水解酸化池 PPT
- 格式:pptx
- 大小:608.14 KB
- 文档页数:1
池深H:应大于5.5~6m。
容积负荷N_v=2~2.5kgCOD/〖(m〗^3*d)水力停留时间:6~8h污泥浓度:MLSS=10~20g/L溶解氧:<0.2~0.3mg/L,用氧化复原电位之-50~+20mvPH值:5.5~6.5水温尽可能高,大于25摄氏度效果较好配水:由配水区进入反响区的配水孔流速v=0.20~0.23m/s;v不宜太小,以免不均。
水解酸化池的设计水解酸化工艺属于升流式厌氧污泥床反响器技术范畴。
水解池内分污泥床区和清水层区,待处理污水以及滤池反冲洗时脱落的剩余微生物膜由反响器底部进入池内,并通过带反射板的布水器与污泥床快速而均匀地混合。
污泥床较厚,类似于过滤层,从而将进水中的颗粒物质与胶体物质迅速截留和吸附。
由于污泥床内含有高浓度的兼性微生物,在池内缺氧条件下,被截留下来的有机物质在大量水解—产酸菌作用下,将不溶性有机物水解为溶解性物质,将大分子、难于生物降解的物质转化为易于生物降解的物质;同时,生物滤池反冲洗时排出的剩余污泥〔剩余微生物膜〕菌体外多糖粘质层发生水解,使细胞壁翻开,污泥液态化,重新回到污水处理系统中被好氧菌代谢,到达剩余污泥减容化的目的。
由于水解酸化的污泥龄较长〔一般15~20天〕,所以在本设计中,采用水解酸化池代替常规的初沉池,除到达截留污水中悬浮物的目的外,还具有局部生化处理和污泥减容稳定的功能。
水解酸化池设计停留时间为3.6h,有效容积为750m3,共分2格,每格工艺尺寸为:13 m×5.5 m×5.6m〔超高0.35m〕。
中间管廊工艺尺寸为:13 m×2.0 m ×5.6m。
水解酸化池泥层高 2.5m。
排泥位置主要位于泥层上部,池底设有排砂设施,泥龄一般18天左右,设计污泥混合区浓度20g/L,泥区总体积约为320m3,每天产干泥量约0.25吨。
水解酸化池的设计水解酸化就是将大分子有机物转化成小分子有机物,可提高废水的可生化性〔B/C〕,即是提高BOD。
3.3水解酸化池3.3.1设计说明印染废水中含有大量高分子有机物,较难直接被好氧微生物降解,而水解酸化可大大提高废水的可生化性。
在水解酸化阶段,通过缺氧降解,使水中大分子有机物分解为易生化的小分子有机物,从而提高废水的可生化性,保证后续生化处理效果。
水解池中设计安装高速潜水推流器,以保证厌氧微生物和废水能充分接触,均匀水质。
3.3.2设计参数(1)容积负荷N V =3.2kgCOD/(m 3·d);(2)配水孔流速v=0.2m/s ;(3)设计水量Q=10000m 3/d ;(4)进水COD 浓度1600mg/L ;(5)有效水深h 2=5m ;(6)保护高度h 1=0.8m 。
3.3.3设计计算1.水解酸化池尺寸(1)总有效容积350003.2000016.1m N Q S V V =⨯=⨯= 式中:S ——进水COD 浓度,gCOD/L 。
(2)总表面积水解池高h 取5m ,则水解池表面积A 为:2100055000m h V A ===将水解池分为两大格,则每格体积312500250002m V V ===;每格表面积21150052500m h V A ===。
所以每大格外形尺寸取为L×B×H=50m×10m×5m 。
2.水力停留时间h Q V HRT 1224100005000=⨯== 3.填料设计池内填料采用由聚丙烯、聚乙烯制成半软性复合填料,它具有散热性能高,阻力小,布水、布气性能好,易长膜,又有切割气泡的特点。
取填料层为2.5m 高,距进水边池壁1.6m ,则填料体积为:32420.5210.61502m V =⨯⨯-⨯=)(填料4.污泥产生量水解酸化池的COD 去除率为30%,污泥的产生量按照每公斤COD 产生0.2kg 干污泥进行计算,产生的污泥主要在二沉池及气浮池进行泥水分离。
(1)干污泥产生量d kg W /9602.010000%306.1=⨯⨯⨯=(2)湿污泥产生量湿污泥含水率以99%计,则湿污泥产生量:d t d kg W W /96/9600001.096099.011===-= 换算成污泥体积,即:d m V /953=污泥5.污泥斗设计每大格设计五个污泥斗,共10个。
污水处理水解酸化池引言概述:污水处理是一项重要的环保工作,其中水解酸化池是污水处理系统中的一个关键环节。
本文将详细介绍污水处理水解酸化池的原理、作用、操作方法和优化措施。
一、水解酸化池的原理1.1 水解作用:水解酸化池是通过细菌的水解作用将有机物质分解为有机酸、氨和其他溶解性有机物。
1.2 酸化作用:水解酸化池中的有机酸进一步被酸化菌转化为挥发性脂肪酸,产生大量的氢离子。
1.3 pH调节:水解酸化池中的氢离子会降低pH值,从而提供了适宜的环境条件,促进后续好氧处理的进行。
二、水解酸化池的作用2.1 有机物质降解:水解酸化池能有效降解废水中的有机物质,减少有机污染物的浓度。
2.2 氨氮去除:水解酸化池中的细菌可以将有机氮转化为氨氮,为后续的硝化作用提供底物。
2.3 pH调节:水解酸化池中的pH调节作用可以提供合适的环境条件,促进后续处理过程的进行。
三、水解酸化池的操作方法3.1 进水控制:控制进水流量和进水浓度,保证水解酸化池的正常运行。
3.2 搅拌措施:通过搅拌设备保持水解酸化池中的混合状态,促进细菌的生长和有机物质的降解。
3.3 通气方式:提供适量的氧气或气体替代物,保持水解酸化池中的适宜氧气浓度,促进细菌的活性。
四、水解酸化池的优化措施4.1pH控制:通过添加碱性物质或酸性物质来调节水解酸化池中的pH值,提高处理效果。
4.2温度控制:保持适宜的温度范围,提高细菌的活性和有机物质的降解效率。
4.3 有机负荷控制:合理控制水解酸化池的有机负荷,避免过载运行,保证处理效果稳定。
总结:水解酸化池在污水处理中起着重要的作用,通过水解和酸化作用,能有效降解有机物质和氨氮。
在操作过程中,需要控制进水、搅拌和通气等因素,同时通过pH、温度和有机负荷的控制来优化处理效果。
通过对水解酸化池的合理管理和优化措施的应用,可以实现高效、稳定的污水处理效果。
污水处理水解酸化池一、引言随着城市化进程的加速,污水处理成为环境保护领域的重要一环。
水解酸化池作为其中的一种处理方法,具有独特的作用和地位。
本文将从七个方面详细探讨水解酸化池的原理、构造、运行管理、优势与局限性、实际应用、案例分析以及未来发展方向。
二、水解酸化池的原理水解过程:水解阶段主要利用水解细菌将不溶性有机物水解成可溶性有机物。
酸化过程:酸化阶段则是由产酸菌将可溶性有机物转化为低分子量物质,如挥发性脂肪酸(VFA)。
产酸与产甲烷:部分有机物进一步转化为甲烷,是厌氧消化过程的重要阶段。
三、水解酸化池的构造设计与结构:水解酸化池通常采用上流式或完全混合式设计,以确保污水与微生物充分接触。
填料选择:池内通常会选择合适的填料,如弹性填料或组合填料,以增加生物膜的附着面积。
停留时间:根据进出水的水质和水量,合理设定停留时间以保证处理效果。
四、水解酸化池的运行管理温度控制:保持适宜的温度是水解酸化的关键,通常控制在20-40℃之间。
pH值调节:pH值应维持在5.5-7.0之间,以确保微生物的正常代谢。
混合与搅拌:适当的混合与搅拌有助于提高处理效率。
五、水解酸化池的优势与局限性优势:高效降解有机物;适用于高浓度有机废水;提高废水的可生化性。
局限性:对氨氮的去除效果有限;可能产生不良气味;对操作管理要求较高。
六、实际应用与案例分析应用领域:适用于生活污水、工业废水等领域。
案例介绍:如某城市污水处理厂的升级改造项目,通过引入水解酸化池,显著提高了出水水质。
七、未来研究方向与发展前景研究方向:探索新型填料与微生物种群;深入研究反应动力学与模型模拟;优化运行参数与工艺控制。
发展前景:随着环境保护意识的增强和技术创新,水解酸化池将在污水处理领域发挥更加重要的作用,尤其在资源回收和能源利用方面具有广阔的应用前景。
总之,水解酸化池作为一种重要的污水处理技术,在理论和实践上都有着丰富的内涵和广泛的应用前景。
通过深入研究和不断创新,我们有信心进一步提高其处理效果,为保护生态环境做出更大的贡献。
水解酸化池原理
首先,将有机废水引入水解酸化池中,池内的pH值保持在酸性范围(通常在4.0-6.0之间),这样可以促进有机物的分解,同时也能抑制一
些氨氮的生成。
随着有机物的降解,水解酸化池内温度逐渐升高,池内厌氧微生物开
始繁殖,并将有机物降解成一些小分子的有机酸,如乙酸、丙酸、酪酸等。
随后,这些有机酸被进一步分解成二氧化碳和甲烷,这个过程称为沼
气发酵。
这里需要注意的是,由于水解酸化池是一个缺氧条件下进行的处
理过程,因此生成的甲烷并不能完全被氧化,也就是说有的甲烷会被排放
到大气中,从而成为一种温室气体。
最后,经过水解酸化池的处理,有机物大致被分解成了CO2和H2O,
并且排出的污水中也没有明显的浊度、颜色和气味,能够满足排放标准,
从而保护了水源和环境的安全。
总的来说,水解酸化池的运行需要一定的时间和温度,通常需要3-5
天的处理时间,同时为了避免污水中被排放出来大量的甲烷,也需要进行
一些控制措施,如在水解酸化池内添加一些高碳源材料,例如糠醇和麦芽等,以提高池内氧气含量,从而促进甲烷的完全氧化。
同时,由于水解酸
化池进行的是一种缺氧的处理过程,因此在下游进行一些后续处理,如添
加一些差异菌等,来进一步提高处理效果,也是非常必要的。
污水处理水解酸化池水解酸化池是污水处理系统中的重要组成部份,它起着调节污水pH值、降解有机物质和去除氨氮的作用。
本文将详细介绍水解酸化池的定义、工作原理、设计要求、操作注意事项以及常见问题解决方法。
一、定义水解酸化池是污水处理系统中的一种生物处理设备,主要通过酸化和水解反应将有机物质转化为可被生物降解的有机酸和氨氮。
二、工作原理水解酸化池通过控制进水流量和停留时间,使污水在池内停留一段时间,从而使有机物质与微生物接触并发生水解反应。
在水解反应中,有机物质被分解为有机酸和氨氮。
有机酸进一步被酸化反应降解为甲烷和二氧化碳,氨氮则通过硝化反应转化为硝态氮。
三、设计要求1. 尺寸设计:水解酸化池的尺寸应根据进水量、停留时间和有机负荷来确定,以确保池内有足够的停留时间进行水解反应。
2. 进水方式:进水应均匀分布在水解酸化池的进水口,以避免死水区域的形成。
3. 通气系统:水解酸化池应配备通气系统,以提供足够的氧气供给微生物进行有氧降解反应。
4. 搅拌设备:适当的搅拌设备可以提高水解酸化池内的混合效果,促进微生物与有机物质的接触。
四、操作注意事项1. 控制进水流量:进水流量应根据水解酸化池的设计要求进行控制,以确保池内有足够的停留时间进行水解反应。
2. pH值控制:水解酸化池中的pH值应控制在适宜的范围内,通常在6.5-7.5之间,以保证微生物的正常生长和有机物质的降解效果。
3. 温度控制:水解酸化池的温度应控制在适宜的范围内,通常在35-40摄氏度之间,以提供良好的微生物生长环境。
4. 搅拌控制:适当的搅拌可以提高水解酸化池内的混合效果,但过强的搅拌会导致微生物的剧烈波动,影响水解反应的进行。
五、常见问题解决方法1. 水解效果不佳:可能是由于进水量过大或者停留时间不足导致的,可以通过调整进水流量和停留时间来解决。
2. pH值波动较大:可能是由于进水pH值波动较大或者通气系统浮现问题导致的,可以通过稳定进水pH值和维修通气系统来解决。
4.6水解酸化池4.6.1设计说明水解酸化就是将大分子有机物转化为小分子有机物,可以取代初沉池的作用,主要用于有机浓度高、SS 较高的污水处理工艺.水解是一个比较重要的工艺,可以在短的停留时间和相对高的水力负荷下获得高的悬浮物去除率,并可以改善和提高原污水的可生化性和溶解性,以利于好氧后处理工艺。
水解工艺并不是简单的,设计时要充分的考虑到污水中有机物的性质,确定水解的工艺设计,水力停留时间、搅拌方式、循环方式、污水回流方式、出水方式等。
4.6.2设计参数池深:应大于4~6m ;水力停留时间:5~8h ;污泥浓度:MLSS =10~20g/L ;溶解氧:≤0.2~0.3mg/L ;PH 值:5.5~6.5;水温:≧25℃效果较好;配水:由配水区进入反应区的配水孔流速v =0.20~0.23m/s ;v 不宜太小,以免不均,出水管孔最小直径不宜小于15mm,一般在15~25mm 之间。
水解酸化池的进出水质见:表4-4-14-4-1 水解酸化池进出水水质表4.6.3设计计算(1)水解池的池体尺寸①水解池容积 3max 11255225m HRT Q V =⨯==式中:V ——水解池容积,m 3;max Q ——设计流量,m 3/h ;HRT ——水力停留时间,h 。
②水解池高度水解池的经济高度(深度)一般在4~6m 之间,在大多数情况之下这也是最优的运行范围,故取水解池高度为H 1=4.5m 。
为了保证污水进入池内后能与活性污泥层快速均匀地混合,在池体下部专门设有多槽布水区,其高度为0.5m 。
池内实际有效高度为:H 2 =H 1+0.5=4.5+0.5=5.0m水解池实际总高度为:H =H 2+h=5.0+0.5=5.5m③水解池上升流速校核已知反应器高度为H 1=4.5m ,反应器的高度与上升流速之间的关系为:h m HRT H HRTA V A v Q /9.055.4max===== 水解池的上升流速在0.5~1.8m/h 内,符合设计要求。
污水处理水解酸化池引言概述:污水处理是现代社会中一个重要的环境保护措施。
水解酸化池作为污水处理过程中的关键环节,具有去除有机污染物、减少氮磷污染物等优势。
本文将详细介绍水解酸化池的原理、工艺、操作要点以及市场应用。
一、水解酸化池的原理1.1 有机污染物降解机理水解酸化池通过微生物的作用将有机污染物分解为有机酸、氨氮等物质。
在酸性环境下,有机酸进一步水解为甲烷和二氧化碳,氨氮则通过硝化反应转化为硝酸盐和亚硝酸盐。
1.2 pH值的控制水解酸化池中的微生物对酸碱度非常敏感,适宜的pH值可以促进微生物的生长和代谢。
普通情况下,水解酸化池的pH值控制在4.5-6.5之间,通过添加碱性物质如氢氧化钠进行调节。
1.3 温度的影响水解酸化池的温度对微生物的活性和有机物降解速率有着重要影响。
通常情况下,水解酸化池的温度保持在30-40摄氏度,可以提高微生物的活性,促进有机物的降解。
二、水解酸化池的工艺2.1 水解酸化池的结构水解酸化池通常由进水管、出水管、进气装置、搅拌器等组成。
进水管将污水引入水解酸化池,出水管将处理后的污水排出,进气装置提供氧气供微生物进行降解,搅拌器保持池内的悬浮物均匀分布。
2.2 水解酸化池的操作步骤首先,调节水解酸化池的pH值,保持在适宜的范围内。
其次,控制水解酸化池的温度,提供适宜的环境条件。
然后,根据进水水质和处理要求,调整进水流量和进气量。
最后,定期检查水解酸化池的运行情况,及时清理池内沉积物。
2.3 水解酸化池与其他处理单元的配合水解酸化池通常与好氧池、硝化池、脱氮池等处理单元配合使用,形成完整的污水处理系统。
水解酸化池负责有机物的降解,而其他处理单元则进一步去除氮磷等污染物。
三、水解酸化池的操作要点3.1 控制进水水质水解酸化池对进水水质的要求较低,但过高的COD浓度或者有毒物质的存在会影响微生物的生长和降解效果。
因此,需要控制进水水质,避免过高浓度和有毒物质的进入。
3.2 适宜的负荷水解酸化池的负荷是指单位时间内进入水解酸化池的有机物质量。