第三章 时域分析法(3)稳定性与代数判据
- 格式:ppt
- 大小:759.00 KB
- 文档页数:9
第三章控制系统的时域分析法3.2 劳斯-霍尔维茨稳定性判据稳定性是控制系统最重要的问题,也是对系统最基本的要求。
控制系统在实际运行中,总会受到外界和内部一些因素的扰动,例如负载或能源的波动、环境条件的改变、系统参数的变化等。
如果系统不稳定,当它受到扰动时,系统中各物理量就会偏离其平衡工作点,并随时间推移而发散,即使扰动消失了,也不可能恢复原来的平衡状态。
因此,如何分析系统的稳定性并提出保证系统稳定的措施,是控制理论的基本任务之一。
常用的稳定性分析方法有:1. 劳斯-赫尔维茨(Routh-Hurwitz)判据:这是一种代数判据。
它是根据系统特征方程式来判断特征根在S平面的位置,来判断系统的稳定性.2. 根轨迹法:这是一种利用图解来系统特征根的方法。
它是以系统开环传递函数的某一参数为变量化出闭环系统的特征根在S平面的轨迹,从而全面了解闭环系统特征根随该参数的变化情况。
3. 奈魁斯特(Nyquist)判据:这是一种在复变函数理论基础上建立起来的方法。
它根据系统的开环频率特性确定闭环系统的稳定性,同样避免了求解闭环系统特征根的困难。
这一方法在工程上是得到了比较广泛的应用。
4. 李雅普诺夫方法上述几种方法主要适用于线性系统,而李雅普诺夫方法不仅适用于线性系统,也适用于非线性系统。
该方法是根据李雅普诺夫函数的特征来决定系统的稳定性。
一、稳定性的概念稳定性的概念可以通过图3-31所示的方法加以说明。
考虑置于水平面上的圆锥体,其底部朝下时,我们施加一个很小的外力(扰动),圆锥体会稍微产生倾斜,外作用力撤消后,经过若干次摆动,它仍会返回到原来的状态。
而当圆锥体尖部朝下放置时,由于只有一点能使圆锥体保持平衡,所以在受到任何极微小的外力(扰动)后,它就会倾倒,如果没有外力作用,就再也不能回到原来的状态。
因此,系统的稳定性定义为,系统在受到外作用力后,偏离了最初的工作点,而当外作用力消失后,系统能够返回到原来的工作点,则称系统是稳定的。
第3章时域分析法基本要求3-1 时域分析基础3-2 一、二阶系统分析与计算3-3 系统稳定性分析3-4 稳态误差分析计算返回主目录基本要求1熟练掌握一、二阶系统的数学模型和阶跃响应的特点。
熟练计算性能指标和结构参数,特别是一阶系统和典型欠阻尼二阶系统动态性能的计算方法。
2了解一阶系统的脉冲响应和斜坡响应的特点。
3正确理解系统稳定性的概念,能熟练运用稳定性判据判定系统的稳定性并进行有关的参数计算、分析。
4正确理解稳态误差的概念,明确终值定理的应用条件。
5熟练掌握计算稳态误差的方法。
6掌握系统的型次和静态误差系数的概念。
控制系统的数学模型是分析、研究和设计控制系统的基础,经典控制论中三种分析(时域,根轨迹,频域)、研究和设计控制系统的方法,都是建立在这个基础上的。
3-1 时域分析基础一、时域分析法的特点它根据系统微分方程,通过拉氏变换,直接求出系统的时间响应。
依据响应的表达式及时间响应曲线来分析系统控制性能,并找出系统结构、参数与这些性能之间的关系。
这是一种直接方法,而且比较准确,可以提供系统时间响应的全部信息。
二、典型初始状态,典型外作用1. 典型初始状态通常规定控制系统的初始状态为零状态。
即在外作用加于系统之前,被控量及其各阶导数相对于平衡工作点的增量为零,系统处于相对平衡状态。
2. 典型外作用①单位阶跃函数1(t)tf(t)⎩⎨⎧<≥==0t 00t 1)t (1)t (f 其拉氏变换为:s 1dt e 1)s (F )]t (f [L 0st===⎰∞-其数学表达式为:t②单位斜坡函数0t 0t 0t)t (1t )t (f <≥⎩⎨⎧=.=其拉氏变换为:2sts 1dt e t )s (F )]t (f [L ===⎰∞-f(t)其数学表达式为:③单位脉冲函数000)()(=≠⎩⎨⎧∞==t t t t f d 其数学表达式为:其拉氏变换为:1)()]([==s F t f L ⎰+∞∞-=1)(dt t d 定义:图中1代表了脉冲强度。
自动控制原理总结第一章 绪 论技术术语1. 被控对象:是指要求实现自动控制的机器、设备或生产过程。
2. 被控量:表征被控对象工作状态的物理参量(或状态参量),如转速、压力、温度、电压、位移等。
3. 控制器:又称调节器、控制装置,由控制元件组成,它接受指令信号,输出控制作用信号于被控对象。
4. 给定值或指令信号r(t):要求控制系统按一定规律变化的信号,是系统的输入信号。
5. 干扰信号n(t):又称扰动值,是一种对系统的被控量起破坏作用的信号。
6. 反馈信号b(t):是指被控量经测量元件检测后回馈送到系统输入端的信号。
7. 偏差信号e(t):是指给定值与被控量的差值,或指令信号与反馈信号的差值。
闭环控制的主要优点:控制精度高,抗干扰能力强。
缺点:使用的元件多,线路复杂,系统的分析和设计都比较麻烦。
对控制系统的性能要求 :稳定性 快速性 准确性稳定性和快速性反映了系统的过渡过程的性能。
准确性是衡量系统稳态精度的指标,反映了动态过程后期的性能。
第二章 控制系统的数学模型拉氏变换的定义:-0()()e d st F s f t t+∞=⎰几种典型函数的拉氏变换1.单位阶跃函数1(t)2.单位斜坡函数3.等加速函数4.指数函数e -at5.正弦函数sin ωt6.余弦函数cos ωt7.单位脉冲函数(δ函数)拉氏变换的基本法则1.线性法则2.微分法则3.积分法则1()d ()f t t F s s⎡⎤=⎣⎦⎰L4.终值定理()lim ()lim ()t s e e t sE s →∞→∞==5.位移定理00()e()sf t F s ττ--=⎡⎤⎣⎦L e ()()atf t F s a ⎡⎤=-⎣⎦L 传递函数:线性定常系统在零初始条件下,输出信号的拉氏变换与输入信号的拉氏变换之比称为系统(或元部件)的传递函数。
动态结构图及其等效变换 1.串联变换法则2.并联变换法则3.反馈变换法则4.比较点前移“加倒数”;比较点后移“加本身”。
典型系统的时域响应和稳定性分析一、 实验目的1.研究二阶系统的特征参量(ξ、ωn )对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。
4. 学习用电路系统研究一般控制系统的仿真实验方法二、 实验设备PC 机一台,Matlab ,Multisim (或PSpice)。
三、 实验原理及内容1.典型的二阶系统稳定性分析 (1) 结构框图:见图2-1图2-1(2) 对应的模拟电路图图2-2(3) 理论分析系统开环传递函数为:)1S T (S T K )1S T (S T K )S (G 101101+=+=;开环增益01T K K =。
(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中(图2-2),s 1T 0=, s T 2.01=,R 200K 1= R 200K =⇒系统闭环传递函数为:KS S KS S S W n n n 5552)(2222++=++=ωζωω 其中自然振荡角频率:R1010T K 1n ==ω;阻尼比:40R1025n =ω=ζ。
2.典型的三阶系统稳定性分析 (1) 结构框图图2-3(2) 模拟电路图图2-4(3) 理论分析系统的开环传函为:)1S 5.0)(1S 1.0(S R 500)S (H )S (G ++=(其中R 500K =),系统的特征方程为:0K 20S 20S 12S 0)S (H )S (G 123=+++⇒=+。
(4) 实验内容实验前由Routh 判断得Routh 行列式为:S 3 1 20 S 2 12 20K S 1 (-5K/3)+20 0S 0 20K 0为了保证系统稳定,第一列各值应为正数,所以有 ⎪⎩⎪⎨⎧>>+-0K 20020K 35得: 0 < K < 12 ⇒ R > 41.7KΩ 系统稳定K = 12 ⇒ R = 41.7KΩ 系统临界稳定 K > 12 ⇒ R < 41.7KΩ 系统不稳定四、 实验步骤1. 实验中阶跃信号幅值为1V 左右。
第三章时域分析法3.1 引言333.2 线性系统稳定性分析3.3 一阶系统的时域分析343.4 二阶系统的时域分析3.5 线性系统的误差分析线差析3.1控制系统分析3.13.1 引言引言是指一个实际系统的数学模型建立后,对系统的稳定性、瞬态响应和稳态误差进行分析,判断其性能指标是否满足要求。
时域分析法是从系统的微分方程入手,求解系统的微分方程,由输出的时间响应来分析系统性能,具有直观、准确的优点,可以提供系统时间响应的全部信息。
本章重点介绍一阶和二阶系统时间响应的分析和计算;介绍用劳斯稳定性判据分析系统稳定性的方法;讨论系统参数对性能指标的影响,分析改进二阶系统性能的措施;以及计算系统稳态误差的方法。
稳定性若控制系统在初始条件或扰动作用下,其瞬态响z应随着时间的推移而逐渐衰减并趋向于零,则称该系统为渐进稳定,简称稳定;反之,若系统的瞬态响应随时间的推移而发散,则称系统为不稳定。
z控制系统的稳定性取决于系统本身的结构和参数,于外加信号无关。
z劳斯判据瞬态响应z瞬态响应(动态响应):一个稳定系统,在典型信号作用下从初始状态到稳态的过渡过程。
z分析方法•直接求解法——得到系统输出y(t)表达式。
•间接评价法——通过与系统的结构、参数有联系的时域性能指标来评价系统的品质,受到广泛使用。
•——计算机仿真法可对复杂的、高阶的、多变量的系统求解y(t),直接得到各种指标。
稳态响应z指系统在典型信号作用下,当时间t→∞, 系统输出量的表现方式,又称为稳态过程;z稳态响应可以提供系统有关稳态误差(精度)的信息;z从数学形式上看,是令系统响应中所有衰减模态趋于0的形式;§3-2控制系统的稳定性§3-2 控制系统的稳定性在控制系统的分析研究中,首要的问题是系统的稳定性问题。
不稳定的系统在受到外界或内部的一些因素扰动时,会使被控制量偏离原来的平衡工作状态,并随时间的推移而振荡甚至发散。
因此,不稳定的系统是无法正常工作的。