(提示:我们以前学习了—元一次方程,同学们能够类比着它的要点,看看这些方程有什么特点。
教学中可以备用的一些素材或者背景本节课的内容是北师大版数学九年级上册第二章一元二次方程的第一节《花边有多宽》的第二课时。
对于本节课我刚开始感觉有点无从下手,“夹逼”的思想由何而来?在本节课中有着怎样的应用?我感觉学生不知从何学起,并且抓不到具体的知识点,在认真研读教材查阅资料的基础上,我把本节课的实际教学过程中的几个点写出来,以供老师们参考。
这节课开始我设置了一个问题情境如下:“有一根带有塑料皮长为100m的电线,不知什么原因中间有一处不通,现给你一只万用表(能测量是否通)进行检查,你怎样快速找到这一处断裂处?先让学生进行讨论,然后让各小组代表提出该组讨论出的方法进行比较,后来我总结出方法。
用万用表先量出1~50m是否通,这样就能排除50m没有问题的电线,其次再用同样的方法测量1~25m的电线是否有问题,然后又可以排除25m,如此下去,就能很快找到断裂处的范围。
我感觉这种设置既贴近学生生活实际,又关注了数学本身的要求。
这个实例不但激发了学生的学习兴趣,还能很好地让学生体会和理解“夹逼”的思想。
并且我在学生探索的过程中采用鼓励和引导的方法。
通过对上述问题提出的方法进行讨论,培养学生自主探索合作交流等良好的学习习惯。
在自主探索合作交流中学生的自豪感和成功感得到升华。
通过对上述方法的讨论和对比,自然得到“夹逼”思想解决一元二次方程的方法,并由学生概括得出用“夹逼”思想解一元二次方程的实质及步骤:(1)在未知数x的取值范围内排除一部分取值。
(2)根据题意所列的具体情况再次进行排除。
(3)列出能反映未知数和方程的值的表格进行再次筛选。
(4)最终得出未知数的最小取值范围或具体数据。
在此基础上,再利用接下来的题目让学生体会“夹逼”思想在具体问题情境中的应用。
“估算”在求解实际生活中一些较为复杂的方程时应用广泛。
因初中学生所学知识面所限,在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法。
其具体的指导思想是:将一元二次方程变形为一般形式:ax2+bx+c=0,分别将x1,x2代入等式左边,当获得的值为一正、一负时,方程必定有一根x0,而且x1<x0 <x2。
2.1花边有多宽方程是刻画现实世界的一个有效数学模型,随着数学应用的日趋广泛,方程的工具作用显得愈发重要.一元二次方程是中学数学的主要内容,在初中数学中占有重要的地位.本节“花边有多宽”是一元二次方程的基础,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念,进而通过夹逼思想估算方程的解.本节的重、难点是一元二次方程的概念及其近似解.2.1花边有多宽(一)教学目标(一)教学知识点1.一元二次方程的概念2.一元二次方程的有关概念.(二)能力训练要求1.经历由具体问题抽象出一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型.2.理解一元二次方程的概念(三)情感与价值观要求从生活实际中抽象出数学问题,让学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.教学重点一元二次方程的概念a≠0教学难点一元二次方程的概念:a≠0教学方法启发诱导式教具准备投影片四张第一张:花边有多宽(记作投影片§2.1.1 A)第二张:数学问题(记作投影片§2.1.1 B)第三张:实际问题(记作投影片§2.1.1 C)第四张:想一想(记作投影片§2.1.1 D)教学过程Ⅰ.创设现实情景、引入新课[师]前面我们学过黄金分割,知道黄金比是多少吗?[生]黄金比是0.618.[师]很好,你知道黄金比为什么是0.618吗?……[师]好,经济时代的今天,你能根据商品的销售利润作出一定的决策吗?你能为一个矩形花园提供多种设计方案吗?……从今天开始,我们来学习能解决这些问题的知识:第二章:一元二次方程.与一次方程和分式方程一样,一元二次方程也是刻画现实问题的有效数学模型.下面我们来学习第一节:花边有多宽.Ⅱ.讲授新课[师]我们来看一个实际问题(出示投影片§2.1.1 A);大家来讨论讨论.一块四周镶有宽度相等的花边的地毯,如图所示,它的长为8m,宽为5 m,如果地毯中央长方形图案的面积为18m2,那么花边有多宽?[生]我们可以利用列方程来求解.[师]很好,那如何列方程来求解实际问题呢?想一想,前面我们学习的列一元一次方程的思路和方法.[生]要从题中,找出已知量、未知量及问题中所涉及的等量关系.这个题已知:这块地毯的长为8 m,宽为5 m,它中央长方形图案的面积为18m2.这个题所要求的是;地毯的花边有多宽.本题是以面积为等量关系.[师]这位同学分析得很好,下面我们共同来利用这些数量关系列出方程.[师生共析]如果设花边的宽为x m,那么地毯中央长方形图案的长为(8-2x)m,宽为(5-2x)m,根据题意,可得方程(8-2x)(5-2x)=18注意:1.利用列方程解实际问题时,关键是要找到等量关系,如本题中的面积等于长乘以宽.2.用一个含有未知数的代数式表示一个量,并且这个量有单位时,需要把这个代数式用括号括起来,如本题中的地毯中央长方形图案的长、宽等.[师]好,下面我们来看一个数学问题(出示投影片§ 2.1.1 B):观察下面等式102+112+122=132+142.你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?[生]这个题我们也可以利用数量关系列方程.[师]很好,如果设五个连续整数中的第一个数为x,那么后面的四个数该如何表示呢?[生甲]因为任何两个连续整数的差为1.所以,如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为x+1,x+2,x+3,x+4.[生乙]根据题意,则可得到方程x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2.[生丙]老师,我觉得这个题也可以设中间的那个数为x,那么其余四个数依次为x-2,x-1,x+1,x+2,由此也可得方程(x-2)2+(x-1)2+x2=(x+1)2+(x+2)2.这样行吗?[师]丙同学的思路很好,这个问题可以有不同的设未知数的方法,同学们可灵活设未知数,即可设这五个数中的任意一个,其他四个数可随之变化.下面我们来看一个实际问题(出示投影片§2.1.1 C):如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m,如果梯子的顶端下滑1 m,那么梯子的底端滑动多少米?[师]同学们分组讨论,列出方程.[生甲]墙与地面是垂直的,因而墙、地面和梯子构成了直角三角形.已知梯子的长为10 m,梯子的顶端距地面的垂直距离为8 m,所以由勾股定理可知,滑动前梯子底端距墙有6 m.[生乙]设梯子底端滑动xm,那么滑动后梯子底端距墙(6+x)m,根据题意,利用勾股定理,可得方程. (x+6)2+(8-1)2=102,即(x+6)2+72=102.[师]同学们讨论得很完整,接下来想一想,议一议(出示投影片§ 2.1.1 D):由上面三个问题,我们可以得到三个方程:(8-2x)(5-2x)=18,x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2,(x+6)2+72=102.这三个方程有什么共同特点?[生甲]这三个方程的每个方程的左、右两边都是整式.[生乙]我把这三个方程进行了化简,即(1)(8-2x)(5-2x)=18,40-26x+4x2=18,4x2-26x+22=0.(2)x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2,x2+x2+2x+1+x2+4x+4=x2+6x+9+x2+8x+16,x2-8x-20=0.(3)(x+6)2+72=102,x2+12x+36+49=100,x2+12x-15=0.由此可以知道:这三个方程可以化简为三项的和.[生丙]把这三个方程经过化简后,最高次数是二次.[生丁]这三个方程的每一个方程中只含有一个未知数.[师]同学们总结得很好.上面的三个方程都是只含有一个未知数x的整式方程,等号两边都是关于未知数的整式的方程,称为整式方程,如:我们学习过的一元一次方程,二元一次方程等都是整式方程.这三个方程还都可以化为ax2+bx+c=0(a、b、c为常数,a≠0)的形式,这样的方程我们叫做一元二次方程(quadratic equatton with one unknown),即只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.注意:1.一元二次方程必须同时满足以下三点;(1)方程是整式方程.(2)它只含有一个未知数.(3)未知数的最高次数是2,即化简为ax2+bx+c=0时,a≠0.2.任何一个关于x的一元二次方程都可以化为ax2+bx++c=0(a≠0)的形式,其中a≠0是定义的一部分,不可漏掉,否则就不是一元二次方程了.因为任何一个关于x的一元二次方程都可以化为ax2+bx+c=0《a≠0》的形式,所以我们把ax2+bx+c =O(a、b、c为常数,a≠0)称为一元二次方程的一般形式,其中ax2、bx、c分别称为二次项、一次项和常数项,a、b分别称为二次项系数和一次项系数.注意:(1)当a=0,b≠0时,方程就是一元一次方程,当一个方程是一元二次方程时,则隐含了条件:a≠0.(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式.Ⅲ.应用、深化课本P43随堂练习1.从前有一天,二个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程.解:设竹竿长为x尺,则门框宽为(x-4)尺,门框高为(x-2)尺,根据题意,得x2=(x-4)2+(x-2)2,即x2-12x+20=02.把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.解:方程(3x+2)2=4(x-3)2的一般形式是5x2+36x-32=0.方程的二次项系数是5,一次项系数是36,常数项是-32.Ⅳ.课时小结本节课我们由讨论“花边有多宽”得出一元二次方程的概念.1.一元二次方程属于“整式方程”,其次,它只含有一个未知数,并且都可以化为 ax2+bx+c=0(a、b、c为常数,a≠0)的形式.2.一元二次方程的一般形式为ax2+bx+c=O(a≠0),一元二次方程的项及系数都是根据它的一般形式定义的,这与多项式中的项、次数及其系数的定义是一致的.3.在实际问题转化为数学模型(一元二次方程)的过程中,体会学习一元二次方程的必要性和重要性.Ⅴ.课后作业(一)课本P44习题2.1 1、2(二)1.预习内容:P44-P462.预习提纲探索一元二次方程的解或近似解,Ⅵ.活动与探究1.当d、b、c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当a、b、c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程?[过程]让学生通过讨论、总结,知道:对于方程ax2+bx+c=0,当a≠0时.是一元二次方程;当a=0且b≠0时,方程为bx+c=0,是一元一次方程.[结果]当a≠1时,方程(a-1)x2-bx+c=0是一元二次方程,这时,方程的二次项系数是a-1,一次项系数是-b.当a=1且b≠0时,方程是一元一次方程.板书设计2.1花边有多宽(一)一、1.设花边的宽为x m,那么地毯中央长方形图案的长为(8-2x)m,宽为(5-2x)m.根据题意,可得(8-2x)(5-2x)=18.2.设五个连续整数中的第一个数为x,那么后面四个数依次可表示为x+1、x+2、x+3、x+4.根据题意,可得x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2.3.设梯子底端滑动x m,那么滑动后梯子底端距墙(x+6)m.根据题意,可得(x+6)2+72=102.二、议一议三个方程的共同特点:(1)只含有一个未知数.(2)整式方程.(3)可化为ax2+bx+c=0.三、1.一元二次方程的定义.2.一元二次方程的一般形式;ax2+bx+c=0(a≠0)ax2是二次项,a是系数bx是一次项,b是系数c是常数项四、练习五、小结六、课后作业。
教学中可以备用的一些素材或者背景本节课的内容是北师大版数学九年级上册第二章一元二次方程的第一节《花边有多宽》的第二课时。
对于本节课我刚开始感觉有点无从下手,“夹逼”的思想由何而来?在本节课中有着怎样的应用?我感觉学生不知从何学起,并且抓不到具体的知识点,在认真研读教材查阅资料的基础上,我把本节课的实际教学过程中的几个点写出来,以供老师们参考。
这节课开始我设置了一个问题情境如下:“有一根带有塑料皮长为100m的电线,不知什么原因中间有一处不通,现给你一只万用表(能测量是否通)进行检查,你怎样快速找到这一处断裂处?先让学生进行讨论,然后让各小组代表提出该组讨论出的方法进行比较,后来我总结出方法。
用万用表先量出1~50m是否通,这样就能排除50m没有问题的电线,其次再用同样的方法测量1~25m的电线是否有问题,然后又可以排除25m,如此下去,就能很快找到断裂处的范围。
我感觉这种设置既贴近学生生活实际,又关注了数学本身的要求。
这个实例不但激发了学生的学习兴趣,还能很好地让学生体会和理解“夹逼”的思想。
并且我在学生探索的过程中采用鼓励和引导的方法。
通过对上述问题提出的方法进行讨论,培养学生自主探索合作交流等良好的学习习惯。
在自主探索合作交流中学生的自豪感和成功感得到升华。
通过对上述方法的讨论和对比,自然得到“夹逼”思想解决一元二次方程的方法,并由学生概括得出用“夹逼”思想解一元二次方程的实质及步骤:(1)在未知数x的取值范围内排除一部分取值。
(2)根据题意所列的具体情况再次进行排除。
(3)列出能反映未知数和方程的值的表格进行再次筛选。
(4)最终得出未知数的最小取值范围或具体数据。
在此基础上,再利用接下来的题目让学生体会“夹逼”思想在具体问题情境中的应用。
“估算”在求解实际生活中一些较为复杂的方程时应用广泛。
因初中学生所学知识面所限,在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法。
其具体的指导思想是:将一元二次方程变形为一般形式:ax2+bx+c=0,分别将x1,x2代入等式左边,当获得的值为一正、一负时,方程必定有一根x0,而且x1<x0 <x2。
《2.1花边有多宽(2)》学案 姓名课前预习(该部分要求同学们首先预习本课知识的基础上完成下面的填空)1.方程3x 2+8=0的一次项系数是 .2. 方程300=3x 2,则 x 为 .3. 方程(x-1)2=100,则x 为 .4. a 2+2ab + b 2 = .5. 某地开展植树造林活动,两年内植树面积由30万亩增加到42万亩,若设植树面积年平均增长率为x ,根据题意列方程_________.典型例题分析例1:一个矩形的花园,面积为50 m 2,宽比长少5 m,求这个花园的长和宽各是多少米?[点拨] 列方程解应用题的关键是找到题目中的等量关系,本题中的等量关系是:矩形的面积=长×宽.在学习一元二次方程的解法以前,可以用估算的方法得到该一元二次方程的解,要使得到的解符合实际意义,所以可直接考虑x 为正即可,实际上x =-10时, x 2+5x -50=0也成立,但因-10不合题意,应舍去.解:设矩形花园的宽为x m,则长为(x +5)m,根据题意,得:整理得 估算一元二次方程的解:x4 5 6∴ 答:例2:观察长方体盒子的制作过程:把一块长方形的纸片的四个角上剪去四个相同的小正方形,然后把四边折起来,就可以做成一个没有盖子的长方体盒子.如图(1),,一块长为40cm,宽为30cm 的纸片,在四个角上剪去四个相同的小正方形,然后做成图(2)所示的底面积为的750cm 2的没有盖子的长方体盒子.若设小正方形的边长为,那么这个盒子底部的长与宽分别为 和 ,根据题意,可列方程 ,整理成一般形式得 .解:(40-2x ); (30-2x ) ; (40-2x )(30-2x )=750;2 x 2-70x +225=0.[点拨]:看此题,阅读量很大,平面图形与立体图形全面展现,但实际只要抓住矩形面积即可求解.故在审题过程中应抓住题目的本质,不要被题意所迷惑,认真分析图中各量之间的关系.例3:已知关于x 的方程(m +3)21mx +2(m -1) x -1=0.(1) m 为何值时,它是一元二次方程. (2) (1) 40cm 30cm x cm(2)m为何值时,它是一元一次方程.[点拨]此题要根据一元二次方程和一元一次方程的定义来确定m的值.此方程为一元二次方程的条件是m2-1=2且m +3≠0; 此方程为一元一次方程的条件应按以下几个方面讨论:①m +3=0且m-1≠0;②m2-1=1且(m +3) +2(m-1) ≠0;③m2-1=0且2(m-1)≠0.解:⑴由21230mm⎧-=⎪⎨+≠⎪⎩,得出m =3∴当m =3时, 原方程为一元二次方程.(2) 若使原方程为一元一次方程,则m的情况应分为以下三种情况讨论:①由1030mm-≠⎧⎪⎨+=⎪⎩,得出m = -3;②由21132(1)0mm m⎧-=⎪⎨++-≠⎪⎩,得出m = ±2;③由2102(1)0mm⎧-=⎨-≠⎩,得出m = -1.∴当m = -3或±2或-1时,原方程为一元一次方程..《2.1花边有多宽(2)》基础训练一、选择题(本大题共3小题,在每小题给出的四个选项中,只有一个符合题目要求,请将此项的标号填在括号内)1.下列叙述正确的是 ( )A.形如ax 2+bx +c =0的方程叫一元二次方程B.方程4x 2+3x =6不含有常数项C.(2-x )2=0是一元二次方程D.一元二次方程中,二次项系数一次项系数及常数项均不能为02. 两数的和比m 少5,这两数的积比m 多3,这两数若为相等的实数,则m 等于 ( )A.13或1B.-13C.1D.不能确定3. 关于x 2=-2的说法,正确的是 ( )A.由于x 2≥0,故x 2不可能等于-2,因此这不是一个方程B.x 2=-2是一个方程,但它没有一次项,因此不是一元二次方程C.x 2=-2是一个一元二次方程D.x 2=-2是一个一元二次方程,但不能解二、填空题(本大题共3小题,请把正确答案填在题中的横线上)4. 关于x 的方程(m -4)x 2+(m +4)x +2m +3=0,当m __________时,是一元二次方程,当m _________时,是一元一次方程.5. 如图,将边长为4的正方形,沿两边剪去两个边长为x 的矩形,剩余部分的面积为9, 可列出方程为_____________,解得x =_________.6. 方程5(x 2-2x +1)=-32x +2的一般形式是__________,其二次项是__________, 一次项是__________,常数项是 .三、解答题(本大题共2小题,解答应写出必要的文字说明或演算步骤)7. (m -2)21m x + (m +2) x +4=0是关于x 的一元二次方程,求m 的值,并求此时方程的根.8. 已知关于x 的方程(m +1)x 2+( n 2-2)x +3=0.(1)当m ,n 为何值时,此方程是一元二次方程?(2)当m ,n 为何值时,此方程是一元一次方程?拓展延伸一、选择题(本大题共3小题,在每小题给出的四个选项中,只有一个符合题目要求,请将此项的标号填在括号内)1.某公司利润两年内由5万元增长到9万元,设每年利润的平均增长率为x ,可以列方程得( )A.5(1+x )=9B.5(1+x )2=9C.5(1+x )+5(1+x )2=9D.5+5(1+x )+5(1+x )2=92. (常德)根据下列表格中所列出的当x 取不同数值时代数式2ax bx c ++值的变化情况,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( ) x6.17 6.18 6.19 6.20 代数式的值 -0.03 -0.01 0.02 0.04A.6 6.17x << B.6.17 6.1x << C.6.18 6.19x << D.6.19 6.2x << 3. 方程x 2-2(3x -2)+(x +1)=0的一般形式是( )A.x 2-5x +5=0B.x 2+5x +5=0C.x 2+5x -5=0D.x 2+5=0二、填空题(本大题共3小题,请把正确答案填在题中的横线上) 4. (常德)已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).5. (河北) 在分式方程2221x x x x++=+中,如果设2y x x =+,那么原方程可化为关于y 的一元二次方程的一般形式是 .6.(潍坊)已知01a a b x ≠≠=,,若是方程2100ax bx +-=的一个解,则2222a b a b--的值是 . 三、解答题(本大题共2小题,解答应写出必要的文字说明或演算步骤)7. 现有长40米,宽30米的一块场地,欲在其中央建一游泳池,周围是等宽的便道及休息区,且游泳池与周围部分面积之比为3∶2,请给出这块场地建设的设计方案,并用图形及相关尺寸表示出来.8.关于x 的方程(2m 2+m -3)x m +1+5x =13可能是一元二次方程吗?为什么?(2m 2+m -3)x m -1+5x =13呢?。
三、梯子底端滑动的距离x(m)满足方程
2 2 2
(x+6) +7 =10 也就是 x2+i2x —15=0
(1)你能猜出滑动距离 x(m)的大致范围吗?
(2)x的整数部分是几?十分位是几?
倡使用计算器。
四、课堂练习
课本P46随堂练习
1 •五个连续整数,前三个数的平方和等于后两个数的平方和,你能求出这五个整数分别是多少吗?
五、课时小结
本节课我们通过解决实际问题,探索了一元二次方程的解或近似解,并了解了近似计算的重要思想一一“夹逼”思想.
六、课后作业
(一)课本P46习题2. 2 I、2
(二 )1.预习内容:P47— P48
板书设计:
一、地毯花边的宽x(m),满足方程(8—
2x)(5 — 2x)=18
二、梯子底端滑动的距离x(m)满足方
程(x+6) 2+72=102
三、练习
四、小结
进一步计算
注意:(1)估算的精度不适过高。
(2)计算时提
因此x的整数部分是1,十分位是1。